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Preface

In the past few decades, the field of quantum condensed matter physics has seen rapid

and, at times, almost revolutionary development. Undoubtedly, the success of the field

owes much to ground-breaking advances in experiment: already the controlled fabrication

of phase coherent electron devices on the nanoscale is commonplace (if not yet routine),

while the realization of ultra–cold atomic gases presents a new arena in which to explore

strong interaction and condensation phenomena in Fermi and Bose systems. These, along

with many other examples, have opened entirely new perspectives on the quantum physics

of many-particle systems. Yet, important as it is, experimental progress alone does not,

perhaps, fully explain the appeal of modern condensed matter physics. Indeed, in concert

with these experimental developments, there has been a “quiet revolution” in condensed

matter theory, which has seen phenomena in seemingly quite different systems united by

common physical mechanisms. This relentless “unification” of condensed matter theory,

which has drawn increasingly on the language of low-energy quantum field theory, betrays

the astonishing degree of universality, not fully appreciated in the early literature.

On a truly microscopic level, all forms of quantum matter can be formulated as a many-

body Hamiltonian encoding the fundamental interactions of the constituent particles. How-

ever, in contrast with many other areas of physics, in practically all cases of interest in

condensed matter the structure of this operator conveys as much information about the

properties of the system as, say, the knowledge of the basic chemical constituents tells us

about the behavior of a living organism! Rather, in the condensed matter environment,

it has been a long-standing tenet that the degrees of freedom relevant to the low-energy

properties of a system are very often not the microscopic. Although, in earlier times, the

passage between the microscopic degrees of freedom and the relevant low-energy degrees of

freedom has remained more or less transparent, in recent years this situation has changed

profoundly. It is a hallmark of many “deep” problems of modern condensed matter physics

that the connection between the two levels involves complex and, at times, even controversial

mappings. To understand why, it is helpful to place these ideas on a firmer footing.

Historically, the development of modern condensed matter physics has, to a large extent,

hinged on the “unreasonable” success and “notorious” failures of non-interacting theo-

ries. The apparent impotency of interactions observed in a wide range of physical sys-

tems can be attributed to a deep and far-reaching principle of adiabatic continuity: the
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quantum numbers that characterize a many-body system are determined by fundamen-

tal symmetries (translation, rotation, particle exchange, etc.). Providing that the integrity

of the symmetries is maintained, the elementary “quasi-particle” excitations of an inter-

acting system can be usually traced back “adiabatically” to those of the bare particle

excitations present in the non-interacting system. Formally, one can say that the radius

of convergence of perturbation theory extends beyond the region in which the pertur-

bation is small. For example, this quasi-particle correspondence, embodied in Landau’s

Fermi-liquid theory, has provided a reliable platform for the investigation of the wide

range of Fermi systems from conventional metals to 3helium fluids and cold atomic Fermi

gases.

However, being contingent on symmetry, the principle of adiabatic continuity and, with

it, the quasi-particle correspondence, must be abandoned at a phase transition. Here, inter-

actions typically effect a substantial rearrangement of the many-body ground state. In the

symmetry-broken phase, a system may – and frequently does – exhibit elementary exci-

tations very different from those of the parent non-interacting phase. These elementary

excitations may be classified as new species of quasi-particle with their own characteristic

quantum numbers, or they may represent a new kind of excitation – a collective mode –

engaging the cooperative motion of many bare particles. Many familiar examples fall into

this category: when ions or electrons condense from a liquid into a solid phase, translational

symmetry is broken and the elementary excitations – phonons – involve the motion of many

individual bare particles. Less mundane, at certain field strengths, the effective low-energy

degrees of freedom of a two-dimensional electron gas subject to a magnetic field (the quan-

tum Hall system) appear as quasi-particles carrying a rational fraction (!) of the elementary

electron charge – an effect manifestly non-perturbative in character.

This reorganization lends itself to a hierarchical perspective of condensed matter already

familiar in the realm of particle physics. Each phase of matter is associated with a unique

“non-interacting” reference state with its own characteristic quasi-particle excitations – a

product only of the fundamental symmetries that classify the phase. While one stays within

a given phase, one may draw on the principle of continuity to infer the influence of inter-

actions. Yet this hierarchical picture delivers two profound implications. Firstly, within the

quasi-particle framework, the underlying “bare” or elementary particles remain invisible

(witness the fractionally charged quasi-particle excitations of the fractional quantum Hall

fluid!). (To quote from P. W. Anderson’s now famous article “More is different,” (Science

177 (1972), 393–6), “the ability to reduce everything to simple fundamental laws does not

imply the ability to start from those laws and reconstruct the universe.”) Secondly, while

the capacity to conceive of new types of interaction is almost unbounded (arguably the

most attractive feature of the condensed matter environment!), the freedom to identify

non-interacting or free theories is strongly limited, constrained by the space of fundamen-

tal symmetries. When this is combined with the principle of continuity, the origin of the

observed “universality” in condensed matter is revealed. Although the principles of adia-

batic continuity, universality, and the importance of symmetries have been anticipated and

emphasized long ago by visionary theorists, it is perhaps not until relatively recently that

their mainstream consequences have become visible.
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How can these concepts be embedded into a theoretical framework? At first sight, the

many-body problem seems overwhelmingly daunting. In a typical system, there exist some

1023 particles interacting strongly with their neighbors. Monitoring the collective dynamics,

even in a classical system, is evidently a hopeless enterprise. Yet, from our discussion above,

it is clear that, by focussing on the coordinates of the collective degrees of freedom, one

may develop a manageable theory involving only a restricted set of excitations. The success

of quantum field theory in describing low-energy theories of particle physics as a successive

hierarchy of broken symmetries makes its application in the present context quite natural.

As well as presenting a convenient and efficient microscopic formulation of the many-body

problem, the quantum field theory description provides a vehicle to systematically identify,

isolate, and develop a low-energy theory of the collective field. Moreover, when cast as a field

integral, the quantum field theory affords a classification of interacting systems into a small

number of universality classes defined by their fundamental symmetries (a phenomenon not

confined by the boundaries of condensed matter – many concepts originally developed in

medium- or high-energy physics afford a seamless application in condensed matter). This

phenomenon has triggered a massive trend of unification in modern theoretical physics.

Indeed, by now, several sub-fields of theoretical physics have emerged (such as conformal

field theory, random matrix theory, etc.) that define themselves not so much through any

specific application as by a certain conceptual or methodological framework.

In deference to the importance attached to the subject, in recent years a number of

texts have been written on the subject of quantum field theory within condensed matter.

It is, therefore, pertinent for a reader to question the motivation for the present text.

Firstly, the principal role of this text is as a primer aimed at elevating graduate students

to a level where they can engage in independent research. Secondly, while the discussion

of conceptual aspects takes priority over the exposure to the gamut of condensed matter

applications, we have endeavored to keep the text firmly rooted in practical experimental

application. Thirdly, as well as routine exercises, the present text includes extended problems

which are designed to provide a bridge from formal manipulations to research-oriented

thinking. Indeed, in this context, readers may note that some of the “answered” problems

are deliberately designed to challenge: it is, after all, important to develop a certain degree

of intuitive understanding of formal structures and, sadly, this can be acquired only by

persistent and, at times, even frustrating training!

With this background, let us now discuss in more detail the organization of the text.

To prepare for the discussion of field theory and functional integral techniques we begin in

Chapter 1 by introducing the notion of a classical and a quantum field. Here we focus on

the problem of lattice vibrations in the discrete harmonic chain, and its “ancestor” in the

problem of classical and quantum electrodynamics. The development of field integral meth-

ods for the many-body system relies on the formulation of quantum mechanical theories in

the framework of the second quantization. In Chapter 2 we present a formal and detailed

introduction to the general methodology. To assimilate this technique, and motivate some

of the examples discussed later in the text, a number of separate and substantial appli-

cations are explored in this chapter. In the first of these, we present (in second-quantized

form) a somewhat cursory survey of the classification of metals and insulators, identifying a
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canonical set of model Hamiltonians, some of which form source material for later chapters.

In the case of the one-dimensional system, we will show how the spectrum of elementary

collective excitations can be inferred using purely operator methods within the framework

of the bosonization scheme. Finally, to close the chapter, we will discuss the application of

the second quantization to the low-energy dynamics of quantum mechanical spin systems.

As a final basic ingredient in the development of the quantum field theory, in Chapter 3 we

introduce the Feynman path integral for the single-particle system. As well as represent-

ing a prototype for higher-dimensional field theories, the path integral method provides a

valuable and recurring computational tool. This being so, we have included in this chapter

a pedagogical discussion of a number of rich and instructive applications which range from

the canonical example of a particle confined to a single or double quantum well, to the

tunneling of extended objects (quantum fields), quantum dissipation, and the path integral

formulation of spin.

Having accumulated all of the necessary background, in Chapter 4 we turn to the formula-

tion and development of the field integral of the quantum many-particle system. Beginning

with a discussion of coherent states for Fermi and Bose systems, we develop the many-

body path integral from first principles. Although the emphasis in the present text is on

the field integral formulation, the majority of early and seminal works in the many-body

literature were developed in the framework of diagrammatic perturbation theory. To make

contact with this important class of approximation schemes, in Chapter 5 we explore the

way diagrammatic perturbation series expansions can be developed systematically from the

field integral. Employing the φ4-theory as a canonical example, we describe how to explore

the properties of a system in a high order of perturbation theory around a known refer-

ence state. To cement these ideas, we apply these techniques to the problem of the weakly

interacting electron gas.

Although the field integral formulation provides a convenient means to organize pertur-

bative approximation schemes as a diagrammatic series expansion, its real power lies in

its ability to identify non-trivial reference ground states, or “mean-fields,” and to provide

a framework in which low-energy theories of collective excitations can be developed. In

Chapter 6, a fusion of perturbative and mean-field methods is used to develop analyti-

cal machinery powerful enough to address a spectrum of rich applications ranging from

metallic magnetism and superconductivity to superfluidity. To bridge the gap between the

(often abstract) formalism of the field integral, and the arena of practical application, it is

necessary to infer the behavior of correlation functions. Beginning with a brief survey of con-

cepts and techniques of experimental condensed matter physics, in Chapter 7 we highlight

the importance of correlation functions and explore their connection with the theoretical

formalism developed in previous chapters. In particular, we discuss how the response of

many-body systems to various types of electromagnetic perturbation can be described in

terms of correlation functions and how these functions can be computed by field theoretical

means.

Although the field integral is usually simple to formulate, its properties are not always

easy to uncover. Amongst the armory of tools available to the theorist, perhaps the

most adaptable and versatile is the method of the renormalization group. Motivating
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our discussion with two introductory examples drawn from a classical and a quantum

theory, in Chapter 8 we become acquainted with the renormalization group method as a

concept whereby nonlinear theories can be analyzed beyond the level of plain perturbation

theory. With this background, we then proceed to discuss renormalization methods in more

rigorous and general terms, introducing the notion of scaling, dimensional analysis, and the

connection to the general theory of phase transitions and critical phenomena. To conclude

this chapter, we visit a number of concrete implementations of the renormalization group

scheme introduced and exemplified on a number of canonical applications.

In Chapter 9, we turn our attention to low-energy theories with non–trivial forms of

long-range order. Specifically, we will learn how to detect and classify topologically non-

trivial structures, and to understand their physical consequences. Specifically, we explore the

impact of topological terms (i.e. θ-terms, Wess–Zumino terms, and Chern–Simons terms)

on the behavior of low-energy field theories solely through the topology of the underlying

field configurations. Applications discussed in this chapter include persistent currents, ’t

Hooft’s θ-vacua, quantum spin chains, and the quantum Hall effects.

So far, our development of field theoretic methodologies has been tailored to the consid-

eration of single-particle quantum systems, or many-body systems in thermal equilibrium.

However, studies of classical nonequilibrium systems have a long and illustrious history,

dating back to the earliest studies of thermodynamics, and these days include a range of

applications from soft matter physics to population dynamics and ecology. At the same time,

the control afforded by modern mesoscopic semiconducting and metallic devices, quantum

optics, as well as ultracold atom physics now allow controlled access to quantum systems

driven far from equilibrium. For such systems, traditional quantum field theoretical method-

ologies are inappropriate.

Starting with the foundations of non-equilibrium statistical mechanics, from simple one-

step processes, to reaction–diffusion type systems, in Chapter 10 we begin by developing

Langevin and Fokker–Planck theory, from which we establish classical Boltzmann trans-

port equations. We then show how these techniques can be formulated in the language of

the functional integral developing the Doi–Peliti and Martin–Siggia–Rose techniques. We

conclude our discussion with applications to nonequilibrium phase transitions and driven

lattice gases. These studies of the classical nonequilibrium system provide a platform to

explore the quantum system. In Chapter 11, we develop the Keldysh approach to quantum

non-equilibrium systems based, again, on the functional integral technique. In particular,

we emphasize and exploit the close connections to classical nonequilibrium field theory, and

present applications to problems from the arena of quantum transport.

To focus and limit our discussion, we have endeavored to distill material considered

“essential” from the “merely interesting” or “background.” To formally acknowledge and

identify this classification, we have frequently included reference to material which we believe

may be of interest to the reader in placing the discussion in context, but which can be

skipped without losing the essential thread of the text. These intermissions are signaled in

the text as “Info” blocks.

At the end of each chapter, we have collected a number of pedagogical and instructive

problems. In some cases, the problems expand on some aspect of the main text requiring only
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an extension, or straightforward generalization, of a concept raised in the chapter. In other

cases, the problems rather complement the main text, visiting fresh applications of the same

qualitative material. Such problems take the form of case studies in which both the theory

and the setting chart new territory. The latter provide a vehicle to introduce some core areas

of physics not encountered in the main text, and allow the reader to assess the degree to

which the ideas in the chapter have been assimilated. With both types of questions to make

the problems more inclusive and useful as a reference, we have included (sometimes abridged,

and sometimes lengthy) answers. In this context, Section 6.5 assumes a somewhat special

role: the problem of phase coherent electron transport in weakly disordered media provides

a number of profoundly important problems of great theoretical and practical significance.

In preparing this section, it became apparent that the quantum disorder problem presents

an ideal environment in which many of the theoretical concepts introduced in the previous

chapters can be practiced and applied – to wit diagrammatic perturbation theory and series

expansions, mean-field theory and collective mode expansions, correlation functions and

linear response, and topology. We have therefore organized this material in the form of an

extended problem set in Chapter 6.

This concludes our introduction to the text. Throughout, we have tried to limit the range

of physical applications to examples which are rooted in experimental fact. We have resisted

the temptation to venture into more speculative areas of theoretical condensed matter at

the expense of excluding many modern and more-circumspect ideas which pervade the con-

densed matter literature. Moreover, since the applications are intended to help motivate and

support the field theoretical techniques, their discussion is, at times, necessarily superficial.

(For example, the hundreds pages of text in this volume could have been invested in their

entirety in the subject of superconductivity!) Therefore, where appropriate, we have tried

to direct interested readers to the more specialist literature.

In closing, we would like to express our gratitude to Jakob Müller-Hill, Tobias Micklitz,

Jan Müller, Natalja Strelkova, Franjo-Frankopan Velic, Andrea Wolff, and Markus Zowislok

for their invaluable assistance in the proofreading of the text. Moreover, we would also like

to thank Julia Meyer for her help in drafting problems. Finally we would like to acknowledge

Sasha Abanov for his advice and guidance in the drafting of the chapter on Topology.

As well as including additional material on the formulation of functional field integral

methods to classical and quantum nonequilibrium physics in Chapters 10 and 11, in prepar-

ing the second edition of the text, we have endeavored to remove some of the typographical

errors that crept into the first edition. Although it seems inevitable that some errors will

still have escaped identification, it is clear that many many more would have been missed

were it not for the vigilance of many friends and colleagues. In this context, we would partic-

ularly like to acknowledge the input of Piet Brouwer, Christoph Bruder, Chung-Pin Chou,

Jan von Delft, Karin Everschor, Andrej Fischer, Alex Gezerlis, Sven Gnutzmann, Colin

Kiegel, Tobias Lück, Patrick Neven, Achim Rosch, Max Schäfer, Matthias Sitte, Nobuhiko

Taniguchi, and Matthias Vojta.



1

From particles to fields

To introduce some fundamental concepts of field theory, we begin by considering two simple model

systems – a one-dimensional “caricature” of a solid, and a freely propagating electromagnetic wave.

As well as exemplifying the transition from discrete to continuous degrees of freedom, these examples

introduce the basic formalism of classical and quantum field theory, the notion of elementary excitations,

collective modes, symmetries, and universality – concepts which will pervade the rest of the text.

One of the more remarkable facts about condensed matter physics is that phenomenology of

fantastic complexity is born out of a Hamiltonian of comparative simplicity. Indeed, it is not

difficult to construct microscopic “condensed matter Hamiltonians” of reasonable generality.

For example, a prototypical metal or insulator might be described by the many-particle

Hamiltonian, H = He +Hi +Hei where

He =
∑

i

p2
i

2m
+

∑
i<j Vee(ri − rj),

Hi =
∑

I

P2
I

2M
+

∑
I<J Vii(RI −RJ ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭Hei =
∑

iI Vei(RI − ri).

(1.1)

Here, ri (RI) denote the coordinates of the valence electrons (ion cores) and He, Hi, and Hei

describe the dynamics of electrons, ions and the interaction of electrons and ions, respec-

tively (see Fig. 1.1). Of course, the Hamiltonian Eq. (1.1) can be made “more realistic,” for

example by remembering that electrons and ions carry spin, adding disorder, or introduc-

ing host lattices with multi-atomic unit-cells. However, for developing our present line of

thought the prototype H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of generating the

vast panopticon of metallic phenomenology can be read in reverse order: one will normally

not be able to make theoretical progress by approaching the problem in an “ab initio”

manner, i.e. by an approach that treats all microscopic constituents as equally relevant

degrees of freedom.

How then can successful analytical approaches be developed? The answer to this question

lies in a number of basic principles inherent in generic condensed matter systems.

1



2 From particles to fields

ri

RI

Figure 1.1 A one-dimensional cartoon of a (metallic) solid. Positively charged ions located at
positions RI are surrounded by a conduction electron cloud (electron coordinates denoted by ri).
While the motion of the ions is massively constrained by the lattice potential Vii (indicated by the
solid line and its harmonic approximation shown dashed), t he dynamics of the electrons is affected
by their mutual interaction (Vee) and their interaction with the core ions (Vei).

1. Structural reducibility: Not all components of the Hamiltonian (1.1) need to be treated

simultaneously. For example, when the interest is foremost in the vibrational motion of

the ion lattice, the dynamics of the electron system can often be neglected or, at least,

be treated in a simplistic manner. Similarly, much of the character of the dynamics of

the electrons is independent of the ion lattice, etc.

2. In the majority of condensed matter applications, one is interested not so much in the

full profile of a given system, but rather in its energetically low-lying dynamics. This is

motivated partly by practical aspects (in daily life, iron is normally encountered at room

temperature and not at its melting point), and partly by the tendency of large systems

to behave in a “universal” manner at low temperatures. Here universality implies that

systems differing in microscopic detail (e.g. different types of interaction potentials, ion

species, etc.) exhibit common collective behavior. As a physicist, one will normally seek

for unifying principles in collective phenomena rather than to describe the peculiarities of

individual species. However, universality is equally important in the practice of condensed

matter theory. It implies, for example, that, at low temperatures, details of the functional

form of microscopic interaction potentials are of secondary importance, i.e. that one may

employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom is formidably large with

N = O(1023). However, contrary to first impressions, the magnitude of this figure is

rather an advantage. The reason is that in addressing condensed matter problems we

may make use of the concepts of statistics and that (precisely due to the largeness of

N) statistical errors tend to be negligibly small.1

4. Finally, condensed matter systems typically possess a number of intrinsic symmetries.

For example, our prototype Hamiltonian above is invariant under simultaneous trans-

lation and rotation of all coordinates, which expresses the global Galilean invariance of

the system (a continuous set of symmetries). Spin rotation invariance (continuous) and

1 The importance of this point is illustrated by the empirical observation that the most challenging systems in
physical sciences are of medium (and not large) scale, e.g., metallic clusters, medium-sized nuclei or large atoms
consist of O(101–102) fundamental constituents. Such problems are well beyond the reach of few-body quantum
mechanics while not yet accessible to reliable statistical modeling. Often the only viable path to approaching
systems of this type is massive use of phenomenology.



1.1 Classical harmonic chain: phonons 3

time-reversal invariance (discrete) are other examples of frequently encountered sym-

metries. The general importance of symmetries cannot be over emphasized: symmetries

entail the conservation laws that simplify any problem. Yet in condensed matter physics,

symmetries are “even more” important. A conserved observable is generally tied to an

energetically low-lying excitation. In the universal low-temperature regimes in which we

will typically be interested, it is precisely the dynamics of these low-level excitations that

governs the gross behavior of the system. In subsequent sections, the sequence “symme-

try �→ conservation law �→ low-lying excitations” will be encountered time and again. At

any rate, identification of the fundamental symmetries will typically be the first step in

the analysis of a solid state system.

To understand how these basic principles can be used to formulate and explore “effective

low-energy” field theories of solid state systems we will begin our discussion by focussing on

the harmonic chain; a collection of atoms bound by a harmonic potential. In doing so, we

will observe that the universal characteristics encapsulated by the low-energy dynamics2 of

large systems relate naturally to concepts of field theory.

1.1 Classical harmonic chain: phonons

Returning to the prototype Hamiltonian (1.1) discussed earlier, let us focus on the dynamical

properties of the positively charged core ions that constitute the host lattice of a crystal.

For the moment, let us neglect the fact that atoms are quantum objects and treat the ions

as classical entities. To further simplify the problem, let us consider an atomic chain rather

than a generic d-dimensional solid. In this case, the positions of the ions can be specified

by a sequence of coordinates with an average lattice spacing a. Relying on the reduction

principle (1) we will first argue that, to understand the behavior of the ions, the dynamics

of the conduction electrons are of secondary importance, i.e. we will set He = Hei = 0.

At strictly zero temperature, the system of ions will be frozen out, i.e. the one-dimensional

ion coordinates RI ≡ R̄I = Ia settle into a regularly spaced array. Any deviation from

a perfectly regular configuration has to be paid for by a price in potential energy. For

low enough temperatures (principle 2), this energy will be approximately quadratic in the

small deviation from the equilibrium position. The reduced low-energy Hamiltonian of

our system then reads

H =

N∑
I=1

[
P 2
I

2M
+

ks
2
(RI+1 −RI − a)2

]
, (1.2)

where the coefficient ks determines the steepness of the lattice potential. Notice that H can

be interpreted as the Hamiltonian of N point-like particles of mass M elastically connected

by springs with spring constant ks (see Fig. 1.2).

2 In this text, we will focus on the dynamical behavior of large systems, as opposed to their static structural
properties. In particular, we will not address questions related to the formation of definite crystallographic
structures in solid state systems.
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Figure 1.2 Toy model of a one-dimensional solid; a chain of elastically bound massive point parti-
cles.

Lagrangian formulation and equations of motion

Joseph–Louis Lagrange 1736–
1813
A mathematician who excelled
in all fields of analysis, number
theory, and celestial mechanics.
In 1788 he published Mécanique
Analytique, which summarised all the work done in
the field of mechanics since the time of Newton,
and is notable for its use of the theory of differen-
tial equations. In it he transformed mechanics into
a branch of mathematical analysis.

What are the elementary low-

energy excitations of the system? To

answer this question we might, in

principle, attempt to solve Hamil-

ton’s equations of motion. Indeed,

since H is quadratic in all coordi-

nates, such a program is, in this

case, feasible. However, we must bear

in mind that few of the problems

encountered in general solid state

physics enjoy this property. Further,

it seems unlikely that the low-energy dynamics of a macroscopically large chain – which

we know from our experience will be governed by large-scale wave-like excitations – is

adequately described in terms of an “atomistic” language; the relevant degrees of freedom

will be of a different type. We should, rather, draw on the basic principles 1–4 set out

above. Notably, we have so far paid attention neither to the intrinsic symmetry of the

problem nor to the fact that N is large.

Crucially, to reduce a microscopic model to an effective low-energy theory, the Hamil-

tonian is often not a very convenient starting point. Usually, it is more efficient to start

out from an action. In the present case, the Lagrangian action corresponding to a time

interval [0, t0] is defined as S =
∫ t0
0

dt L(R, Ṙ), where (R, Ṙ) ≡ {RI , ṘI} symbolically rep-

resents the set of all coordinates and their time derivatives. The Lagrangian L related to

the Hamiltonian (1.2) is given by

L = T − U =
N∑

I=1

[
MṘ2

I

2
− ks

2
(RI+1 −RI − a)2

]
, (1.3)

where T and U denote respectively the kinetic and potential energy.

Since we are interested in the properties of the large-N system, we can expect boundary

effects to be negligible. This being so, we are at liberty to impose on our atomic chain the

topology of a circle, i.e. we adopt periodic boundary conditions identifying RN+1 = R1.

Further, anticipating that the effect of lattice vibrations on the solid is weak (i.e. long-

range atomic order is maintained) we may assume that the deviation of the ions from their
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equilibrium position is small (|RI(t)−R̄I | � a), and the integrity of the solid is maintained.

With RI(t) = R̄I + φI(t) (φN+1 = φ1) the Lagrangian (1.3) assumes the simplified form

L =
N∑

I=1

[
M

2
φ̇2
I −

ks
2
(φI+1 − φI)

2

]
.

To make further progress, we will now make use of the fact that we are not concerned with

the behavior of our system on “atomic” scales. (In any case, for such purposes a modeling

like the one above would be much too primitive!) Rather, we are interested in experimentally

observable behavior that manifests itself on macroscopic length scales (principle 2). For

example, one might wish to study the specific heat of the solid in the limit of infinitely

many atoms (or at least a macroscopically large number, O(1023)). Under these conditions,

microscopic models can usually be substantially simplified (principle 3). In particular, it is

often permissible to subject a discrete lattice model to a so-called continuum limit, i.e.

to neglect the discreteness of the microscopic entities and to describe the system in terms

of effective continuum degrees of freedom.

RI

φI

φ (x)In the present case, taking a continuum limit

amounts to describing the lattice fluctuations φI

in terms of smooth functions of a continuous vari-

able x (see the figure where the [horizontal] dis-

placement of the point particles has been plotted

along the vertical). Clearly such a description makes sense only if relative fluctuations on

atomic scales are weak (for otherwise the smoothness condition would be violated). However,

if this condition is met – as it will be for sufficiently large values of the stiffness constant

ks – the continuum description is much more powerful than the discrete encoding in terms

of the “vector” {φI}. All steps that we will need to take to go from the Lagrangian to

concrete physical predictions will be much easier to formulate.

Introducing continuum degrees of freedom φ(x), and applying a first-order Taylor expan-

sion,3 let us define

φI → a1/2φ(x)
∣∣∣
x=Ia

, φI+1 − φI → a3/2∂xφ(x)
∣∣∣
x=Ia

,

N∑
I=1

→ 1

a

∫ L

0

dx,

where L = Na. Note that, as defined, the functions φ(x, t) have dimensionality [length]1/2.

Expressed in terms of the new degrees of freedom, the continuum limit of the Lagrangian

then reads

L[φ] =

∫ L

0

dx L(φ, ∂xφ, φ̇), L(φ, ∂xφ, φ̇) =
m

2
φ̇2 − ksa

2

2
(∂xφ)

2, (1.4)

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion are immaterial in
the long-range continuum limit.
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T

φ

S
S[φ]

M

Figure 1.3 Schematic visualization of a field: a mapping φ from a base manifold M into a target
space T (in this case, T are the real numbers; but, in general, T can be more complicated). A
functional assigns to each φ a real number S[φ]. The grid embedded into M indicates that fields in
condensed matter physics arise as continuum limits of discrete mappings.

where the Lagrangian density L has dimensionality [energy]/[length] and we have desig-

nated the particle mass by the more common symbol m ≡ M . Similarly, the classical action

assumes the continuum form

S[φ] =

∫
dt L[φ] =

∫
dt

∫ L

0

dx L(φ, ∂xφ, φ̇). (1.5)

We have thus succeeded in abandoning the N -point particle description in favor of one

involving continuous degrees of freedom, a (classical) field. The dynamics of the latter

are specified by the functionals L and S, which represent the continuum generalizations

of the discrete classical Lagrangian and action, respectively.

INFO The continuum variable φ is our first encounter with a field. Before proceeding with

our example, let us pause to make some preliminary remarks on the general definition of these

objects. This will help to place the subsequent discussion of the atomic chain into a broader

context. Formally, a field is a smooth mapping

φ : M → T,

z �→ φ(z),

from a certain manifold M ,4 often called the “base manifold,” into a “target” or “field manifold”

T (see Fig. 1.3).5 In our present example, M = [0, L]× [0, t] ⊂ R2 is the product of intervals in

space and time, and T = R. In fact, the factorization M ⊂ R × T into a space-like manifold

R multiplied by a one-dimensional time-like manifold T is inherent in most applications of

condensed matter physics.6

4 If you are unfamiliar with the notion of manifolds (for a crash course, see page 537), think of M and T as subsets
of some vector space. For the moment, this limitation won’t do any harm.

5 In some (rare) cases it becomes necessary to define fields in a more general sense (e.g. as sections of mathematical
objects known as fiber bundles). However, in practically all condensed matter applications the more restrictive
definition above will suffice.

6 By contrast, the condition of Lorentz invariance implies the absence of such factorizations in relativistic field
theory. In classical statistical field theories, i.e. theories probing the thermodynamic behavior of large systems,
M is just space-like.
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However, the individual factors R and T may, of course, be more complex than in our proto-

typical problem above. As to the target manifold, not much can be said in general; depending

on the application, the realizations of T range from real or complex numbers over vector spaces

and groups to the “fanciest objects” of mathematical physics.

In applied field theory, fields appear not as final objects but rather as input to functionals (see

Fig. 1.3). Mathematically, a functional S : φ �→ S[φ] ∈ R is a mapping that takes a field as its

argument and maps it into the real numbers. The functional profile S[φ] essentially determines

the character of a field theory. Notice that the argument of a functional is commonly indicated

in square brackets [ ].

While these formulations may appear unnecessarily abstract, remembering the mathematical

backbone of the theory often helps to avoid confusion. At any rate, it takes some time and practice

to get used to the concept of fields and functionals. Conceptual difficulties in handling these

objects can be overcome by remembering that any field in condensed matter physics arises as

the limit of a discrete mapping. In the present example, the field φ(x) is obtained as a continuum

approximation of the discrete vector {φI} ∈ RN ; the functional L[φ] is the continuum limit of

the function L : RN → R, etc. While in practical calculations fields are usually easier to handle

than their discrete analogs, it is sometimes helpful to think about problems of field theory in

a discrete language. Within the discrete picture, the mathematical apparatus of field theory

reduces to finite-dimensional calculus.

Although Eq. (1.4) contains the full information about the model, we have not yet learned

much about its actual behavior. To extract concrete physical information from Eq. (1.4) we

need to derive equations of motion. At first sight, it may not be entirely clear what is

meant by the term “equations of motion” in the context of an infinite-dimensional model:

the equations of motion relevant for the present problem are obtained as the generaliza-

tion of the conventional Lagrange equations of N -particle classical mechanics to a model

with infinitely many degrees of freedom. To derive these equations we need to generalize

Hamilton’s extremal principle (i.e. the route from an action to the associated equations of

motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the extremal

principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate x(t) is described by the

classical Lagrangian L(x, ẋ), and action S[x] =
∫
dt L(x, ẋ). Hamilton’s extremal prin-

ciple states that the configurations x(t) that are actually realized are those that extremize

the action, δS[x] = 0. This means (for a substantiated discussion, see Section 1.2 below)

that, for any smooth curve t �→ y(t),

lim
ε→0

1

ε
(S[x+ εy]− S[x]) = 0. (1.6)

To first order in ε, the action has to remain invariant. Applying this condition, one finds

that it is fulfilled if and only if x satisfies Lagrange’s equation of motion

d

dt
(∂ẋL)− ∂xL = 0. (1.7)

EXERCISE Recapitulate the derivation of (1.7) from the classical action.



8 From particles to fields
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φ (x,t)

φ

εη (x,t)

Figure 1.4 Schematic showing the variation of the field associated with the action functional.
Notice that the variation εη is supposed to vanish on the boundaries of the base M = [0, L]× [0, t].

In Eq. (1.5) we are dealing with a system of infinitely many degrees of freedom, φ(x, t). Yet

Hamilton’s principle is general and we may see what happens if Eq. (1.5) is subjected to an

extremal principle analogous to Eq. (1.6). To do so, we substitute φ(x, t) → φ(x, t)+εη(x, t)

into Eq. (1.5) and require vanishing of the first-order contribution to an expansion in ε

(see Fig. 1.4). When applied to the specific Lagrangian (1.4), substituting the “varied” field

leads to

S[φ+ εη] = S[φ] + ε

∫
dt

∫ L

0

dx
(
mφ̇η̇ − ksa

2∂xφ∂xη
)
+O(ε2).

Integrating by parts and requiring that the contribution linear in ε vanishes, one obtains

lim
ε→0

1

ε
(S[φ+ εη]− S[φ]) = −

∫
dt

∫ L

0

dx
(
mφ̈− ksa

2∂2
xφ

)
η

!
= 0.

(Notice that the boundary terms vanish identically.) Now, since η was defined to be an

arbitrary smooth function, the integral above can vanish only if the factor in parentheses is

globally vanishing. Thus the equation of motion takes the form of a wave equation(
m∂2

t − ksa
2∂2

x

)
φ = 0. (1.8)

φ+
φ–

x = vt
x = – vt

The solutions of Eq. (1.8) have the general form

φ+(x− vt) + φ−(x+ vt) where v = a
√
ks/m, and

φ± are arbitrary smooth functions of the argu-

ment. From this we can deduce that the basic low-energy elementary excitations of our

model are lattice vibrations propagating as sound waves to the left or right at a con-

stant velocity v (see the figure).7 The trivial behavior of our model is of course a direct

consequence of its simplistic definition – no dissipation, dispersion, or other non-trivial

ingredients. Adding these refinements leads to the general classical theory of lattice vibra-

tions (such as that described in the text by Ashcroft and Mermin8). Finally, notice that

7 Strictly speaking, the modeling of our system enforces a periodicity constraint φ±(x+L) = φ±(x). However, in
the limit of a large system, this aspect becomes inessential.

8 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt–Saunders International, 1983).
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the elementary excitations of the chain have little in common with its “microscopic” con-

stituents (the atomic oscillators). Rather they are collective excitations, i.e. elementary

excitations comprising a macroscopically large number of microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter system can, but need not, be

of collective type. For example, the interacting electron gas (a system to be discussed in detail

below) supports microscopic excitations – charged quasi-particles standing in 1:1 correspondence

with the electrons of the original microscopic system – while the collective excitations are plasmon

modes of large wavelength and engaging many electrons. Typically, the nature of the fundamental

excitations cannot be straightforwardly inferred from the microscopic definition of a model.

Indeed, the mere identification of the relevant excitations often represents the most important

step in the solution of a condensed matter problem.

Hamiltonian formulation

Sir William Rowan Hamilton
1805–65
A mathematician credited with
the discovery of quaternions,
the first non-commutative alge-
bra to be studied. He also
invented important new methods
in mechanics. (Image from W. R. Hamilton, Col-
lected Papers, vol. II, Cambridge University Press,
1940.

An important characteristic of any

excitation is its energy. How much

energy is stored in the sound waves

of the harmonic chain? To address

this question, we need to switch back

to a Hamiltonian formulation. Once

again, this is achieved by general-

izing standard manipulations from

point mechanics to the continuum.

Remembering that, for a Lagrangian

of a point particle, p ≡ ∂ẋL is the momentum conjugate to the coordinate x, let us consider

the Lagrangian density and define9

π(x) ≡ ∂L(φ, ∂xφ, φ̇)
∂φ̇(x)

, (1.9)

as the canonical momentum associated with φ (at the point x). In common with φ,

the momentum π is a continuum degree of freedom. At each space point it may take an

independent value. Notice that π(x) is nothing but the continuum generalization of the

lattice momentum PI of Eq. (1.2). (Applied to PI , a continuum approximation like φI →
φ(x) would produce π(x).) The Hamiltonian density is then defined as usual through the

Legendre transformation,

H(φ, ∂xφ, π) =
(
πφ̇− L(φ, ∂xφ, φ̇)

)∣∣∣
φ̇=φ̇(φ,π)

, (1.10)

9 In field theory literature it is popular to denote the momentum by a Greek letter.
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from where the full Hamiltonian is obtained as H =
∫ L

0
dxH.

EXERCISE Verify that the transition L → H is a straightforward continuum generalization of

the Legendre transformation of the N -particle Lagrangian L({φI}, {φ̇I}).

Having introduced a Hamiltonian, we are in a position to determine the energy of the sound

waves. Application of Eq. (1.9) and (1.10) to the Lagrangian of the atomic chain yields

π(x, t) = mφ̇(x, t) and

H[π, φ] =

∫
dx

(
π2

2m
+

ksa
2

2
(∂xφ)

2

)
. (1.11)

Considering, say, a right-moving sound-wave excitation, φ(x, t) = φ+(x− vt), we find that

π(x, t) = −mv∂xφ+(x− vt) and H[π, φ] = ksa
2
∫
dx[∂xφ+(x− vt)]2 = ksa

2
∫
dx [∂xφ+(x)]

2,

i.e. a positive definite, time-independent expression, as one would expect.

Before proceeding, let us note an interesting feature of the energy functional: in the limit

of an infinitely shallow excitation, ∂xφ+ → 0, the energy vanishes. This sets the stage

for the last of the principles (4) hitherto unconsidered, symmetry. The Hamiltonian of

an atomic chain is invariant under simultaneous translation of all atom coordinates by a

fixed increment: φI → φI + δ, where δ is constant. This expresses the fact that a global

translation of the solid as a whole does not affect the internal energy. Now, the ground state

of any specific realization of the solid will be defined through a static array of atoms, each

located at a fixed coordinate RI = Ia ⇒ φI = 0. We say that the translational symmetry is

“spontaneously broken,” i.e. the solid has to decide where exactly it wants to rest. However,

spontaneous breakdown of a symmetry does not imply that the symmetry disappeared. On

the contrary, infinite-wavelength deviations from the pre-assigned ground state come close

to global translations of (macroscopically large portions of) the solid and, therefore, cost

a vanishingly small amount of energy. This is the reason for the vanishing of the sound

wave energy in the limit ∂xφ → 0. It is also our first encounter with the aforementioned

phenomenon that symmetries lead to the formation of soft, i.e. low-energy, excitations. A

much more systematic exposition of these connections will be given in Chapter 6.

Ludwig Boltzmann 1844–1906
A physicist whose greatest achievement was in the
development of statistical mechanics, which explains
and predicts how the properties of atoms (such as
mass, charge, and structure) determine the visible
properties of matter (such as viscosity, thermal con-
ductivity, and diffusion).

To conclude our discussion of the

classical harmonic chain, let us con-

sider the specific heat, a quantity

directly accessible in experiment. A

rough estimate of this quantity can

be readily obtained from the micro-

scopic harmonic Hamiltonian (1.2).

According to the principles of statis-

tical mechanics, the thermodynamic energy density is given by

u =
1

L

∫
dΓ e−βHH∫
dΓ e−βH

= − 1

L
∂β ln

∫
dΓ e−βH ,

where β = 1/kBT , Z ≡
∫
dΓe−βH is the Boltzmann partition function and the phase

space volume element dΓ =
∏N

I=1 dRIdPI . We will set kB = 1 throughout. The specific heat
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is then obtained as c = ∂Tu. To determine the temperature dependence of this quantity,

we make use of the fact that, upon rescaling of integration variables, RI → β−1/2XI ,

PI → β−1/2YI , the exponent βH(R,P ) → H(X,Y ) becomes independent of temperature

(a property that relies on the quadratic dependence of H on both R and P ). The integration

measure transforms as dΓ → β−N
∏N

I=1 dXI dYI ≡ β−NdΓ′. Expressed in terms of the

rescaled variables, one obtains the energy density

u = − 1

L
∂β ln

(
β−NK

)
= ρT,

where ρ = N/L is the density of atoms, and we have made use of the fact that the constant

K ≡
∫
dΓ′ e−H(X,Y ) is independent of temperature. We thus find a temperature indepen-

dent specific heat c = ρ. Notice that c is fully universal, i.e. independent of the material

constants M and ks determining H. (In fact, we could have anticipated this result from the

equipartition theorem of classical mechanics, i.e. the law that in a system with N degrees

of freedom, the energy scales as U = NT .)

How do these findings compare with experiment? Figure 1.5 shows the specific heat of

the insulating compound EuCoO3.
10 For large temperatures, the specific heat approaches

a constant value, in accord with our analysis. However, for lower temperatures, substantial

deviations from c = const. appear. Yet, this strong temperature dependence does not reflect

a failure of the simplistic microscopic modeling. Rather, the deviation is indicative of a

quantum phenomenon. Indeed, we have so far totally neglected the quantum nature of

the atomic oscillators. In the next chapter we will rectify this deficiency and discuss how

the effective low-energy theory of the harmonic chain can be promoted to a quantum field

theory. However, before proceeding with the development of the theory let us pause to

introduce a number of mathematical concepts that surfaced above, in a way that survives

generalization to richer problems.

1.2 Functional analysis and variational principles

Let us revisit the derivation of the equations of motion associated with the harmonic chain,

Eq. (1.8). Although straightforward, neither was the calculation efficient, nor did it reveal

general structures. In fact, what we did – expanding explicitly to first order in the vari-

ational parameter ε – had the same status as evaluating derivatives by explicitly taking

limits: f ′(x) = limε→0 ((f(x+ ε)− f(x))/ε). Moreover, the derivation made explicit use of

the particular form of the Lagrangian, thereby being of limited use with regard to a gen-

eral understanding of the construction scheme. Given the importance attached to extremal

principles in all of field theory, it is worthwhile investing some effort in constructing a more

efficient scheme for the general variational analysis of continuum theories. In order to carry

out this program we first need to introduce a mathematical tool of functional analysis,

namely the concept of functional differentiation.

10 In metals, the specific heat due to lattice vibrations exceeds the specific heat of the free conduction electrons
for temperatures larger than a few degrees kelvin.
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Figure 1.5 Specific heat cp of the insulator EuCoO3. At large temperatures, the specific heat starts
to approach a constant value, as predicted by the analysis of the classical harmonic chain. However,
for small temperatures, deviations from cp = const. are substantial. Such deviations can be ascribed
to quantum mechanical effects. (Courtesy of M. Kriener, A. Reichl, T. Lorenz, and A. Freimuth.)

In working with functionals, one is often concerned with how a given functional behaves

under (small) variations of its argument function. In particular, given a certain function f ,

suspected to make a functional F [f ] stationary, one would like to find out whether, indeed,

the functional remains invariant under variations f → f+h, where h is an “infinitely small”

increment function. In ordinary analysis, questions of this type are commonly addressed by

exploring derivatives, i.e. we need to generalize the concept of a derivative to functionals.

This is achieved by the following definition: a functional F is called differentiable if

F [f + εg]− F [f ] = ε ·DFf [g] +O(ε2),

where the differential DFf is a linear functional (i.e. one with DFf [g1 + g2] = DFf [g1] +

DFf [g2]), ε is a small parameter, and g is an arbitrary function. The subscript indicates

that the differential generally depends on the “base argument” f . A functional F is said to

be stationary on f , if and only if DFf = 0.

In principle, the definition above answers our question concerning a stationarity condition.

However, to make use of the definition, we still need to know how to compute the differential

DF and how to relate the differentiability criterion to the concepts of ordinary calculus. In

order to understand how answers to these questions can be systematically found, it is helpful

to return temporarily to a discrete way of thinking, i.e. to interpret the argument f of a

functional F [f ] as the limit N → ∞ of a discrete vector f = {fn ≡ f(xn), n = 1, . . . , N},
where {xn} denotes a discretization of the support of f (cf. the harmonic chain, φ ↔ f).

Prior to taking the continuum limit, N → ∞, f has the status of an N -dimensional vector

and F (f) is a function defined over N -dimensional space. After the continuum limit, f → f

becomes a function itself and F (f) → F [f ] becomes a functional.

Now, within the discrete picture, it is clear how the variational behavior of functions is to

be analyzed. For example, the condition that, for all ε and all vectors g, the linear expansion

of F (f + εg) ought to vanish is simply to say that the ordinary differential, dFf , defined
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through

F (f + εg)− F (f) = ε · dFf (g) +O(ε2),

must be zero. In practice, one often expresses conditions of this type in terms of a certain

basis. In a Cartesian basis of N unit vectors, en, n = 1, . . . , N , dFf (g) ≡ 〈∇Ff ,g〉, where
〈f ,g〉 ≡

∑N
n=1 fngn denotes the standard scalar product, ∇Ff = {∂fnF} represents the

gradient with the partial derivative defined as

∂fnF (f) ≡ lim
ε→0

1

ε
[F (f + εen)− F (f)] . (1.12)

From these identities, the differential is identified as

dFf (g) =
∑
n

∂fnF (f)gn. (1.13)

The vanishing of the differential amounts to vanishing of all partial derivatives ∂fnF = 0.

Equations (1.12) and (1.13) can now be straightforwardly generalized to the continuum

limit whereupon the summation defining the finite-dimensional scalar product translates to

an integral,

〈f ,g〉 =
N∑

n=1

fngn → 〈f, g〉 =
∫

dx f(x)g(x).

The analog of the nth unit vector is a δ-distribution, en → δx, where δx(x
′) ≡ δ(x− x′), as

can be seen from the following correspondence:

fn
!
=〈f , en〉 =

∑
m

fm(en)m → f(x)
!
=〈f, δx〉 =

∫
dx′ f(x′)δx(x′).

Here (en)m = δnm denotes the mth component of the nth unit vector. The correspondence

(unit vector ↔ δ-distribution) is easy to memorize: while the components of en vanish, save

for the nth component, that equals unity, δx is a function that vanishes everywhere, save for

x where it is infinite. That a unit component is replaced by “infinity” reflects the fact that

the support of the δ-distribution is infinitely narrow; to obtain a unit-normalized integral∫
δx, the function must be singular.

As a consequence of these identities, Eq. (1.13) translates to the continuum differential,

DFf [g] =

∫
dx

δF [f ]

δf(x)
g(x), (1.14)

where the generalization of the partial derivative,

δF [f ]

δf(x)
≡ lim

ε→0

1

ε
(F [f + εδx]− F [f ]) , (1.15)

is commonly denoted by “δ” instead of “∂.” Equations (1.14) and (1.15) establish the con-

ceptual connection between ordinary and functional differentiation. Notice that we have

not yet learned how to calculate the differential practically, i.e. to evaluate expressions

like Eq. (1.15) for concrete functionals. Nevertheless, the identities above are very use-

ful, enabling us to generalize more-complex derivative operations of ordinary calculus by
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Table 1.1 Summary of basic definitions of discrete and continuum

calculus.

Entity Discrete Continuum

Argument vector f function f

Function(al) multidimensional function F (f) functional F [f ]

Differential dFf (g) DFf [g]

Cartesian basis en δx
Scalar product 〈 , 〉

∑
n fngn

∫
dx f(x)g(x)

“Partial derivative” ∂fnF (f) δF [f ]
δf(x)

straightforward transcription. For example, the generalization of the standard chain rule,

∂fnF (g(f)) =
∑

m ∂gmF (g)
∣∣
g=g(f) ∂fngm(f) reads

δF [g[f ]]

δf(x)
=

∫
dy

δF [g]

δg(y)

∣∣∣∣
g=g[f ]

δg(y)[f ]

δf(x)
.

Here g[f ] is the continuum generalization of an Rm-valued function, g : Rn → Rm, a

function whose components g(y)[f ] are functionals by themselves. Furthermore, given some

functional F [f ], we can construct its Taylor expansion as

F [f ] = F [0]+

∫
dx1

δF [f ]

δf(x1)

∣∣∣∣
f=0

f(x1)+
1

2

∫
dx1 dx2

δ2F [f ]

δf(x2)δf(x1)

∣∣∣∣
f=0

f(x1)f(x2)+ · · · ,

where (exercise)

δ2F [f ]

δf(x2)δf(x1)
= lim

ε1,2→0

1

ε1ε2
(F [f + ε1δx1 + ε2δx2 ]− F [f + ε1δx1 ]− F [f + ε2δx2 ] + F [f ])

generalizes a two-fold partial derivative. The validity of these identities can be made plau-

sible by applying the transcription, Table 1.1, to the corresponding relations of standard

calculus. To actually verify the formulae, one has to take the continuum limit of each step

taken in the discrete variant of the corresponding proofs. At any rate, experience shows that

it takes some time to get used to the concept of functional differentiation. However, after

some practice it will become clear that this operation is not only extremely useful but also

as easy to handle as conventional partial differentiation.

We finally address the question how to compute functional derivatives in practice. In

doing so, we will make use of the fact that, in all but a few cases, the functionals encountered

in field theory are of the structure

S[φ] =

∫
M

dmxL(φi, ∂μφ
i). (1.16)

Here, we assume the base manifold M to be parameterized by an m-dimensional coordinate

vector x = {xμ}. (In most practical applications, m = d + 1, and x = (x0, x1, . . . , xd)
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contains one time-like component x0 = t and d space-like components xk, k = 1, . . . , d.11)

We further assume that the field manifold has dimensionality n and that φi, i = 1, . . . , n,

are the coordinates of the field.

What makes the functional S[φ] easy to handle is that all of its information is stored

in the function L. Owing to this simplification, the functional derivative can be related to

an ordinary derivative of L. To see this, all that we have to do is to evaluate the general

definition Eq. (1.14) on the functional S:

S[φ+ εθ]− S[φ] =

∫
M

dmx [L(φ+ εθ, ∂μφ+ ε∂μθ)− L(φ, ∂μφ)]

=

∫
M

dmx

[
∂L
∂φi

θi +
∂L

∂∂μφi
∂μθ

i

]
ε+O(ε2) =

∫
M

dmx

[
∂L
∂φi

− ∂μ
∂L

∂∂μφi

]
θiε+O(ε2),

where in the last line we have assumed that the field variation vanishes on the bound-

ary of the base manifold, θ |∂M = 0. Comparison with Eq. (1.14) identifies the functional

derivative as

δS[φ]

δφi(x)
=

∂L
∂φi(x)

− ∂μ
∂L

∂(∂μφi(x))
.

We conclude that stationarity of the functional (1.16) is equivalent to the condition

∀x, i : ∂L
∂φi(x)

− ∂μ
∂L

∂∂μφi(x)
= 0. (1.17)

Equation (1.17) is known as the Euler–Lagrange equation of field theory. In fact, for d =

0 and x0 = t, Eq. (1.17) reduces to the familiar Euler–Lagrange equation of a point particle

in n-dimensional space. For d = 1 and (x0, x1) = (t, x) we get back to the stationarity

equations discussed in the previous section. In the next section we will apply the formalism

to a higher-dimensional problem.

1.3 Maxwell’s equations as a variational principle

As a second example, let us consider the archetype of classical field theory, classical electro-

dynamics. Indeed, as well as exemplifying the application of continuum variational principles

on a problem with which we are all acquainted, this example illustrates the unifying poten-

tial of the approach: that problems as different as the low-lying vibrational modes of a

crystalline solid, and electrodynamics can be described by almost identical language indi-

cates that we are dealing with a useful formalism. Specifically, our aim will be to explore

how the equations of motion of electrodynamics, the inhomogeneous Maxwell equations,

∇ ·E = ρ, ∇×B− ∂tE = j, (1.18)

11 Following standard conventions we denote space-like components by small Latin indices k = 1, . . . , d. In con-
trast, space-time indices are denoted by Greek indices μ = 0, . . . , d.
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can be obtained from variational principles. (For simplicity, we restrict ourselves to a vacuum

theory, i.e. E = D and B = H. Further, we have set the velocity of light to unity, c = 1.

Within the framework of the variational principle, the homogeneous equations,

∇×E+ ∂tB = 0, ∇ ·B = 0, (1.19)

are regarded as ab initio constraints imposed on the “degrees of freedom” E and B.)

James Clerk Maxwell 1831–79
Scottish theoretical physicist and
mathematician. Amongst many
other achievements, he is credited
with the formulation of the theory
of electromagnetism, synthesizing
all previous unrelated experiments
and equations of electricity, mag-
netism and optics into a consistent theory. (He is also
known for creating the first true color photograph in
1861.)

To formulate Maxwell’s theory as

a variational principle we require (1)

a field formulated in a set of suitable

“generalized coordinates,” and (2) its

action. As to coordinates, the natural

choice will be the coefficients of the

electromagnetic (EM) 4-potential,

Aμ = (φ,−A), where φ is the scalar

and A is the vector potential. The

potential A is unconstrained and

uniquely determines the fields E and

B through the standard equations E = −∇φ − ∂tA and B = ∇ × A. (In fact, the set of

coordinates Aμ is “overly free” in the sense that gauge transformations Aμ → Aμ + ∂μΓ,

where Γ is an arbitrary function, leave the physical fields invariant. Later we will comment

explicitly on this point.) The connection between A and the physical fields can be expressed

in a more symmetric way by introducing the EM field tensor,

F = {Fμν} =

⎡⎢⎢⎣
0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎤⎥⎥⎦ . (1.20)

The relation between fields and potential now reads Fμν = ∂μAν−∂νAμ where xμ = (t,−x)

and ∂μ = (∂t,∇).

EXERCISE Confirm that this connection follows from the definition of the vector potential. To

verify that the constraint (1.19) is automatically included in the definition (1.20), compute the

construct ∂λFμν + ∂μFνλ + ∂νFλμ, where (λνμ) represent arbitrary but different indices. This

produces four different terms, identified as the left-hand side of Eq. (1.19). Evaluation of the

same construct on Fμν ≡ ∂μAν − ∂νAμ produces zero by the symmetry of the right-hand side.
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Hendrik Antoon Lorentz 1853–
1928
1902 Nobel Laureate in Physics
(with Pieter Zeeman) in recog-
nition of the extraordinary ser-
vice they rendered by their
researches into the influence of
magnetism upon radiation phe-
nomena. Lorentz derived the transformation equa-
tions subsequently used by Albert Einstein to
describe space and time.

As to the structure of the action

S[A] we can proceed in different

ways. One option would be to regard

Maxwell’s equations as fundamen-

tal, i.e. to construct an action that

produces these equations upon vari-

ation (by analogy with the situation

in classical mechanics where the

action functional was designed so as

to reproduce Newton’s equations).

However, we can also be a little bit

more ambitious and ask whether the structure of the action can be motivated indepen-

dently of Maxwell’s equations. In fact, there is just one principle in electrodynamics as

“fundamental” as Maxwell’s equations: symmetry. A theory of electromagnetism must be

Lorentz invariant, i.e. invariant under relativistic coordinate transformations.

INFO Let us briefly recapitulate the notion of Lorentz invariance. Suppose we are given a

4-vector Xμ. A linear coordinate transformation Xμ → X ′
μ ≡ TμνXν is a Lorentz transformation

if it leaves the 4-metric

g = {gμν} =

⎡
⎢⎣
1

−1
−1

−1

⎤
⎥⎦ , (1.21)

invariant: TT gT = g. To concisely formulate the invariance properties of relativistic theories, it

is common to introduce the notion of raised and lowered indices. Defining Xμ ≡ gμνXν , Lorentz

invariance is expressed as XμXμ = X ′μX ′
μ.

Aided by the symmetry criterion, we can attempt to conjecture the structure of the action

from three basic assumptions, all independent of Maxwell’s equations: the action should

be invariant under (a) Lorentz transformations and (b) gauge transformations, and (c) it

should be simple! The most elementary choice compatible with these conditions is

S[A] =

∫
d4x (c1 FμνF

μν + c2 Aμj
μ) , (1.22)

where d4x =
∏

μ dxμ = dt dx1 dx2 dx3 denotes the measure, jμ = (ρ,−j) the 4-current,

and c1,2 are undetermined constants. Up to quadratic order in A, Eq. (1.22) in fact defines

the only possible structure consistent with gauge and Lorentz invariance.

EXERCISE Using the continuity equation ∂μj
μ = 0, verify that the Aj-coupling is gauge invari-

ant. (Hint: Integrate by parts.) Verify that a contribution like
∫
AμA

μ would not be gauge

invariant.
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Having defined a trial action, we can apply the variational principle Eq. (1.17) to compute

equations of motion. In the present context, the role of the field φ is taken by the four

components of A. Variation of the action with respect to Aμ gives four equations of motion,

∂L
∂Aμ

− ∂ν
∂L

∂(∂νAμ)
= 0, μ = 0, . . . , 3, (1.23)

where the Lagrangian density is defined by S =
∫
d4x L. With the specific form of L, it is

straightforward to verify that ∂AμL = c2j
μ and ∂∂νAμL = −4c1F

μν . Substitution of these

building blocks into the equations of motion finally yields 4c1∂
νFνμ = c2jμ. Comparing

this with the definition of the field tensor (1.20), and setting c1/c2 = 1/4, we arrive at

Maxwell’s equations (1.18). We finally fix the overall multiplicative constant c1 (= c2/4) by

requiring that the Hamiltonian density associated with the Lagrangian density L reproduce

the known energy density of the EM field (see Problem 1.8). This leads to c1 = −1/4, so

that we have identified

L(Aμ, ∂νAμ) = −1

4
FμνF

μν +Aμj
μ, (1.24)

as the Lagrangian density of the electromagnetic field. The corresponding action is

given by S[A] =
∫
d4x L(Aμ, ∂νAμ).

At first sight, this result does not look particularly surprising. After all, Maxwell’s equa-

tions can be found on the first page of most textbooks on electrodynamics. However, further

reflection will show that our achievement is actually quite remarkable. By invoking only

symmetry, the algebraic structure of Maxwell’s equations has been established unambigu-

ously. We have thus proven that Maxwell’s equations are relativistically invariant, a fact

not obvious from the equations themselves. Further, we have shown that Eq. (1.18) are the

only equations of motion linear in the current–density distribution and consistent with the

invariance principle. One might object that, in addition to symmetry, we have also imposed

an ad hoc “simplicity” criterion on the action S[A]. However, later we will see that this was

motivated by more than mere aesthetic principles.

Finally, we note that the symmetry-oriented modeling that led to Eq. (1.22) is illustrative

of a popular construction scheme in modern field theory. The symmetry-oriented approach

stands complementary to the “microscopic” formulation exemplified in Section 1.1. Crudely

speaking, these are the two principal approaches to constructing effective low-energy field

theories:

� Microscopic analysis: Starting from a microscopically defined system, one projects

onto those degrees of freedom that one believes are relevant for the low-energy dynam-

ics. Ideally, this “belief” is backed up by a small expansion parameter stabilizing the

mathematical parts of the analysis. Advantages: The method is rigorous and fixes the

resulting field theory completely. Disadvantages: The method is time-consuming and, for

sufficiently complex systems, not even viable.

� Symmetry considerations: One infers an effective low-energy theory on the basis of

only fundamental symmetries of the physical system. Advantages: The method is fast and
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elegant. Disadvantages: It is less explicit than the microscopic approach. Most impor-

tantly, it does not fix the coefficients of the different contributions to the action.

Thus far, we have introduced some basic concepts of field theoretical modeling in condensed

matter physics. Starting from a microscopic model Hamiltonian, we have illustrated how

principles of universality and symmetry can be applied to distill effective continuum field

theories capturing the low-energy content of the system. We have formulated such theories in

the language of Lagrangian and Hamiltonian continuum mechanics, respectively, and shown

how variational principles can be applied to extract concrete physical information. Finally,

we have seen that field theory provides a unifying framework whereby analogies between

seemingly different physical systems can be uncovered. In the next section we discuss how

the formalism of classical field theory can be elevated to the quantum level.

1.4 Quantum chain

Earlier we saw that, at low temperatures, the excitation profile of the classical atomic chain

differs drastically from that observed in experiment. Generally, in condensed matter physics,

low-energy phenomena with pronounced temperature sensitivity are indicative of a quantum

mechanism at work. To introduce and exemplify a general procedure whereby quantum

mechanics can be incorporated into continuum models, we next consider the low-energy

physics of the quantum mechanical atomic chain.

The first question to ask is conceptual: how can a model like Eq. (1.4) be quantized

in general? Indeed, there exists a standard procedure for quantizing continuum theories,

which closely resembles the quantization of Hamiltonian point mechanics. Consider the

defining Eq. (1.9) and (1.10) for the canonical momentum and the Hamiltonian, respectively.

Classically, the momentum π(x) and the coordinate φ(x) are canonically conjugate variables:

{π(x), φ(x′)} = −δ(x−x′) where {, } is the Poisson bracket and the δ-function arises through

continuum generalization of the discrete identity {PI , RI′} = −δII′ , I, I ′ = 1, . . . , N . The

theory is quantized by generalization of the canonical quantization procedure for the discrete

pair of conjugate coordinates (RI , PI) to the continuum: (i) promote φ(x) and π(x) to

operators, φ �→ φ̂, π �→ π̂, and (ii) generalize the canonical commutation relation [PI , RI′ ] =

−i�δII′ to12

[π̂(x), φ̂(x′)] = −i�δ(x− x′). (1.25)

Operator-valued functions like φ̂ and π̂ are generally referred to as quantum fields. For

clarity, the relevant relations between canonically conjugate classical and quantum fields

are summarized in Table 1.2.

INFO By introducing quantum fields, we have departed from the conceptual framework laid

out on page 6: being operator-valued, the quantized field no longer represents a mapping into an

12 Note that the dimensionality of both the quantum and the classical continuum field is compatible with the

dimensionality of the Dirac δ-function, [δ(x − x′)] = [length]−1, i.e. [φ(x)] = [φI ] · [length]−1/2 and similarly
for π.
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Table 1.2 Relations between discrete and continuum canonically

conjugate variables/operators.

Classical Quantum

Discrete {PI , RI′} = −δII′ [P̂I , R̂I′ ] = −i�δII′

Continuum {π(x), φ(x′)} = −δ(x− x′) [π̂(x), φ̂(x′)] = −i�δ(x− x′)

ordinary differentiable manifold.13 It is thus legitimate to ask why we bothered to give a lengthy

exposition of fields as “ordinary” functions. The reason is that, in the not too distant future,

after the framework of functional field integration has been introduced, we will return to the

comfortable ground of the definition of page 6.

Employing these definitions, the classical Hamiltonian density (1.10) becomes the quantum

operator

Ĥ(φ̂, π̂) =
1

2m
π̂2 +

ksa
2

2
(∂xφ̂)

2. (1.26)

The Hamiltonian above represents a quantum field theoretical formulation of the problem

but not yet a solution. In fact, the development of a spectrum of methods for the analysis of

quantum field theoretical models will represent a major part of this text. At this point the

objective is merely to exemplify the way physical information can be extracted from models

like Eq. (1.26). As a word of caution, let us mention that the following manipulations, while

mathematically straightforward, are conceptually deep. To disentangle different aspects of

the problem, we will first concentrate on plain operational aspects. Later, in Section 1.4,

we will reflect on “what has really happened.”

As with any function, operator-valued functions can be represented in a variety of different

ways. In particular, they can be subjected to Fourier transformation,{
φ̂k

π̂k
≡ 1

L1/2

∫ L

0

dx e{∓ikx

{
φ̂(x)

π̂(x)
,

{
φ̂(x)

π̂(x)
=

1

L1/2

∑
k

e{±ikx

{
φ̂k

π̂k
, (1.27)

where
∑

k represents the sum over all Fourier coefficients indexed by quantized momenta

k = 2πm/L, m ∈ Z (not to be confused with the “operator momentum” π̂!). Note that

the real classical field φ(x) quantizes to a Hermitian quantum field φ̂(x), implying that

φ̂k = φ̂†
−k (and similarly for π̂k). The corresponding Fourier representation of the canonical

commutation relations reads (exercise)

[π̂k, φ̂k′ ] = −i�δkk′ . (1.28)

13 At least if we ignore the mathematical subtlety that a linear operator can also be interpreted as an element of
a certain manifold.
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When expressed in the Fourier representation, making use of the identity

∫
dx (∂xφ̂)

2 =
∑
k,k′

(−ikφ̂k)(−ik′φ̂k′)

δk+k′,0︷ ︸︸ ︷
1

L

∫
dx e−i(k+k′)x=

∑
k

k2φ̂kφ̂−k =
∑
k

k2|φ̂k|2

together with a similar relation for
∫
dx π̂2, the Hamiltonian Ĥ =∫

dx H(φ̂, π̂) assumes the near diagonal form

Ĥ =
∑
k

[
1

2m
π̂kπ̂−k +

mω2
k

2
φ̂kφ̂−k

]
, (1.29)

where ωk = v|k| and v = a
√

ks/m denotes the classical sound wave

velocity. In this form, the Hamiltonian can be identified as nothing but

a superposition of independent harmonic oscillators.14 This result is actually not difficult

to understand (see figure): Classically, the system supports a discrete set of wave excitations,

each indexed by a wave number k = 2πm/L. (In fact, we could have performed a Fourier

transformation of the classical fields φ(x) and π(x) to represent the Hamiltonian function

as a superposition of classical harmonic oscillators.) Within the quantum picture, each of

these excitations is described by an oscillator Hamiltonian operator with a k-dependent

frequency. However, it is important not to confuse the atomic constituents, also oscillators

(albeit coupled), with the independent collective oscillator modes described by Ĥ.

The description above, albeit perfectly valid, still suffers from a deficiency: our analy-

sis amounts to explicitly describing the effective low-energy excitations of the system (the

waves) in terms of their microscopic constituents (the atoms). Indeed the different con-

tributions to Ĥ keep track of details of the microscopic oscillator dynamics of individual

k-modes. However, it would be much more desirable to develop a picture where the relevant

excitations of the system, the waves, appear as fundamental units, without explicit account

of underlying microscopic details. (As with hydrodynamics, information is encoded in terms

of collective density variables rather than through individual molecules.) As preparation for

the construction of this improved formulation of the system, let us temporarily focus on a

single oscillator mode.

Revision of the quantum harmonic oscillator

Consider a standard harmonic oscillator (HO) Hamiltonian

Ĥ =
p̂2

2m
+

mω2

2
x̂2.

14 The only difference between Eq. (1.29) and the canonical form of an oscillator Hamiltonian Ĥ = p̂2/(2m) +

mω2x̂2/2 is the presence of the sub-indices k and −k (a consequence of φ̂†
k = φ̂−k). As we will show shortly,

this difference is inessential.
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ω

Figure 1.6 Low-lying energy levels/states of the harmonic oscillator.

The first few energy levels εn = ω
(
n+ 1

2

)
and the associated Hermite polynomial eigen-

functions are displayed schematically in Fig. 1.6. (To simplify the notation we henceforth

set � = 1.)

The HO has, of course, the status of a single-particle problem. However, the equidistance

of its energy levels suggests an alternative interpretation. One can think of a given energy

state εn as an accumulation of n elementary entities, or quasi-particles, each having energy

ω. What can be said about the features of these new objects? First, they are structureless,

i.e. the only “quantum number” identifying the quasi-particles is their energy ω (otherwise

n-particle states formed of the quasi-particles would not be equidistant). This implies that

the quasi-particles must be bosons. (The same state ω can be occupied by more than one

particle, see Fig. 1.6.)

This idea can be formulated in quantitative terms by employing the formalism of ladder

operators in which the operators p̂ and x̂ are traded for the pair of Hermitian adjoint

operators â ≡
√

mω
2 (x̂+ i

mω p̂), â
† ≡

√
mω
2 (x̂− i

mω p̂). Up to a factor of i, the transformation

(x̂, p̂) → (â, â†) is canonical, i.e. the new operators obey the canonical commutation relation

[â, â†] = 1. (1.30)

More importantly, the a-representation of the Hamiltonian is very simple, namely

Ĥ = ω

(
â†â+

1

2

)
, (1.31)

as can be checked by direct substitution. Suppose, now, we had been given a zero eigenvalue

state |0〉 of the operator â: â|0〉 = 0. As a direct consequence, Ĥ|0〉 = (ω/2)|0〉, i.e. |0〉 is

identified as the ground state of the oscillator.15 The complete hierarchy of higher energy

states can now be generated by setting |n〉 ≡ (n!)−1/2 (â†)n|0〉.

EXERCISE Using the canonical commutation relation, verify that Ĥ|n〉 = ω(n + 1/2)|n〉 and

〈n|n〉 = 1.

Formally, the construction above represents yet another way of constructing eigenstates of

the quantum HO. However, its “real” advantage is that it naturally affords a many-particle

interpretation. To this end, let us declare |0〉 to represent a “vacuum” state, i.e. a state with

zero particles present. Next, imagine that â†|0〉 is a state with a single featureless particle

15 This can be verified by explicit construction. Switching to a real-space representation, the solution of the

equation [x + ∂x/(mω)]〈x|0〉 = 0 obtains the familiar ground state wavefunction 〈x|0〉 =
√

mω/2πe−mωx2/2.
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Figure 1.7 Diagram visualizing an excited state of the chain. Here, the number of quasi-particles
decreases with increasing energy ωk.

(the operator â† does not carry any quantum number labels) of energy ω. Similarly, (â†)n|0〉
is considered as a many-body state with n particles, i.e. within the new picture, â† is an

operator that creates particles. The total energy of these states is given by ω × (occupation

number). Indeed, it is straightforward to verify (see exercise above) that â†â|n〉 = n|n〉, i.e.
the Hamiltonian basically counts the number of particles. While, at first sight, this may

look unfamiliar, the new interpretation is internally consistent. Moreover, it achieves what

we had asked for above, i.e. it allows an interpretation of the HO states as a superposition

of independent structureless entities.

INFO The representation above illustrates the capacity to think about individual quantum

problems in complementary pictures. This principle finds innumerable applications in modern

condensed matter physics. The existence of different interpretations of a given system is by no

means heretical but, rather, reflects a principle of quantum mechanics: there is no “absolute”

system that underpins the phenomenology. The only thing that matters is observable phenomena.

For example, we will see later that the “fictitious” quasi-particle states of oscillator systems

behave as “real” particles, i.e. they have dynamics, can interact, be detected experimentally, etc.

From a quantum point of view these object are, then, real particles.

Quasi-particle interpretation of the quantum chain

Returning to the oscillator chain, one can transform the Hamiltonian (1.29) to a form

analogous to (1.31) by defining the ladder operators16

âk ≡
√

mωk

2

(
φ̂k +

i

mωk
π̂−k

)
, â†k ≡

√
mωk

2

(
φ̂−k − i

mωk
π̂k

)
. (1.32)

With this definition, applying the commutation relations Eq, (1.28), one finds that the

ladder operators obey commutation relations generalizing Eq. (1.30):[
âk, â

†
k′

]
= δkk′ , [âk, âk′ ] =

[
â†k, â

†
k′

]
= 0. (1.33)

16 As to the consistency of these definitions, recall that φ̂†
k = φ̂−k and π̂†

k = π̂−k. Under these conditions the
second of the definitions following in the text follows from the first upon taking the Hermitian adjoint.
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Figure 1.8 Phonon spectra of the transition metal oxide Sr2RuO4 measured along different axes in
momentum space. Notice the approximate linearity of the low-energy branches (acoustic phonons)
at small momenta. Superimposed at high frequencies are various branches of optical phonons.
(Source: Courtesy of M. Braden, II. Physikalisches Institut, Universität zu Köln.)

Expressing the operators (φ̂k, π̂k) in terms of (âk, â
†
k), it is now straightforward to bring the

Hamiltonian into the quasi-particle oscillator form (exercise)

Ĥ =
∑
k

ωk

(
â†kâk +

1

2

)
. (1.34)

Equations (1.34) and (1.33) represent the final result of our analysis. The Hamiltonian Ĥ

takes the form of a sum of harmonic oscillators with characteristic frequencies ωk. In the

limit k → 0 (i.e. long wavelength), one finds ωk → 0; excitations with this property are said

to be massless.

An excited state of the system is indexed by a set {nk} = (n1, n2, . . . ) of quasi-particles

with energy {ωk} (see Fig. 1.7). Physically, the quasi-particles of the harmonic chain are

identified with the phonon modes of the solid. A comparison with measured phonon

spectra (Fig. 1.8) reveals that, at low momenta, ωk ∼ |k| in agreement with our simplistic

model (even in spite of the fact that the spectrum was recorded for a three-dimensional

solid with non-trivial unit cell – universality!). While the linear dispersion was already a

feature of the classical sound wave spectrum, the low-temperature specific heat reflected

non-classical behavior. It is left as an exercise (problem 1.8) to verify that the quantum

nature of the phonons resolves the problem with the low-temperature specific heat discussed

in Section 1.1. (For further discussion of phonon modes in atomic lattices we refer to Chapter

2 of the text by Kittel.17)

1.5 Quantum electrodynamics

The generality of the procedure outlined above suggests that the quantization of the EM

field Eq. (1.24) proceeds in a manner analogous to the phonon system. However, there are

a number of practical differences that make quantization of the EM field a harder (but

also more interesting!) enterprise. Firstly, the vectorial character of the vector potential, in

combination with the condition of relativistic covariance, gives the problem a non-trivial

internal geometry. Closely related, the gauge freedom of the vector potential introduces

redundant degrees of freedom whose removal on the quantum level is not easily achieved. For

17 C. Kittel, Quantum Theory of Solids, 2nd edition (Wiley, 1987).
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example, quantization in a setting where only physical degrees of freedom are kept – i.e. the

two polarization directions of the transverse photon field – is technically cumbersome, the

reason being that the relevant gauge condition is not relativistically covariant. In contrast, a

manifestly covariant scheme, while technically more convenient, introduces spurious “ghost

degrees of freedom” that are difficult to remove. To circumvent a discussion of these issues,

we will not discuss the problem of EM field quantization in full detail.18 On the other hand,

the photon field plays a much too important role in condensed matter physics for us to

drop the problem altogether. We will therefore aim at an intermediate exposition, largely

insensitive to the problems outlined above but sufficiently general to illustrate the main

principles.

Field quantization

Consider the Lagrangian of the matter-free EM field, L = − 1
4

∫
d3x FμνF

μν . As a first step

towards quantization of this system we fix a gauge. In the absence of charge, a particularly

convenient choice is the Coulomb gauge, ∇ · A = 0, with the scalar component φ =

0. (Keep in mind that, once a gauge has been set, we cannot expect further results to

display “gauge invariance.”) Using the gauge conditions, one may verify that the Lagrangian

assumes the form

L =
1

2

∫
d3x

[
(∂tA)2 − (∇×A)2

]
. (1.35)

By analogy with our discussion of the atomic chain, we would now proceed to “decouple”

the theory by expanding the action in terms of eigenfunctions of the Laplace operator.

The difference with our previous discussion is that we are dealing (i) with the full three-

dimensional Laplacian (instead of a simple second derivative) acting on (ii) the vectorial

quantity A that is (iii) subject to the constraint ∇ ·A = 0. It is these aspects which lead

to the complications outlined above.

We can circumvent these difficulties by considering cases where the geometry of the system

reduces the complexity of the eigenvalue problem. This restriction is less artificial than it

might appear. For example, in anisotropic electromagnetic waveguides, the solutions of the

eigenvalue equation can be formulated as19

−∇2Rk(x) = λkRk(x), (1.36)

where k ∈ R is a one-dimensional index and the vector-valued functions Rk are real and

orthonormalized,
∫
Rk ·Rk′ = δkk′ . The dependence of the eigenvalues λk on k depends on

details of the geometry (see Eq. (1.38) below) and need not be specified for the moment.

INFO An electrodynamic waveguide is a quasi-one-dimensional cavity with metallic bound-

aries (see Fig. 1.9). The practical advantage of waveguides is that they are good at confining EM

18 Readers interested in learning more about EM field quantization are referred to, e.g., L. H. Ryder, Quantum
Field Theory (Cambridge University Press, 1996).

19 More precisely, one should say that Eq. (1.36) defines the set of eigenfunctions relevant for the low-energy
dynamics of the waveguide. More-complex eigenfunctions of the Laplace operator exist but they carry much
higher energy.
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Figure 1.9 EM waveguide with rectangular cross-section. The structure of the eigenmodes of the
EM field is determined by boundary conditions at the walls of the cavity.

waves. At large frequencies, where the wavelengths are of order meters or less, radiation loss in

conventional conductors is high. In these frequency domains, hollow conductors provide the only

practical way of transmitting radiation.

EM field propagation inside a waveguide is constrained by boundary conditions. Assuming

the walls of the system to be perfectly conducting,

E‖(xb) = 0, B⊥(xb) = 0, (1.37)

where xb is a point at the system boundary and E‖ (B⊥) is the parallel (perpendicular) com-

ponent of the electric (magnetic) field.

For concreteness, returning to the problem of field quantization, let us consider a cavity with

uniform rectangular cross-section Ly × Lz. To conveniently represent the Lagrangian of the

system, we wish to express the vector potential in terms of eigenfunctions Rk that are consistent

with the boundary conditions (1.37). A complete set of functions fulfilling this condition is given

by

Rk = Nk

⎛
⎝c1 cos(kxx) sin(kyy) sin(kzz)
c2 sin(kxx) cos(kyy) sin(kzz)
c3 sin(kxx) sin(kyy) cos(kzz)

⎞
⎠ .

Here, ki = niπ/Li, ni ∈ N, i = x, y, z, Nk is a factor normalizing Rk to unit modulus, and the

coefficients ci are subject to the condition c1kx + c2ky + c3kz = 0. Indeed, it is straightforward

to verify that a general superposition of the type A(x, t) ≡
∑

k αk(t)Rk(x), αk(t) ∈ R, is diver-

genceless, and generates an EM field compatible with (1.37). Substitution of Rk into Eq. (1.36)

identifies the eigenvalues as λk = k2
x + k2

y + k2
z . In the physics and electronic engineering litera-

ture, eigenfunctions of the Laplace operator in a quasi-one-dimensional geometry are commonly

described as modes. As we will see shortly, the energy of a mode (i.e. the Hamiltonian evaluated

on a specific mode configuration) grows with |λk|. In cases where one is interested in the low-

energy dynamics of the EM field, only configurations with small |λk| are relevant. For example,

let us consider a massively anisotropic waveguide with Lz < Ly 	 Lx. In this case the modes

with smallest |λk| are those with kz = 0, ky = π/Ly, and kx ≡ k 	 L−1
z,y. (Why is it not possible

to set both ky and kz to zero?) With this choice,

λk = k2 +

(
π

Ly

)2

, (1.38)

and a scalar index k suffices to label both eigenvalues and eigenfunctions Rk. A caricature of

the spatial structure of the functions Rk is shown in Fig. 1.9. The dynamical properties of these

configurations will be discussed in the text.
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Returning to the problem posed by Eq. (1.35) and (1.36), one can expand the vector poten-

tial in terms of eigenfunctions Rk as A(x, t) =
∑

k αk(t)Rk(x), where the sum runs over

all allowed values of the index parameter k. (In a waveguide, k = πn/L, n ∈ N, where

L is the length of the guide.) Substituting this expansion into Eq. (1.35) and using the

normalization properties of Rk, we obtain L = 1
2

∑
k

(
α̇2
k − λkα

2
k

)
, i.e. a decoupled repre-

sentation where the system is described in terms of independent dynamical systems with

coordinates αk. From this point on, quantization proceeds along the lines of the standard

algorithm. Firstly, define momenta through the relation πk = ∂α̇k
L = α̇k. This produces

the Hamiltonian H = 1
2

∑
k (πkπk + λkαkαk). Next quantize the theory by promoting fields

to operators αk → α̂k and πk → π̂k, and declaring [π̂k, α̂k′ ] = −iδkk′ . The quantum Hamil-

tonian operator, again of harmonic oscillator type, then reads

Ĥ =
1

2

∑
k

(
π̂kπ̂k + ω2

kα̂kα̂k

)
,

where ω2
k = λk. Following the same logic as marshaled in Section 1.4, we then define ladder

operators ak ≡
√

ωk

2 (α̂k + i
ωk

π̂k), a
†
k ≡

√
ωk

2 (α̂k − i
ωk

π̂k), whereupon the Hamiltonian

assumes the now familiar form

Ĥ =
∑
k

ωk

(
a†kak +

1

2

)
. (1.39)

For the specific problem of the first excited mode in a waveguide of width Ly, ωk =[
k2 + (π/Ly)

2
]1/2

. Equation (1.39) represents our final result for the quantum Hamiltonian

of the EM waveguide. Before concluding this section let us make a few comments on the

structure of the result:

� Firstly, notice that the construction above almost completely paralleled our previous dis-

cussion of the harmonic chain.20 The structural similarity between the two systems finds

its origin in the fact that the free field Lagrangian (1.35) is quadratic and, therefore, bound

to map onto an oscillator-type Hamiltonian. That we obtained a simple one-dimensional

superposition of oscillators is due to the boundary conditions specific to a narrow waveg-

uide. For less restrictive geometries, e.g. free space, a more complex superposition of

vectorial degrees of freedom in three-dimensional space would have been obtained. How-

ever, the principal mapping of the free EM field onto a superposition of oscillators is

independent of geometry.

� Physically, the quantum excitations described by Eq. (1.39) are, of course, the photons of

the EM field. The unfamiliar appearance of the dispersion relation ωk is again a peculiarity

of the waveguide. However, in the limit of large longitudinal wave numbers k � L−1
y , the

dispersion approaches ωk ∼ |k|, i.e. the relativistic dispersion of the photon field. Also

notice that, due to the equality of the Hamiltonians (1.34) and (1.39), all that has been

said about the behavior of the phonon modes of the atomic chain carries over to the

photon modes of the waveguide.

20 Technically, the only difference is that instead of index pairs (k,−k) all indices (k, k) are equal and positive.
This can be traced back to the fact that we have expanded in terms of the real eigenfunctions of the closed
waveguide instead of the complex eigenfunctions of the circular oscillator chain.
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� As with their phononic analogue, the oscillators described by Eq. (1.39) exhibit zero-point

fluctuations. It is a fascinating aspect of quantum electrodynamics that these oscilla-

tions, caused by quantization of the most relativistic field, surface at various points of

non-relativistic physics. In the section below two prominent manifestations of zero-point

fluctuations in condensed matter physics will be briefly discussed.

Vacuum fluctuations in matter

The quantum oscillation of the electromagnetic field manifests itself in a multitude of physi-

cal phenomena. In the following, we shall briefly discuss some of the more prominent effects

caused by the dynamics of the quantum vacuum.

One of the most important phenomena induced by vacuum fluctuations is the Casimir

effect:21 two parallel conducting plates embedded into the vacuum exert an attractive

force on each other. This phenomenon is not only of conceptual importance – better than

anything else it demonstrates that the vacuum is “alive” – but also of applied relevance.

For example, the force balance of hydrophobic suspensions of particles of size 0.1–1μm in

electrolytes is believed to be strongly influenced by Casimir forces. At least it is applica-

tions in colloidal chemistry which prompted Casimir to his famous analysis of the idealized

vacuum problem. Qualitatively, the origin of the Casimir force is readily understood. Like

their classical analog, quantum photons exert a certain radiation pressure on macroscopic

media. The difference with the classical case is that, due to zero-point oscillations, even the

quantum vacuum is capable of creating radiation pressure. For a single conducting body

embedded into the infinite vacuum, the net pressure vanishes by symmetry. However, for

two parallel plates, the situation is different. Mode quantization arguments similar to the

ones used in the previous section show that the density of quantum modes between the

plates is lower than in the semi-infinite outer spaces. Hence, the force (density) created by

outer space exceeds the counter-pressure from the inside; the plates “attract” each other.

The unambiguous measurement of the Casimir force required advanced nano-technological

instrumentation and has succeeded only recently.22

A second important phenomenon where vacuum fluctuations play a role is van der Waals

forces: atoms or molecules attract each other by a potential that, at small separation r,

scales as r−6. Early attempts to explain classically the phenomenon produced results for the

force that, in conflict with experimental findings, were strongly temperature dependent. It

was considered a major breakthrough of the new quantum mechanics when London proposed

a model whereby a temperature-independent r−6 law was obtained. The essence of London’s

21 H. B. G. Casimir and D. Polder, The influence of retardation on the London–van der Waals forces, Phys. Rev.
73, 360–72 (1948); H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon.
Nederland. Akad. Wetensch. 51, 793–6 (1948).

22 S. K. Lamoreaux, Demonstration of the Casimir force in the 0.6 to 6 m Range, Phys. Rev. Lett. 78, 5–9 (1997);
G. Bressi et al., Measurement of the Casimir force between parallel metallic surfaces, Phys. Rev. Lett. 88,
41804–9 (2002). For a review on recent developments see M. Bordag et al., New developments in the Casimir
effect, Phys. Rep. 353, 1–205 (2001).
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dA

dB

r

Figure 1.10 On the creation of van der Waals forces by EM vacuum fluctuations. An atom or
molecule B is exposed to fluctuations of the EM quantum vacuum (depicted by wavy lines). This
leads to the creation of a dipole element dB . A nearby partner atom A sees both the vacuum
amplitude and the dipole field created by dB . The cooperation of the two field strengths leads to
a net lowering of the energy of A.

idea is easily explained: imagine each of the atoms/molecules as an oscillator. The zero-

point motion of these oscillators, measured in terms of some coordinate x, creates a dipole

moment of strength ∼ x. At close distances, the systems interact through a dipole–dipole

interaction.23 Writing down coupled oscillator equations (see Problem 1.8), one readily

obtains a lowering of the ground state energy by a contribution V (r) ∼ r−6.

Johannes Diderik van der Waals
1837–1923
1910 Nobel Laureate in physics
in recognition of his work on the
state equation of non-ideal gases.
Van der Waals was one of the
first to postulate inter-molecular
forces, at a time when the exis-
tence of atoms and molecules was still disputed.
Other important work includes the derivation of first
variants of thermodynamic scaling relations.

However, there is a subtle point

about the seemingly innocuous cou-

pling of the quantum oscillator to the

classical Coulomb potential. Close

inspection (see Milonni’s text for

details24) shows that, to maintain

the quantum commutation relations

of the oscillator degrees of freedom,

the EM field must not be assumed

entirely classical. In fact, once the

quantum nature of the EM field has

entered the stage, it becomes possible to explain the force without need for phenomenolog-

ical introduction of atomic oscillator degrees of freedom.

Consider an atom A exposed to an electric field E (see Fig. 1.10). The field gives rise to

the atomic Stark effect, i.e. a level shift of order W ∼ α〈E2(xA)〉, where α is the atomic

polarizability, E = ∂tA is the operator representing the EM field, and 〈. . .〉 a quantum

expectation value. For an atom in empty space, E(xA) ≡ E0(xA) is an operator measuring

the vacuum fluctuations of the free field. However, in the neighborhood of a second atom

B, an induced dipole contribution adds to E0. The point is that the zero-point amplitude

E0 induces a dipole element dB ∝ αE0(xB) which, in turn, creates a dipole field EB

23 In passing, we mention that various animal species benefit from the short-distance efficiency of the van der
Waals force. For instance, geckos and spiders owe their ability to climb up planar surfaces of basically any
material to the presence of bushels of ultra-fine hair (about three orders of magnitude thinner than human hair)
on their feet. The tips of these hairs come close enough to the atoms of the substrate material to make the van
der Waals force sizeable. Impressively, this mechanism provides a force of about two orders of magnitude larger
than that required to support a spider’s full body weight. Both spiders and geckos have to “roll” their feet off
the surface to prevent getting stuck by the enormous power of the forces acting on their many body hairs!

24 P. W. Milonni, The Quantum Vacuum (Academic Press, 1994).
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contributing to the total field amplitude felt by atom A: E(xA) = (E0 + EB)(xA) (see

Fig. 1.10). The dominant contribution to the level shift due to the proximity of B is then

given by

V = W − α〈E2
0(xA)〉 ∼ α〈E0(xA) ·EB(xA)〉 ∼ α2〈ET

0 (xA)K(xA − xB)E(xB)〉, (1.40)

where K is a matrix kernel describing the geometric details of the dipole interaction. (Here,

we have subtracted the vacuum level shift because it represents an undetectable offset.)

Notice that Eq. (1.40) predicts the van der Waals interaction to be proportional to the

square of the zero-point field amplitude.

Johannes Stark 1874–1957
Nobel laureate 1919 for his dis-
covery of the Stark effect in 1913.
Later, Stark became infamous for
the role he played during the
third Reich. He attacked theo-
retical physics as “Jewish” and
stressed that scientific positions in Nazi Germany
should only be held by pure-blooded Germans. Image
c©The Nobel Foundation

Unfortunately, the quantitative

evaluation of the matrix element,

involving a geometric average over

all polarization directions of the

quantum field amplitude, is some-

what involved. As a final result of a

calculation25 one obtains

V (r) = −3ω0α
2

4r6
, (1.41)

where r = |xA − xB | is the distance between the atoms and ω0 is the transition frequency

between the ground state and the first excited state of the atom. (This parameter enters

the result through the dependence of the microscopic polarizability on the transition fre-

quencies.)

1.6 Noether’s theorem

According to a basic paradigm of physics every continuous symmetry of a system entails a

conservation law.26 Conservation laws, in turn, greatly simplify the solution of any prob-

lem which is why one gets acquainted with the correspondence (symmetry ↔ conservation

law) at a very early stage of the physics curriculum, e.g. the connection between rotational

symmetry and the conservation of angular momentum. However, it is not all that trivial

to see (at least within the framework of Newtonian mechanics) that the former entails

the latter. One needs to know what to look for (angular momentum) to identify the con-

served quantity corresponding to rotational invariance. It is one of the major advantages of

Lagrangian over Newtonian mechanics that it provides one with a tool – Noether’s theorem

– to automatically identify the conservation laws generated by the symmetries of classical

mechanics.

25 Detailed, e.g., in Milonni, The Quantum Vacuum, Section 3.11.
26 Before exploring the ramifications of symmetries and conservation laws for fields, it may be instructive to

recapitulate Noether’s theorem in the context of classical point-particle mechanics – see, e.g., L. D. Landau and
E. M. Lifshitz, Classical Mechanics (Pergamon, 1960).
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Amalie E. Noether 1882–1935
German mathematician known
for her groundbreaking contri-
butions to abstract algebra and
theoretical physics. Alive at a
time when women were not supposed to attend
college preparatory schools, she was often forbidden
from lecturing under her own name. Despite these
obstacles, Noether became one of the greatest
algebraists of the century. Described by Albert Ein-
stein as the most significant creative mathematical
genius thus far produced since the higher education
of women began, she revolutionized the theories
of rings, fields, and algebras. In physics, Noether’s
theorem explains the fundamental connection
between symmetry and conservation laws. In 1933,
she lost her teaching position due to being a Jew
and a woman, and was forced out of Germany by
the Nazis.

What happens when one advances

from point to continuum mechan-

ics?27 Clearly, multidimensional con-

tinuum theories leave more room for

the emergence of complex symme-

tries; even more so than in classical

mechanics, we are in need of a tool

identifying the corresponding con-

servation laws. Fortunately, it turns

out that Noether’s theorem of point

mechanics affords a more or less

straightforward generalization to

higher dimensions. Starting from

the general form of the action of a

continuum system, Eq. (1.16), the

continuum version of Noether’s the-

orem will be derived below. In not

referring to a specific physical problem, our discussion will be somewhat dry. This lack

of physical context is, however, more than outweighed by the general applicability of the

result: the generalized form of Noether’s theorem can be – without much further thought –

applied to generate the conservation laws of practically any physical symmetry. In this

section, we will illustrate the application of the formalism on the simple (yet important)

example of space–time translational invariance. A much more intriguing case study will be

presented in Section 4.3 after some further background of quantum field theory has been

introduced.

Symmetry transformations

The symmetries of a physical system manifest themselves in the invariance of its action

under certain transformations. Mathematically, symmetry transformations are described by

two pieces of input data: firstly, a mapping M → M , x �→ x′(x) that assigns to any point of

the base manifold some “transformed” point; secondly, the field configurations themselves

may undergo some change, i.e. there may be a mapping (φ : M → T ) �→ (φ′ : M → T ) that

defines transformed values φ′(x′) = F [{φ(x)}] in terms of the “old” field. It is important to

understand that these two operations may, in general, be independent of each other.

27 Later on we shall see that all we are discussing here carries over to the quantum level.
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For example, suppose we want to explore the

invariance properties of a theory under transla-

tions in space–time. In this case, we can consider

a mapping x′ = x+a, a ∈ Rm, φ′(x′) = φ(x). This

describes the translation of a field by a fixed offset

a in space–time (see figure). The system is trans-

lationally invariant if and only if S[φ] = S[φ′]. As

a second example, let us probe rotational sym-

metry: x′ = Rx, where R ∈ O(m) is a rotation

of Euclidean space–time. In this case it would, in

general, be unphysical to define φ′(x′) = φ(x).

To illustrate this point, consider the example of

a vector field in two dimensions n = m = 2 (see

the figure.) A properly rotated field configuration

is defined by φ′(x′) = Rφ(x), i.e. the field ampli-

tude actively participates in the operation. In fact, one often considers symmetry operations

where only the fields are transformed while the base manifold is left untouched.28 For exam-

ple, the intrinsic29 rotational invariance of a magnet is probed by x′ = x, m′(x) = R ·m(x),

where the vector field m describes the local magnetization.

To understand the impact of a symmetry transformation, it is fully sufficient to con-

sider its infinitesimal version. (Any finite transformation can be generated by successive

application of infinitesimal ones.) Consider, thus, the two mappings

xμ → x′
μ = xμ +

∂xμ

∂ωa

∣∣∣
ω=0

ωa(x),

φi(x) → φ′i(x′) = φi(x) + ωa(x)F
i
a[φ], (1.42)

expressing the change of both fields and coordinates to linear order in a set of param-

eter functions {ωa} characterizing the transformation. (For a three-dimensional rotation,

(ω1, ω2, ω3) = (φ, θ, ψ) would be the rotation angles, etc.) The functionals {F i
a} – which

need not depend linearly on the field φ, and may explicitly depend on the coordinate x –

define the incremental change φ′(x′)− φ(x).

We now ask how the action Eq. (1.16) changes under the transformation Eq. (1.42), i.e.

we wish to compute the difference

ΔS =

∫
dmx′ L(φ′i(x′), ∂x′

μ
φ′i(x′))−

∫
dmx L(φi(x), ∂xμφ

i(x)).

28 For example, the standard symmetry transformations of classical mechanics, q(t) → q′(t), belong to this class:
the coordinate vector of a point particle, q (a “field” in 0+ 1 space–time dimensions) changes while the “base”
(time t) does not transform.

29 “Intrinsic” means that we rotate just the spins but not the entire magnet (as in our second example).
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Inserting Eq. (1.42), using the fact that ∂x′
μ/∂xν = δμν + (∂/∂xν) (ωa∂xμ/∂ωa), together

with30
∣∣∂x′

μ/∂xν

∣∣ � 1 + (∂/∂xμ) (ωa∂xμ/∂ωa), one obtains

ΔS �
∫

dmx (1 + ∂xμ(ωa∂ωaxμ))L(φi + F i
aωa, (δμν − ∂xμ(ωa∂ωaxν))∂xν (φ

i + F i
aωa))

−
∫

dmxL(φi(x), ∂xμφ
i(x)).

So far, we did not use the fact that the transformation was actually meant to be a symmetry

transformation. By definition, we are dealing with a symmetry if, for constant parameters

ωa – a uniform rotation, global translation, etc. – the action difference ΔS vanishes. In

other words, the leading contribution to the action difference of a symmetry transformation

must be linear in the derivatives ∂μωa. A straightforward expansion of the formula above

for ΔS shows that these terms are given by

ΔS
sym.
= −

∫
dmx jaμ(x)∂μωa,

where the so-called Noether current is given by

jaμ =

(
∂L

∂(∂μφi)
∂νφ

i − Lδμν
)

∂xν

∂ωa

∣∣∣∣
ω=0

− ∂L
∂(∂μφi)

F i
a. (1.43)

For a completely general field configuration, there is not much can be said about the Noether

current (whether or not the theory possesses the symmetry). However, if the field φ obeys

the classical equations of motion and the theory is symmetric, the Noether current is locally

conserved, ∂μj
a
μ = 0. This follows from the fact that, for a solution φ of the Euler–Lagrange

equations, the linear variation of the action in any parameter must vanish. Specifically,

the vanishing of ΔS[φ] for arbitrary symmetry transformations {ωa} enforces the condition

∂μj
a
μ = 0. (But keep in mind the fact that the conservation law holds only on the classical

level!) Therefore, in summary, we have Noether’s theorem:

A continuous symmetry entails a classically conserved current.

The local conservation of the current entails the existence of a globally conserved “charge.”

For example, for a base manifold x = (x0, x1, . . . , xd) in Euclidean (1 + d)-dimensional

space–time, integration over the space–like directions, and application of Stokes’ theorem,

gives ∂0Q
a = 0, where31

Qa ≡
∫

ddx ja0 , (1.44)

is the conserved charge and we have assumed that the current density vanishes at spatial

infinity.

30 This follows from

���� ∂x′
μ

∂xν

���� =

����det� ∂x′
μ

∂xν

����� =

���� exp tr ln

�
∂x′

μ
∂xν

����� � exp
(

∂
∂xμ

(
ωa

∂xμ
∂ωa

))
� 1 + ∂

∂xμ

(
ωa

∂xμ
∂ωa

)
.

(Exercise: Show that det A = exp tr ln A, where A is a linear operator. Hint: Use the eigenbasis.)
31 Notice that the integral involved in the definition of Q runs only over spatial coordinates.
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Notice that nowhere in the discussion above have we made assumptions about the internal

structure of the Lagrangian. In particular, all results apply equally to the Minkowskian and

the Euclidean formulation of the theory.

Example: translational invariance

As an example that is as elementary as it is important, we consider the case of space–time

translational invariance. The corresponding symmetry transformation is defined by x′
μ =

xμ+aμ, φ
′(x′) = φ(x). The infinitesimal version of this transformation reads as x′

μ = xμ+ωμ

where we have identified the parameter index a with the space–time index μ. Noether’s

current, which in the case of translational invariance is called the energy–momentum

tensor, is given by T ν
μ :

T ν
μ (x) =

∂L
∂(∂μφi)

∂νφ
i − δμνL.

The conserved “charges” corresponding to this quantity are

P ν ≡
∫

ddx

(
∂L

∂(∂0φi)
∂νφ

i − δν0L
)
.

Specifically, P 0 is the energy and P l, l = 1, . . . , d the total momentum carried by the system.

EXERCISE Consider the one-dimensional elastic chain discussed in Section 1.1. Convince your-

self that the continuity equation of the system assumes the form ∂t

∫ x2

x1
dxρ(x, t) = ∂t(φ(x2, t)−

φ(x1, t)), where ρ(x, t) is the local density of the medium. Use this result to show that ρ = ∂xφ.

Show that the momentum
∫
dx (particle density) × (velocity) =

∫
dxρ∂tφ carried by the system

coincides with the Noether momentum.

EXERCISE Compute the energy-momentum tensor for the Lagrangian of the free electromag-

netic field. Derive the corresponding energy–momentum vector and convince yourself that you

obtain results familiar from electrodynamics.

Admittedly, translational invariance is not a particularly exciting symmetry and, if this

were the only example of relevance, the general discussion above would not have been worth

the effort. However, later in the text, we shall exemplify (see, for example, Section 4.3) how

concepts hinging on Noether’s theorem can be applied to obtain far-reaching results that

are not readily accessible by different means.

1.7 Summary and outlook

In this chapter we have introduced the general procedure whereby classical continuum

theories are quantized. Employing the elementary harmonic oscillator as a example, we have

seen that the Hilbert spaces of these theories afford different interpretations. Of particular

use was a quasi-particle picture whereby the collective excitations of the continuum theories

acquired the status of elementary particles.
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Suspiciously, both examples discussed in this text, the harmonic quantum chain and free

quantum electrodynamics, led to exactly solvable free field theories. However, it takes

only little imagination to foresee that only few continuum theories will be as simple. Indeed,

the exact solvability of the atomic chain would have been lost had we included higher-order

contributions in the expansion in powers of the lattice displacement. Such terms would

hinder the free wave-like propagation of the phonon modes. Put differently, phonons would

begin to scatter off each other (i.e. interact). Similarly, the free status of electrodynamics is

lost once the EM field is allowed to interact with a matter field. Needless to say, interacting

field theories are infinitely more complex, but also more interesting, than the systems

considered so far.

Technically, we have seen that the phonon/photon interpretation of the field theories

discussed in this chapter could conveniently be formulated in terms of ladder operators.

However, the applications discussed so far provide only a glimpse of the advantages of

this language. In fact, the formalism of ladder operators, commonly described as “second

quantization,” represents a central, and historically the oldest, element of quantum field

theory. The next chapter is devoted to a more comprehensive discussion of both the formal

aspects and applications of this formulation.

1.8 Problems

Electrodynamics from a variational principle

Choosing the Lorentz-gauged components of the vector potential as generalized coordinates, the aim

of this problem is to show how the wave equations of electrodynamics can be obtained as a variational

principle.

Electrodynamics can be described by Maxwell’s equations or, equivalently, by wave-like

equations for the vector potential. Working in the Lorentz gauge, ∂tφ = ∇ · A, these

equations read
(
∂2
t −∇2

)
φ = ρ,

(
∂2
t −∇2

)
A = j. Using relativistically covariant notation,

the form of the equations can be compressed further to ∂μ∂
μAν = jν . Starting from the

Lagrangian action, S[A] = −
∫
d4x

(
1
4FμνF

μν +Aμj
μ
)
, obtain these equations by applying

the variational principle. Compare the Lorentz gauge representation of the action of the

field with the action of the elastic chain. What are the differences/parallels?

Answer:
Using the definition of the electromagnetic field tensor Fμν = ∂μAν −∂νAμ, and integrating

by parts, the action assumes the form

S[A] = −
∫

d4x

(
−1

2
Aν [∂μ∂

μAν − ∂μ∂
νAμ] + jμA

μ

)
.

Owing to the Lorentz gauge condition, the second contribution in the square brackets van-

ishes and we obtain S[A] = −
∫
d4x

(
1
2∂μAν∂

μAν + jμA
μ
)
, where we have again integrated

by parts. Applying the general variational Eq. (1.17) one finally obtains the wave equation.
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Hamiltonian of electromagnetic field

Here it is shown that the Hamiltonian canonically conjugate to the Lagrangian of the electromagnetic

field indeed coincides with the energy density familiar from elementary electrodynamics.

Consider the electromagnetic field in the absence of matter, j = 0. Verify that the total

energy stored in the field is given by H ≡
∫
d3xH(x) where H(x) = E2(x) +B2(x) is the

familiar expression for the EM energy density. (Hint: Use the vacuum form of Maxwell’s

equations and the fact that, for an infinite system, the energy is defined only up to surface

terms.)

Answer:
Following the canonical prescription, let us first consider the Lagrangian density,

L = −1

4
FμνF

μν =
1

2

3∑
i=1

(∂0Ai − ∂iA0)(∂0Ai − ∂iA0)−
1

4

3∑
i,j=1

(∂iAj − ∂jAi)(∂iAj − ∂jAi).

We next determine the components of the canonical momentum through the relation πμ =

∂∂0AμL : π0 = 0, πi = ∂0Ai − ∂iA0 = Ei. Using the fact that ∂iAj − ∂jAi is a component

of the magnetic field, the Hamiltonian density can now be written as

H = πμ∂0Aμ − L =
1

2
(2E · ∂0A−E2 +B2)

(1)
=

1

2
(2E · ∇φ+E2 +B2)

(2)
=

1

2
(2∇ · (Eφ) +E2 +B2),

where (1) is based on addition and subtraction of a term 2E · ∇φ, and (2) on ∇ · E = 0

combined with the identity ∇ · (af) = ∇ · af + a · ∇f (valid for general vector [scalar]

functions a(f)). Substitution of this expression into the definition of the Hamiltonian yields

H =
1

2

∫
d3x

(
2∇ · (Eφ) +E2 +B2

)
=

1

2

∫
d3x

(
E2 +B2

)
,

where we have used the fact that the contribution ∇ · (Eφ) is a surface term that vanishes

upon integration by parts.

Phonon specific heat

In the text, we have stated that the mode quantization of elastic media manifests itself in low-

temperature anomalies of the specific heat. In this problem, concepts of elementary quantum statistical

mechanics are applied to determine the temperature profile of the specific heat.

Compute the energy density u = −(1/L)∂β lnZ of one-dimensional longitudinal phonons

with dispersion ωk = v|k|, where Z = tr e−βĤ denotes the quantum partition function. As

an intermediate result, show that the thermal expectation value of the energy density of

the system can be represented as

u =
1

L

∑
k

(ωk

2
+ ωknB(ωk)

)
, (1.45)
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where nB(ε) =
(
eβε − 1

)−1
is the Bose–Einstein distribution function. Approximate the sum

over k by an integral and show that cv ∼ T . At what temperature Tcl does the specific heat

cross over to the classical result cv = const? (Remember that the linear dispersion ωk = v|k|
is based on a quadratic approximation to the Hamiltonian of the system and, therefore,

holds only for |k| < Λ, where Λ is some cutoff momentum.) Reiterate the discussion of

Section 1.4 for a d-dimensional isotropic solid of volume Ld (i.e. assume that the atomic

exchange constants remain the same in all directions). Show that the dispersion generalizes

to ωk = v|k|, where k = (n1, . . . , nd)2π/L and ni ∈ Z. Show that the specific heat shows

the temperature dependence cv ∼ T d.

Answer:
As discussed in the text, the quantum eigenstates of the system are given by |n1, n2, . . .〉,
where nm is the number of phonons of wavenumber km = 2πm/L, E|n1,n2,...〉 =∑

m ωkm (nm + 1/2) ≡
∑

m εnm
m the eigenenergy, and ωm = v|km|. In the energy represen-

tation, the quantum partition function then takes the form

Z = tr e−βĤ =
∑
states

e−βEstate =
∏

m=1,2,...

∞∑
nm=0

e−βωm(nm+1/2) =
∏

m=1,2,...

e−βωm/2

1− e−βωm
,

where nm is the occupation number of the state with wavenumber km. Hence,

lnZ = −
∑
m

[
β
ωm

2
+ ln

(
1− e−βωm

)]
.

Differentiation with respect to β yields Eq. (1.45) and, replacing
∑

m → (L/2π)
∫
dk, we

arrive at

u = C1 +
1

2π

∫
|k|<Λ

dk
v|k|

eβv|k| − 1
= C1 + β−2C2.

Here, C1 is the temperature-independent constant accounting for the “zero-point energies”

ωm/2. In the second equality, we have scaled k → βk. This produces a prefactor β−2 multi-

plied by a temperature-independent (up to the temperature dependence of the boundaries

Λ → βΛ) integral that we denoted by C2. Differentiation with respect to T then leads to the

relation cv = ∂Tu ∼ T . However, for temperatures T > vΛ higher than the highest frequen-

cies stored in the phonon modes, the procedure above no longer makes sense (formally, due

to the now non-negligible temperature dependence of the boundaries). Yet in this regime

we may expand eβv|k| − 1 � βv|k|, which brings us back to the classical result cv = const.

Consider now a d-dimensional solid with “isotropic” exchange coupling
(
ks

2

)∑d
i=1(φR+ei

−
φR)2 (ei: unit vector in the i-direction). Taking a continuum limit leads to a contribu-

tion (ksa
2/2)(∇φ(x))2. Proceeding along the lines of the text, we find that the relevant

excitations are now waves with wave vector k = 2π(n1, . . . , nd)/L and energy ωk = |k|v.
Accordingly, the sum in our formula for the specific heat becomes

∑
k ∼

∫
ddk. Scaling

ki → βki then generates a prefactor β−d−1 and we arrive at the relation cv ∼ T d.
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Van der Waals force

We here discuss a semi-phenomenological approach to the van der Waals force: modelling the con-

stituents participating in the interaction as quantum oscillators, we find that the ground state energy

of the ensuing two-body system is lower than that of the isolated compounds.

London’s phenomenological approach to explaining the van der Waals force starts out

from the Hamiltonian

Ĥ =
p̂21
2m

+
p̂22
2m

+
mω2

o

2

(
x̂2
1 + x̂2

2

)
+mKx̂1x̂2,

where x̂i is the coordinate of an oscillator phenomenologically representing one of two

atoms i = 1, 2. The atoms are coupled through a dipole–dipole interaction, where the

dipole operators are proportional to x̂i and K(r) = qe2/(mr3) encapsulates the details of

the interaction. Here r denotes the distance between the atoms and q is a dipole–dipole

orientation factor.

Compute the spectrum of the two-particle system described by Ĥ and verify that the

dipole coupling leads to a lowering of the ground state energy by an amount V (r) = K2/8ω3
o .

Using the fact that the classical polarizability of an oscillator is given by α = e2/mω2
o this

becomes V = q2ωoα
2/8r6. Finally, using the fact that the directional average of the geo-

metric factor q2 equals 2, and multiplying by three to take account of the three-dimensional

character of a “real” atomic oscillator, we recover the result Eq. (1.41).

Answer:
We begin by formulating the potential Û of the oscillator system in a matrix notation,

Û = x̂TAx̂, where x̂T = (x̂1, x̂2)
T and

A =
m

2

(
ω2 K

K ω2

)
.

Diagonalizing the matrix, A = UDUT , and transforming coordinates, x → UTx = x′, the
system decouples into two independent oscillators,

Ĥ =
∑
i=1,2

(
p̂′2i
2m

+
mω2

i

2
x̂′2
i

)
,

where the new characteristic frequencies ω1/2 =
(
ω2
o ±K

)1/2
are determined by the eigen-

values of the matrix A. The ground state of this system is given by E0 = (ω1 + ω2)/2 ≈
ωo − K2/8ω3

o , which lies by an amount V = −K2/
(
8ω3

o

)
lower than the energy of the

isolated atoms.
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Second quantization

The purpose of this chapter is to introduce and apply the method of second quantization, a tech-

nique that underpins the formulation of quantum many-particle theories. The first part of the chapter

focuses on methodology and notation, while the remainder is devoted to the development of applications

designed to engender familiarity with and fluency in the technique. Specifically, we will investigate the

physics of the interacting electron gas, charge density wave propagation in one-dimensional quantum

wires, and spin waves in a quantum Heisenberg (anti)ferromagnet. Indeed, many of these examples and

their descendants will reappear as applications in our discussion of methods of quantum field theory in

subsequent chapters.

In the previous chapter we encountered two field theories that could conveniently be rep-

resented in the language of “second quantization,” i.e. a formulation based on the algebra

of certain ladder operators âk.
1 There were two remarkable facts about this formulation:

firstly, second quantization provides a compact way of representing the many-body space

of excitations; secondly, the properties of the ladder operators were encoded in a simple

set of commutation relations (cf. Eq. (1.33)) rather than in some explicit Hilbert space

representation.

Apart from a certain aesthetic appeal, these observations would not be of much relevance

if it were not for the fact that the formulation can be generalized to a comprehensive and

highly efficient formulation of many-body quantum mechanics in general. In fact, second

quantization can be considered the first major cornerstone on which the theoretical frame-

work of quantum field theory was built. This being so, extensive introductions to the concept

can be found throughout the literature. We will therefore not develop the formalism in full

mathematical rigor but rather proceed pragmatically by first motivating and introducing

its basic elements, followed by a discussion of the “second quantized” version of standard

operations of quantum mechanics (taking matrix elements, changing bases, representing

operators, etc.). The second part of the chapter is concerned with developing fluency in the

method by addressing a number of applications. Readers familiar with the formalism may

therefore proceed directly to these sections.

1 The term “second quantization” is unfortunate. Historically, this terminology was motivated by the observation
that the ladder operator algebra fosters an interpretation of quantum excitations as discrete “quantized” units.
Fundamentally, however, there is nothing like “two” superimposed quantization steps in single- or many-particle
quantum mechanics. Rather, one is dealing with a particular representation of the “first and only quantized”
theory tailored to the particular problem at hand.

39



40 Second quantization

2.1 Introduction to second quantization

Motivation

nλ

ε4

ελ

ε3

3
ε2

ε1

1

1

1

1

1

1

ε0

0

nλ

0

5

bosons fermions

We begin our discussion by recapit-

ulating some fundamental notions of

many-body quantum mechanics, as for-

mulated in the traditional language of

symmetrized/anti-symmetrized wavefunc-

tions. Consider the (normalized) set of

wavefunctions |λ〉 of some single-particle

Hamiltonian Ĥ : Ĥ|λ〉 = ελ|λ〉, where ελ
are the eigenvalues. With this definition,

the normalized two-particle wavefunction

ψF(ψB) of two fermions (bosons) populating levels λ1 and λ2 is given by the anti-

symmetrized (symmetrized) product

ψF(x1, x2) =
1√
2
(〈x1|λ1〉〈x2|λ2〉 − 〈x1|λ2〉〈x2|λ1〉) ,

ψB(x1, x2) =
1√
2
(〈x1|λ1〉〈x2|λ2〉+ 〈x1|λ2〉〈x2|λ1〉) .

In the Dirac bracket representation, the two-body states |λ1, λ2〉F(B) corresponding to the

wave functions ψF(B)(x1, x2) = (〈x1| ⊗ 〈x2|) |λ1, λ2〉F(B) above can be presented as

|λ1, λ2〉F(B) ≡
1√
2
(|λ1〉 ⊗ |λ2〉+ ζ|λ2〉 ⊗ |λ1〉) ,

where ζ = −1 for fermions while ζ = 1 for bosons.

Enrico Fermi 1901–54
Nobel Laureate in Physics in 1938
for his demonstrations of the exis-
tence of new radioactive elements
produced by neutron irradiation,
and for his related discovery of
nuclear reactions brought about
by slow neutrons. (Image c© The
Nobel Foundation.)

Note that the explicit symmetriza-

tion of the wavefunctions is neces-

sitated by quantum mechanical

indistinguishability: for fermions

(bosons) the wave function has to be

anti-symmetric (symmetric) under

particle exchange.2 More gener-

ally, an appropriately symmetrized

N -particle wavefunction can be

expressed in the form

|λ1, λ2, . . . , λN 〉 ≡ 1√
N !

∏∞
λ=0(nλ!)

∑
P

ζ(1−sgnP)/2|λP1〉 ⊗ |λP2〉 ⊗ · · · ⊗ |λPN 〉, (2.1)

2 Notice, however, that in two-dimensional systems the standard doctrine of fully symmetric/anti-symmetric many
particle wave functions is too narrow and more general types of exchange statistics can be realized, cf. our
discussion on page 41.
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where nλ represents the total number of particles in state λ (for fermions, Pauli exclusion

enforces the constraint nλ ≤ 1) – see the schematic figure above. The summation runs over

all N ! permutations of the set of quantum numbers {λ1, . . . , λN}, and sgnP denotes the

sign of the permutation P. (sgnP = 1 [−1] if the number of transpositions of two elements

which brings the permutation (P1,P2, . . . ,PN ) back to its original form (1, 2, . . . , N) is

even [odd].) The prefactor 1/
√
N !

∏
λ(nλ!) normalizes the many-body wavefunction. In

the fermionic case, wave functions corresponding to the states above are known as Slater

determinants.

David Hilbert 1862–1943
He contributed to many branches
of mathematics, including invari-
ants, algebraic number fields,
functional analysis, integral equa-
tions, mathematical physics, and
the calculus of variations. His
work in geometry had the greatest influence in that
area after Euclid. A systematic study of the axioms
of Euclidean geometry led Hilbert to propose twenty
one such axioms and he analyzed their significance.

Finally, notice that it will be use-

ful to assume that the quantum

numbers {λi} defining the state

|λ1, λ2, . . . , λN 〉 are ordered accord-

ing to some convention. (For exam-

ple, for λi = xi a one-dimensional

coordinate representation, we might

order according to the rule x1 ≤
x2 ≤ · · · ≤ xN .) Once an ordered

sequence of states has been fixed we

may – for notational convenience –

label our quantum states by integers, λi = 1, 2, . . .. Any initially non-ordered state (e.g.

|2, 1, 3〉) can be brought into an ordered form (|1, 2, 3〉) at the cost of, at most, a change of

sign.

INFO For the sake of completeness, let us spell out the connection between the permutation

group and many-body quantum mechanics in a more mathematical language. The basic

arena wherein N -body quantum mechanics takes place is the product space,

HN ≡ H⊗ · · · ⊗ H︸ ︷︷ ︸
N copies

,

of N single-particle Hilbert spaces. In this space, we have a linear representation of the permu-

tation group, SN ,3 assigning to each P ∈ SN the permutation (no ordering of the λs implied at

this stage),

P : HN → HN , |λ1〉 ⊗ · · · ⊗ |λN 〉 �→ |λP1〉 ⊗ · · · ⊗ |λPN 〉.

3 Recall that a linear representation of a group G is a mapping that assigns to each g ∈ G a linear mapping
ρg : V → V of some vector space V . For notational convenience one usually writes g : V → V instead of
ρg : V → V . Conceptually, however, it is often important to carefully discriminate between the abstract group
elements g and the matrices (also g) assigned to them by a given representation. (Consider, for example the
symmetry group G = SU(2) of quantum mechanical spin. SU(2) is the two-dimensional group of unitary matrices
with determinant one. However, when acting in the Hilbert space of a quantum spin S = 5, say, elements of
SU(2) are represented by (2S + 1 = 11)-dimensional matrices.) Two representations ρ and ρ′ that differ only by

a unitary transformation, ∀g ∈ G : ρg = Uρ′
gU

−1, are called unitary equivalent. If a transformation U can be
found such that all representation matrices ρg assume a block structure, the representation is called reducible,
and otherwise irreducible. Notice that the different sub-blocks of a reducible representation by themselves form
irreducible representation spaces. The identification of all distinct irreducible representations of a given group
is one of the most important objectives of group theory.
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The identification of all irreducible subspaces of this representation is a formidable task that,

thanks to a fundamental axiom of quantum mechanics, we need not address in full. All we need

to know is that SN has two particularly simple one-dimensional irreducible representations: one

wherein each P ∈ SN acts as the identity transform P(Ψ) ≡ Ψ and, another, the alternat-

ing representation P(Ψ) = sgnP · Ψ. According to a basic postulate of quantum mechanics,

the state vectors Ψ ∈ HN describing bosons/fermions must transform according to the iden-

tity/alternating representation. The subset FN ⊂ HN of all states showing this transformation

behavior defines the physical N -body Hilbert space. To construct a basis of FN , one may apply

the symmetrization operator P s ≡
∑

P P (anti-symmetrization operator P a ≡
∑

P(sgnP)P) to

the basis vectors |λ1〉 ⊗ · · · ⊗ |λN 〉 of HN . Up to normalization, this operation obtains the states

(2.1).

Some readers may wonder why we mention these representation-theoretic aspects. Being prag-

matic, all we really need to know is the symmetrization/anti-symmetrization postulate, and its

implementation through Eq. (2.1). Notice, however, that one may justly question what we actu-

ally mean when we talk about the permutation exchange of quantum numbers. For example,

when we compare wavefunctions that differ by an exchange of coordinates, we should, at least

in principle, be able to tell by what physical operation we effect this exchange (for, otherwise,

we cannot really compare them other than in a formal and, in fact, in an ambiguous sense).

Oddly enough, decades passed before this crucial issue in quantum mechanics was critically

addressed. In a now seminal work by Leinaas and Myrheim4 it was shown that the standard

paradigm of permutation exchange is far from innocent. In particular, it turned out that its appli-

cability is tied to the dimensionality of space! Specifically, in two-dimensional spaces (in a sense,

also in d = 1) a more elaborate scheme is needed. (Still one may use representation-theoretic

concepts to describe particle exchange. However, the relevant group – the braid group – now

differs from the permutation group.) Physically, these phenomena manifest themselves in the

emergence of quantum particles different from both bosons and fermions. For a further discussion

of these “anyons” we refer to Chapter 9.

While representations like Eq. (2.1) can be used to represent the full Hilbert space of many-

body quantum mechanics, a moment’s thought shows that this formulation is not at all

convenient:

� It takes little imagination to anticipate that practical computation in the language of

Eq. (2.1) will be cumbersome. For example, to compute the overlap of two wavefunctions

one needs to form no less than (N !)2 different products.

� The representation is tailor-made for problems with fixed particle number N . However,

we know from statistical mechanics that for N = O(1023) it is much more convenient to

work in a grand canonical formulation where N is allowed to fluctuate.

� Closely related to the above, in applications one will often ask questions such as, “What is

the amplitude for injection of a particle into the system at a certain space-time coordinate

(x1, t1) followed by annihilation at some later time (x2, t2)?” Ideally, one would work

with a representation that supports the intuition afforded by thinking in terms of such

4 J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37 (1977), 1–23.
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processes: i.e. a representation where the quantum numbers of individual quasi-particles

rather than the entangled set of quantum numbers of all constituents are fundamental.

The “second quantized” formulation of many-body quantum mechanics, as introduced in

the next subsection, will remove all these difficulties in an elegant and efficient manner.

The apparatus of second quantization

Occupation number representation and Fock space

Some of the disadvantages of the representation (2.1) can be avoided with relatively little

effort. In our present notation, quantum states are represented by “N -letter words” of the

form |1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, . . .〉. Obviously, this notation contains a lot of redundancy.

A more efficient encoding of the state above might read |4, 2, 3, 1, 0, 2, . . .〉, where the ith

number signals how many particles occupy state number i; no more information is needed

to characterize a symmetrized state. (For fermions, these occupation numbers take a value

of either zero or one.) This defines the “occupation number representation.” In the

new representation, the basis states of FN are specified by |n1, n2, . . .〉, where
∑

i ni = N .

Any state |Ψ〉 in FN can be obtained by a linear superposition

|Ψ〉 =
∑

n1,n2,...,∑
ni=N

cn1,n2,...|n1, n2, . . .〉.

As pointed out above, eventually we will want to emancipate ourselves from the condition

of a fixed particle number N . A Hilbert space large enough to accommodate a state with

an undetermined number of particles is given by

F ≡
∞(

N=0

FN . (2.2)

Vladimir Aleksandrovich Fock
1898–1974
One of the main participants in
the history of the general theory
of relativity in Russia. His ground-
breaking contributions to many-
body theory include the introduc-
tion of Fock space and the development of per-
haps the most important many-particle approxima-
tion scheme, the Hartree-Fock approximation (see
Chapter 5).

Notice that the direct sum con-

tains a curious contribution F0,

the “vacuum space.” This is a one-

dimensional Hilbert space which

describes the sector of the theory

with no particles present. Its single

normalized basis state, the vacuum

state, is denoted by |0〉. We will

soon see why it is convenient to add

this strange animal to our family of

basis states. The space F is called

Fock space and it defines the principal arena of quantum many-body theory.

To obtain a basis of F , we need only take the totality of our previous basis states

{|n1, n2, . . .〉}, and drop the condition
∑

i ni = N on the occupation numbers. A gen-

eral many-body state |Ψ〉 can then be represented by a linear superposition |Ψ〉 =
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n1,n2,...

cn1,n2,...|n1, n2, . . .〉. Notice that states of different particle numbers may con-

tribute to the linear superposition forming |Ψ〉. We shall see that such mixtures play an

important role, for example in the theory of superconductivity.

Foundations of second quantization

The occupation number representation introduced above provides a step in the right direc-

tion, but it does not yet solve our main problem, the need for explicit symmetrization/anti-

symmetrization of a large number of states in each quantum operation.

As a first step towards the construction of a more powerful representation, let us recall

an elementary fact of linear algebra: a linear map A : V → V of a vector space into itself is

fully determined by defining the images wi ≡ Avi of the action of A on a basis {vi}. Now
let us use this scheme to introduce a set of linear operators acting in Fock space. For every

i = 1, 2, . . ., we define operators a†i : F → F through

a†i |n1, . . . , ni, . . .〉 ≡ (ni + 1)1/2ζsi |n1, . . . , ni + 1, . . .〉, (2.3)

where si =
∑i−1

j=1 nj . In the fermionic case, the occupation numbers ni have to be understood

mod 2. Specifically, (1 + 1) = 0 mod 2, i.e. the application of a†i to a state with ni = 1

annihilates this state.

Notice that by virtue of this definition we are able to generate every basis state of F by

repeated application of a†i s to the vacuum state. (From a formal point of view, this fact

alone is motivation enough to add the vacuum space to the definition of Fock space.) Indeed,

repeated application of Eq. (2.3) leads to the important relation

|n1, n2, . . .〉 =
∏
i

1

(ni!)1/2
(a†i )

ni |0〉. (2.4)

Notice that Eq. (2.4) presents a strong statement: the complicated permutation “entangle-

ment” implied in the definition (2.1) of the Fock states can be generated by straightforward

application of a set of linear operators to a single reference state. Physically, N -fold applica-

tion of operators a† to the empty vacuum state generates an N -particle state, which is why

the a†s are commonly called creation operators. Of course, the introduction of creation

operators might still turn out to be useless, i.e. consistency with the properties of the Fock

states (such as the fact that, in the fermionic case, the numbers ni = 0, 1 are defined only

mod 2), might invalidate the simple relation (2.3) with its (ni-independent!) operator a†i .
However, as we shall demonstrate below, this is not the case.

Consider two operators a†i and a†j for i �= j. From the definition (2.3), one may readily

verify that (a†ia
†
j−ζa†ja

†
i )|n1, n2, . . .〉 = 0. Holding for every basis vector, this relation implies

that [a†i , a
†
j ]ζ = 0, where

[Â, B̂]ζ ≡ ÂB̂ − ζB̂Â,

i.e. [ , ]ζ=1 ≡ [ , ] is the commutator and [ , ]ζ=−1 ≡ { , } ≡ [ , ]+ the anti-commutator.

Turning to the case i = j, we note that, for fermions, the two-fold application of a†i to any

state leads to its annihilation. Thus, a†2i = 0 is nilpotent, a fact that can be formulated as
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a+a+
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...
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F 2 F 1 F 0

Figure 2.1 Visualization of the generation of the Fock subspaces FN by repeated action of creation
operators on the vacuum space F0.

[a†i , a
†
i ]+ = 0. For bosons we have, of course, [a†i , a

†
i ] = 0 (identical operators commute!).

Summarizing, we have found that the creation operators obey the commutation relation

∀i, j :
[
a†i , a

†
j

]
ζ
= 0. (2.5)

Now, quantum mechanics is a unitary theory so, whenever one meets a new operator Â,

one should determine its Hermitian adjoint Â†. To understand the action of the Hermitian

adjoints
(
a†i

)†
= ai of the creation operators we may take the complex conjugates of all

basis matrix elements of Eq. (2.3):

〈n1, . . . , ni, . . . |a†i |n′
1, . . . , n

′
i, . . .〉 = (n′

i + 1)
1/2

ζs
′
iδn1,n′

1
. . . δni,n′

i+1 . . .

⇒ 〈n′
1, . . . , n

′
i, . . . |ai|n1, . . . , ni, . . .〉∗ = n

1/2
i ζsiδn′

1,n1
. . . δn′

i,ni−1 . . .

Holding for every bra 〈n′
1, . . . , n

′
i, . . . | , the last line tells us that

ai|n1, . . . , ni, . . .〉 = n
1/2
i ζsi |n1, . . . , ni − 1, . . .〉, (2.6)

a relation that identifies ai as an operator that “annihilates” particles. The action of creation

and annihilation operators in Fock space is illustrated in Fig. 2.1. Creation operators

a† : FN → FN+1 increase the particle number by one, while annihilation operators a :

FN → FN−1 lower it by one; the application of an annihilation operator to the vacuum

state, ai|0〉 = 0, annihilates it. (Do not confuse the vector |0〉 with the number zero.)

Taking the Hermitian adjoint of Eq. (2.5) we obtain [ai, aj ]ζ = 0. Further, a straight-

forward calculation based on the definitions (2.3) and (2.6) shows that [ai, a
†
j ]ζ = δij .

Altogether, we have shown that the creation and annihilation operators satisfy the algebraic

closure relation

[ai, a
†
j ]ζ = δij , [ai, aj ]ζ = 0, [a†i , a

†
j ]ζ = 0. (2.7)

Given that the full complexity of Fock space is generated by application of a†i s to a single

reference state, the simplicity of the relations obeyed by these operators seems remarkable

and surprising.

INFO Perhaps less surprising is that, behind this phenomenon, there lingers some mathematical

structure. Suppose we are given an abstract algebra A of objects ai, a
†
i satisfying the relation

(2.7). (Recall that an algebra is a vector space whose elements can be multiplied by each other.)

Further suppose that A is irreducibly represented in some vector space V , i.e. that there is a

mapping assigning to each ai ∈ A a linear mapping ai : V → V , such that every vector |v〉 ∈ V

can be reached from any other |w〉 ∈ V by (possibly iterated) application of operators ai and a†
i
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(irreducibility).5 According to the Stone–von Neumann theorem (a) such a representation

is unique (up to unitary equivalence), and (b) there is a unique state |0〉 ∈ V that is anni-

hilated by every ai. All other states can then be reached by repeated application of a†
i s. The

precise formulation of this theorem, and its proof – a good practical exercise in working with

creation/annihilation operators – are left as Problem 2.4. From the Stone–von Neumann theo-

rem, we can infer that the Fock space basis could have been constructed in reverse. Not knowing

the basis {|n1, n2, . . .〉}, we could have started from a set of operators obeying the commutation

relations (2.7) acting in some a priori unknown space F . Outgoing from the unique state |0〉,
the prescription (2.4) would then have yielded an equally unique basis of the entire space F (up

to unitary transformations). In other words, the algebra (2.7) fully characterizes the operator

action and provides information equivalent to the definitions (2.3) and (2.6).

Practical aspects

Our next task will be to promote the characterization of Fock space bases introduced above

to a full reformulation of many-body quantum mechanics. To this end, we need to find

out how changes from one single-particle basis {|λ〉} to another {|λ̃〉} affect the operator

algebra {aλ}. (In this section we shall no longer use integers to identify different elements

of a given single-particle basis. Rather, we use Greek labels λ, i.e. a†λ creates a particle in

state λ.) Equally important, we need to understand in what way generic operators acting

in many-particle Hilbert spaces can be represented in terms of creation and annihilation

operators.

� Change of basis: Using the resolution of identity id =
∑∞

λ=0 |λ〉〈λ|, the relations |λ̃〉 =∑
λ |λ〉〈λ|λ̃〉, |λ〉 ≡ a†λ|0〉, and |λ̃〉 ≡ a†

λ̃
|0〉 immediately give rise to the transformation law

a†
λ̃
=

∑
λ

〈λ|λ̃〉a†λ, aλ̃ =
∑
λ

〈λ̃|λ〉aλ. (2.8)

In many applications, we will be dealing with continuous sets of quantum numbers (such

as position coordinates). In these cases, the quantum numbers are commonly denoted

by a bracket notation aλ → a(x) =
∑

λ〈x|λ〉aλ and the summations appearing in the

transformation formula above translate to integrals: aλ =
∫
dx〈λ|x〉a(x).

EXERCISE The transformation from the coordinate to the Fourier momentum representation

in a finite one-dimensional system of length L would read

ak =

∫ L

0

dx 〈k|x〉a(x), a(x) =
∑
k

〈x|k〉ak, (2.9)

where 〈k|x〉 ≡ 〈x|k〉∗ = e−ikx/
√
L.

5 To appropriately characterize the representation, we need to be a bit more precise. Within A, ai and a†
i are

independent objects, i.e. in general there exists no notion of Hermitian adjointness in A. We require, though,

that the representation assigns to a†
i the Hermitian adjoint (in V ) of the image of ai. Also, we have to require

that [ai, a
†
j ] ∈ A be mapped onto [ai, a

†
j ] : V → V where, in the latter expression, the commutator involves the

ordinary product of matrices ai, a
†
j : V → V .
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� Representation of operators (one-body): Single-particle or one-body operators Ô1

acting in the N -particle Hilbert space FN generally take the form Ô1 =
∑N

n=1 ôn, where

ôn is an ordinary single-particle operator acting on the nth particle. A typical example

is the kinetic energy operator T̂ =
∑

n p̂
2
n/2m, where p̂n is the momentum operator

acting on the nth particle. Other examples include the one-particle potential operator

V̂ =
∑

n V (x̂n), where V (x) is a scalar potential, the total spin operator
∑

n Ŝn, etc. Since

we have seen that, by applying field operators to the vacuum space, we can generate the

Fock space in general and any N -particle Hilbert space in particular, it must be possible

to represent any operator Ô1 in an a-representation.

Now, although the representation of n-body operators is, after all, quite straightforward,

the construction can, at first sight, seem daunting. A convenient way of finding such

a representation is to express the operator in terms of a basis in which it is diagonal,

and only later transform to an arbitrary basis. For this purpose it is useful to define the

occupation number operator

n̂λ = a†λaλ , (2.10)

with the property that, for bosons or fermions (exercise), n̂λ

(
a†λ

)n|0〉 = n
(
a†λ

)n|0〉.
Since n̂λ commutes with all a†λ′ �=λ, Eq. (2.4) readily implies that n̂λj |nλ1 , nλ2 , . . .〉 =

nλj |nλ1 , nλ2 , . . .〉, i.e., n̂λ simply counts the number of particles in state λ (hence the name

“occupation number operator”). Let us now consider a one-body operator, Ô1, which is

diagonal in the basis |λ〉, with ô =
∑

i oλi |λi〉〈λi|, oλi = 〈λi|ô|λi〉. With this definition,

one finds that

〈n′
λ1
, n′

λ2
, . . . |Ô1|nλ1 , nλ2 , . . .〉 =

∑
i

oλinλi〈n′
λ1
, n′

λ2
, . . . |nλ1 , nλ2 , . . .〉

= 〈n′
λ1
, n′

λ2
, . . . |

∑
i

oλi n̂λi |nλ1 , nλ2 , . . .〉.

Since this equality holds for any set of states, one can infer the second quantized repre-

sentation of the operator Ô1,

Ô1 =
∞∑
λ=0

oλn̂λ =
∞∑
λ=0

〈λ|ô|λ〉a†λaλ.

The result is straightforward: a one-body operator engages a single particle at a time – the

others are just spectators. In the diagonal representation, one simply counts the number

of particles in a state λ and multiplies by the corresponding eigenvalue of the one-body

operator. Finally, by transforming from the diagonal representation to a general basis,

one obtains the general result,

Ô1 =
∑
μν

〈μ|ô|ν〉a†μaν . (2.11)
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To cement these ideas, let us consider some specific examples: representing the matrix

elements of the single-particle spin operator as (Si)αα′ = 1
2 (σi)αα′ , where α, α′ is a two-

component spin index and σi are the Pauli spin matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.12)

Wolfgang Ernst Pauli 1900–58
Nobel Laureate in Physics in 1945
“for the discovery of the Exclusion
Principle, also called the Pauli
Principle.” The exclusion princi-
ple crystallized the existing knowl-
edge of atomic structure at the
time it was postulated and it led
to the recognition of the two-valued variable required
to characterize the state of an electron. Pauli was
the first to recognize the existence of the neutrino.
(Image c© The Nobel Foundation.)

the spin operator of a many-body

system assumes the form

Ŝ =
∑
λ

a†λα′Sα′αaλα. (2.13)

(Here, λ denotes the set of additional

quantum numbers, e.g. a lattice site

index.) When second quantized in

the position representation, one can

show that the one-body Hamilto-

nian for a free particle is given as a

sum of kinetic and potential energy as

Ĥ =

∫
ddr a†(r)

[
p̂2

2m
+ V (r)

]
a(r), (2.14)

where p̂ = −i�∂.

EXERCISE Starting with momentum representation (in which the kinetic energy is diagonal),

transform to the position representation and thereby establish Eq. (2.14).

The local density operator ρ̂(r), measuring the particle density at a certain coordinate

r, is simply given by

ρ̂(r) = a†(r)a(r). (2.15)

Finally, the total occupation number operator, obtained by integrating over the particle

density, is defined by N̂ =
∫
ddr a†(r)a(r). In a theory with discrete quantum numbers, this

operator assumes the form N̂ =
∑

λ a
†
λaλ.

� Representation of operators (two-body): Two-body operators Ô2 are needed to

describe pairwise interactions between particles. Although pair-interaction potentials are

straightforwardly included in classical many-body theories, their embedding into conven-

tional many-body quantum mechanics is made cumbersome by particle indistinguishabil-

ity. The formulation of interaction processes within the language of second quantization

is considerably more straightforward:

Initially, let us consider particles subject to the symmetric two-body potential

V (rm, rn) ≡ V (rn, rm) between two particles at position rm and rn. Our aim is to

find an operator V̂ in second quantized form whose action on a many-body state gives
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(presently, it is more convenient to use the original representation Eq. (2.1) rather than

the occupation number representation)

V̂ |r1, r2, . . . rN 〉 =
N∑

n<m

V (rn, rm)|r1, r2, . . . rN 〉 = 1

2

N∑
n�=m

V (rn, rm)|r1, r2, . . . rN 〉.

When this is compared with the one-point function, one might immediately guess that

V̂ =
1

2

∫
ddr

∫
ddr′a†(r)a†(r′)V (r, r′)a(r′)a(r).

That this is the correct answer can be confirmed by applying the operator to a many-body

state:

a†(r)a†(r′)a(r′)a(r)|r1, r2, . . . , rN 〉 = a†(r)a†(r′)a(r′)a(r)a†(r1) · · · a†(rN )|0〉

=

N∑
n=1

ζn−1δ(r− rn)a
†(rn)

ρ̂(r′)︷ ︸︸ ︷
a†(r′)a(r′) a†(r1) · · · a†(rn−1)a

†(rn+1) · · · a†(rN )|0〉

=
N∑

n=1

ζn−1δ(r− rn)
N∑

m(�=n)

δ(r′ − rm)a†(rn)a†(r1) · · · a†(rn−1)a
†(rn+1) · · · a†(rN )|0〉

=
N∑

n,m �=n

δ(r− rn)δ(r
′ − rm)|r1, r2, · · · rN 〉.

Multiplying by V (r, r′)/2, and integrating over r and r′, one confirms the valid-

ity of the expression. It is left as an exercise to confirm that the naive expression
1
2

∫
ddr

∫
ddr′V (r, r′)ρ̂(r)ρ̂(r′) does not reproduce the two-body operator. More generally,

turning to a non-diagonal basis, it is straightforward to confirm that a general two-body

operator can be expressed in the form

Ô2 =
∑

λλ′μμ′
Oμ,μ′,λ,λ′a†μa

†
μ′aλaλ′ , (2.16)

where Oμ,μ′,λ,λ′ ≡ 〈μ, μ′|Ô2|λ, λ′〉.
As well as the pairwise Coulomb interaction formulated above, another important

interaction, frequently encountered in problems of quantum magnetism, is the spin–spin

interaction. From our discussion of the second-quantized representation of spin Ŝ above,

we can infer that the general spin–spin interaction can be presented in second-quantized

form as

V̂ =
1

2

∫
ddr

∫
ddr′

∑
αα′ββ′

J(r, r′)Sαβ · Sα′β′a†α(r)a
†
α′(r

′)aβ′(r′)aβ(r),

where J(r, r′) denotes the exchange interaction.
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In principle, one may proceed in the same manner and represent general n-body interactions

in terms of second-quantized operators. However, as n > 2 interactions appear infrequently,

we refer to the literature for discussion.

This completes our formal introduction to the method of second quantization. To develop

fluency in the operation of the method, we will continue by addressing a number of problems

chosen from the realm of condensed matter. In doing so, we will see that second quantization

often leads to considerable simplification of the analysis of many-particle systems. The effec-

tive model Hamiltonians that appear below provide the input for subsequent applications

considered in this text. Readers not wishing to get distracted from our main focus – the

development of modern methods of quantum field theory in the condensed matter setting

– may safely skip the next sections and turn directly to Chapter 3 below. It is worthwhile

keeping in mind, however, that the physical motivation for the study of various prototypical

model systems considered later in the text is given in Section 2.2.

2.2 Applications of second quantization

Starting from the prototype Hamiltonian (1.1) introduced in Chapter 1, we have already

explored generic aspects of lattice dynamics in condensed matter systems. In much of the

remaining text we will explore examples from the complementary sector focusing on the

electronic degrees of freedom. Drawing on the first of the principles discussed in Chapter 1,

we will begin our discussion by reducing the full Hamiltonian to a form that contains the

essential elements of the electron dynamics. As well as the pure electron sub-Hamiltonian

He, the reduced Hamiltonian will involve the interaction between the electrons and the

positively charged ionic background lattice. However, typically, lattice distortions due to

both the motion of the ions and the ion–ion interaction couple only indirectly. (Exercise:

Try to think of a prominent example where the electron sector is crucially influenced by

the dynamics of the host lattice.) To a first approximation, we may, therefore, describe the

electron system through the simplified Hamiltonian, Ĥ = Ĥ0 + V̂ee, where

Ĥ0 =

∫
ddr a†σ(r)

[
p̂2

2m
+ V (r)

]
aσ(r)

V̂ee =
1

2

∫
ddr

∫
ddr′ Vee(r− r′)a†σ(r)a

†
σ′(r

′)aσ′(r′)aσ(r),

⎫⎪⎪⎬⎪⎪⎭ (2.17)

V (r) =
∑

I Vei(RI − r) denotes the lattice potential experienced by the electrons, and

the coordinates of the lattice ions RI are assumed fixed. For completeness, we have also

endowed the electrons with a spin index, σ =↑ / ↓. The Hamiltonian defines the problem of

the interacting electron gas embedded in a solid state system.

Despite its seemingly innocuous structure, the interacting electron Hamiltonian (2.17)

accommodates a wide variety of electron phases from metals and magnets to insulators. To

classify the phase behavior of the model, it is helpful to divide our considerations, focusing

first on the properties of the non-interacting single-particle system Ĥ0 and then, later,

restoring the electron interaction Vee.
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Electrons in a periodic potential

Felix Bloch 1905–83
Nobel Laureate in Physics in
1952 “for the development [with
Edward M. Purcell] of new meth-
ods for nuclear magnetic precision
measurements and discoveries in
connection therewith.” (Image c©
The Nobel Foundation.)

As we know from Bloch’s theorem,

eigenstates of a periodic Hamilto-

nian can be presented in the form of

Bloch waves6 ψkn(r) = eik·rukn(r),

where the components of the crystal

momentum k take values inside the

Brillouin zone, ki ∈ [−π/a, π/a], and

we have assumed that the periodicity

of the lattice potential is the same in all directions, i.e. V (r + aei) = V (r). The index n

labels the separate energy bands of the solid, and the functions ukn(r + aei) = ukn(r)

are periodic on the lattice. Now, depending on the nature of the bonding, there are two

complementary classes of materials where the general structure of the Bloch functions can

be simplified significantly.

Nearly free electron systems

For certain materials, notably the elemental metals drawn from groups I–IV of the periodic

table, the outermost itinerant conduction electrons behave as if they were “nearly free,” i.e.

their dynamic is largely oblivious to both the Coulomb potential created by the positively

charged ion background and their mutual interaction.

INFO Loosely speaking, Pauli exclusion of the bound state inner core electrons prevents the

conduction electrons from exploring the region close to the ion core, thereby effectively screening

the nuclear charge. In practice, the conduction electrons experience a renormalized pseudopo-

tential, which accommodates the effect of the lattice ions and core electrons. Moreover, the high

mobility of the conduction electrons provides an efficient method of screening their own mutual

Coulomb interaction. In nearly free electron compounds, complete neglect of the lattice potential

is usually a good approximation (as long as one considers crystal momenta remote from the

boundaries of the Brillouin zone, ki = ±π/a).

In practice, this means that we are at liberty to set the Bloch function to unity, ukn = 1,

and regard the eigenstates of the non-interacting Hamiltonian as plane waves. This in turn

motivates the representation of the field operators in momentum space Eq. (2.9), whereupon

the non-interacting part of the Hamiltonian assumes the free particle form (once again, we

have set � = 1)

Ĥ0 =
∑
k

k2

2m
a†kσakσ, (2.18)

6 For a more detailed discussion one may refer to one of the many texts on the basic elements of solid state physics,
e.g., Ashcroft and Mermin, Solid State Physics (Holt-Saunders International, 1995).
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where the sum extends over all wavevectors k and, as usual, summation convention of the

spin indices is assumed. Turning to the Coulomb potential between conduction electrons,

in the Fourier representation, the two-body interaction takes the form

V̂ee =
1

2Ld

∑
k,k′,q

Vee(q)a
†
k−qσa

†
k′+qσ′ak′σ′akσ, (2.19)

where (choosing units such that 4πε = 1), Vee(q) = e2/q2 represents the Fourier transform of

the Coulomb interaction potential Vee(r) = e2/|r|. Now, as written, this expression neglects

the fact that, in ionized solids, the negative charge density of the electron cloud will be

compensated by the charge density of the positively ionized background. The latter can

be incorporated into Eq. (2.19) by placing on the sum over q the restriction that q �= 0

(exercise). Taken together, the free electron Hamiltonian Ĥ0 and the Coulomb interaction

potential V̂ee are known as the Jellium model.

The interaction described by Eq. (2.19) can be

illustrated graphically, as shown in the figure (for

a more elaborate discussion of such diagrams,

see Chapter 5): an electron of momentum k is

scattered into a new momentum state k−q while

another electron is scattered from k′ → k′ + q.

Niels Henrik David Bohr 1885–
1962
Recipient of the 1922 Nobel Prize
in Physics “for his services in the
investigation of the structure of
atoms and of the radiation ema-
nating from them.” (Image c©
The Nobel Foundation.)

In concrete applications of low-

temperature condensed matter

physics, one will typically consider

low excitation energies. The solution

of such problems is naturally orga-

nized around the zero-temperature

ground state as a reference platform.

However, the accurate calculation of

the ground state energy of the system is a complicated problem of many-body physics that

cannot be solved in closed form. Therefore, assuming that interactions will not substantially

alter the ground state of the free particle problem Eq. (2.18) – which is often not the case! –

one usually uses the ground state of the latter as a reference state.

INFO Deferring a more qualified discussion to later, a preliminary justification for this assump-

tion can be given as follows. Suppose that the density of the electron gas is such that each of

its N constituent particles occupies an average volume of O(ad). The average kinetic energy

per particle is then estimated to be T ∼ 1/ma2, while the Coulomb interaction potential will

scale as V ∼ e2/a. Thus, for a much smaller than the Bohr radius a0 = 1/e2m, the interac-

tion contribution is much smaller than the average kinetic energy. In other words, for the dense

electron gas, the interaction energy can indeed be treated as a perturbation. Unfortunately, for

most metals one finds that a ∼ a0 and neither high- nor low- density approximations are strictly

justified.
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The ground state of the system occupied by N

non-interacting particles can be readily inferred

from Eq. (2.18). The Pauli principle implies that all

energy states εk = k2/2m will be uniformly occu-

pied up to a cutoff Fermi energy, EF. Specifically,

for a system of size L, allowed momentum states k

have components ki = 2πni/L, ni ∈ Z. The summa-

tion extends up to momenta with |k| ≤ kF, where

the Fermi momentum kF is defined through the

relation k2F/2m = EF (see figure at right). The

relation between the Fermi momentum and the

occupation number can be established by dividing

the volume of the Fermi sphere ∼ kdF by the momentum space volume per mode (2π/L)d,

viz. N = C(kFL)
d where C denotes a dimensionless geometry-dependent constant.

In the language of second quantization, the ground state can now be represented as

|Ω〉 ≡ N
∏

|k|≤kF,σ

a†kσ|0〉 , (2.20)

where |0〉 denotes the state with zero electrons present. When the interaction is weak,

one may anticipate that low-temperature properties will be governed by energetically low-

lying excitations superimposed upon the state |Ω〉. Therefore, remembering the philosophy

whereby excitations rather than microscopic constituents play a prime role, one would like

to declare the filled Fermi sea, |Ω〉 (rather than the empty state |0〉), to be the “physical vac-

uum” of the theory. To make this compatible with the language of second quantization, we

need to identify a new operator algebra ckσ, c
†
kσ such that the new operators ckσ annihilate

the Fermi sea. This can be easily engineered by defining

c†kσ =

)
a†kσ, k > kF,

akσ, k ≤ kF,

*
ckσ =

)
akσ, k > kF,

a†kσ, k ≤ kF.

*
(2.21)

It is then a straightforward matter to verify that ckσ|Ω〉 = 0, and that the canonical com-

mutation relations are preserved.

The Hamiltonian defined through Eq. (2.18) and (2.19), represented in terms of the

operator algebra (2.21) and the vacuum (2.20), forms the basis of the theory of interactions

in highly mobile electron compounds. The investigation of the role of Coulomb interactions

in such systems will provide a useful arena to apply the methods of quantum field theory

formulated in subsequent chapters. Following our classification of electron systems, let us

now turn our attention to a complementary class of materials where the lattice potential

presents a strong perturbation on the conduction electrons. In such situations, realized,

for example, in transition metal oxides, a description based on “almost localized” electron

states will be used to represent the Hamiltonian (2.17).
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Tight–binding systems

Let us consider a “rarefied” lattice in which the constituent ion cores are separated by a

distance in excess of the typical Bohr radius of the valence band electrons. In this “atomic

limit” the weight of the electron wavefunctions is “tightly bound” to the lattice centers.

Here, to formulate a microscopic theory of interactions, it is convenient to expand the

Hamiltonian in a local basis that reflects the atomic orbital states of the isolated ion. Such

a representation is presented by the basis of Wannier states defined by

|ψRn〉 ≡
1√
N

B.Z.∑
k

e−ik·R|ψkn〉, |ψkn〉 =
1√
N

∑
R

eik·R|ψRn〉, (2.22)

where R denote the coordinates of the lattice centers, and
∑B.Z.

k represents a summation

over all momenta k in the first Brillouin zone. For a system with a vanishingly weak inter-

atomic overlap, i.e. a lattice where V approaches a superposition of independent atomic

potentials, the Wannier function ψRn(r) ≡ 〈r|ψRn〉 converges on the nth orbital of an iso-

lated atom centered at coordinate R. However, when the interatomic coupling is non-zero,

i.e. in a “real” solid, the N formerly degenerate states labeled by n split to form an energy

band (see figure below). Here, the Wannier functions (which, note, are not eigenfunctions

of the Hamiltonian) differ from those of the atomic orbitals through residual oscillations in

the region of overlap to ensure orthogonality of the basis. Significantly, in cases where the

Fermi energy lies between two energetically separated bands, the system presents insulat-

ing behavior. Conversely, when the Fermi energy is located within a band, one may expect

metallic behavior. Ignoring the complications that arise when bands begin to overlap, we

will henceforth focus on metallic systems where the Fermi energy is located within a definite

band n0.

E

V –Vatomatomic limit

n = 2

n = 1
EF

insulator metal

How can the Wannier basis be exploited

to obtain a simplified representation of the

general Hamiltonian (2.17)? The first thing

to notice is that the Wannier states {|ψRn〉}
form an orthonormal basis of the single-

particle Hilbert space, i.e. the transformation

between the real space and the Wannier

representation is unitary, |r〉 =
∑

R |ψR〉〈ψR|r〉 =
∑

R ψ∗
R(r)|ψR〉. (Here, since we are

interested only in contributions arising from the particular “metallic” band n0 in which

the Fermi energy lies, we have dropped the remaining set of bands n �= n0 and, with them,

reference to the specific band index.) (Exercise: By focusing on just a single band n0, in

what sense is the Wannier basis now complete?) As such, it induces a transformation

a†σ(r) =
∑
R

ψ∗
R(r)a†Rσ ≡

∑
i

ψ∗
Ri

(r)a†iσ, (2.23)

between the real space and the Wannier space operator basis, respectively. In the second

representation, following a convention commonly used in the literature, we have labeled

the lattice center coordinates R ≡ Ri by a counting index i = 1, . . . , N . Similarly, the
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unitary transformation between Bloch and Wannier states Eq. (2.22) induces an operator

transformation

a†kσ =
1√
N

∑
i

eik·Ria†iσ, a†iσ =
1√
N

B.Z.∑
k

e−ik·Ria†kσ. (2.24)

We can now use the transformation formulae (2.23) and (2.24) to formulate a Wannier

representation of the Hamiltonian (2.17). Using the fact that the Bloch states diagonalize

the single-particle component Ĥ0, we obtain

Ĥ0 =
∑
k

εka
†
kσakσ

(2.24)
=

1

N

∑
ii′

∑
k

eik(Ri−Ri′ )εka
†
iσai′σ ≡

∑
ii′

a†iσ tii′ ai′σ,

where we have defined tii′ = N−1
∑

k e
ik·(Ri−Ri′ )εk. The new representation of Ĥ0 describes

electrons hopping from one lattice center i′ to another, i. The strength of the hopping matrix

element tii′ is controlled by the effective overlap of neighboring atoms. In the extreme atomic

limit, where the levels εk = const. are degenerate, tii′ ∝ δii′ and no inter-atomic transport is

possible. The tight-binding representation becomes useful when ti�=i′ is non-vanishing, but

the orbital overlap is so weak that only nearest neighbor hopping effectively contributes.

EXERCISE Taking a square lattice geometry, and setting tii′ = −t for i, i′ nearest neighbors

and zero otherwise, diagonalize the two-dimensional tight-binding Hamiltonian Ĥ0. Show that

the eigenvalues are given by εk = −2t(cos(kxa) + cos(kya)). Sketch contours of constant energy

in the Brillouin zone and note the geometry at half-filling.

To assess the potency of the tight-binding approximation, let us consider its application to

two prominent realizations of carbon-based lattice systems, graphene and carbon nanotubes.

INFO Graphene is a single layer of graphite: a planar hexagonal lattice of sp2-hybridized7

carbon atoms connected by strong covalent bonds of their three planar σ-orbitals. (See the

Fig. 2.2 and figure overleaf for a schematic.) The remaining pz orbitals – oriented vertically to

the lattice plane – overlap weakly to form a band of mobile electrons. For a long time, it was

thought that graphene sheets in isolation will inevitably be destabilized by thermal fluctuations;

only layered stacks of graphene would mutually stabilize to form a stable compound – graphite.

It thus came as a surprise when in 2004 a team of researchers8 succeeded in the isolation of

large (micron-sized) graphene flakes on an SiO2 substrate. (Meanwhile, the isolation of even free

standing graphene layers has become possible. In fact, our whole conception of the stability of

the compound has changed. It is now believed that whenever you draw a pencil line, a trail of

graphene flakes will be left behind.)

Immediately after its discovery, it became clear that graphene possesses unconventional con-

duction properties. Nominally a gapless semiconductor, it has an electron mobility ∼ 2 ×
105cm2/Vs, by far more than that of even the purest silicon based semiconductors; it shows man-

ifestations of the integer quantum Hall effect qualitatively different from those of conventional

two-dimensional electron compounds (cf. Chapter 9 for a general discussion of the quantum Hall

7 Although this will not be necessary to follow the text, readers may find it rewarding to recapitulate the quantum
chemistry of sp2-hybridized carbon and its covalent bonds.

8 K. S. Novoselov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004), 666–9.
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Figure 2.2 Left: optical microscopy image of graphene flakes. Regions labeled by ‘I’ define mono-
layer graphene sheets. Right: STM image of the graphene samples shown in the left part. Images
taken from E. Stolyarova et al., High-resolution scanning tunneling microscopy imaging of meso-
scopic graphene sheets on an insulating surface, PNAS 104 (2007), 9210–12.

effect), etc. Although an in-depth discussion of graphene is beyond the scope of this text, we note

that it owes most of its fascinating properties to its band structure: electrons in graphene show

a linear dispersion and behave like two-dimensional Dirac fermions! By way of an illustration of

the concepts discussed above, we here derive this unconventional band dispersion from a tight

binding formulation of the system.

a2 – a1

–a1 a1

a2

To a first approximation, graphene’s π-electron

system can be modeled as a tight-binding Hamil-

tonian characterized by a single hopping matrix

element between neighboring atoms −t, and the

energy offset ε of the p-electron states. To deter-

mine the spectrum of the system, one may intro-

duce a system of bi-atomic unit cells (see the

ovals in the schematic figure right) and two (non-

orthogonal) unit vectors of the hexagonal lattice

a1 = (
√
3, 1)a/2 and a2 = (

√
3,−1)a/2, where

a = |a1| = |a2| � 2.46 Å denotes the lattice con-

stant. The tight-binding Hamiltonian can then

be represented in the form Ĥ = −
∑

〈r,r′〉(ta
†
1(r)a2(r

′) + h.c.), where the sum runs over all

nearest neighbor basis vectors of the unit cells (the coordinate vectors of the bottom left

atom) and a†1(2)(r) creates a state in the first (second) atom of the cell at vector r. Switching

to a Fourier representation, the Hamiltonian assumes the form

Ĥ =
∑
kσ

(
a†1σ a†2σ

)(
0 −tf(k)

−tf∗(k) 0

)(
a1σ
a2σ

)
, (2.25)

where f(k) = 1 + e−ik1a + ei(−k1+k2)a.
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Figure 2.3 (a) Spectrum of the tight-binding Hamiltonian (2.24) showing the point-like structure
of the Fermi surface when EF = 0. (b) A contour plot of the same.

EXERCISE (Recall the concept of the reciprocal lattice in solid state theory.) To derive the

Fourier representation above, show that a system of two reciprocal lattice vectors conjugate to the

unit vectors above is given by G1/2 = 2π√
3a
(1,±

√
3). Next, show that the Fourier decomposition

of a field operator reads as aa(r) = 1√
N

∑
k e−i a

2π
(k1G1+k2G2)·raa,k, where ki ∈ [0, 2π/a] is

quantized in units 2π/Li. (Li is the extension of the system in the direction of ai and N its

total number of unit cells.) Substitute this decomposition into the real space representation of

the Hamiltonian to arrive at the Fourier representation.

Diagonalizing the Hamiltonian, one obtains the dispersion relation,9

εk = ±t|f(k)| = ±t
√
3 + 2 cos(k1a) + 2 cos((k1 − k2)a) + 2 cos(k2a). (2.26)

Here, in contrast to the square lattice tight-binding Hamiltonian, the half-filled system is

characterized by a point-like Fermi surface (see Figure 2.3). When lightly doped away from

half-filling, the spectrum divides into Dirac-like spectra with a linear dispersion. Fig. 2.3

shows the full spectrum of the tight binding Hamiltonian. Notice that of the six Dirac

points displayed in the figure only two are independent. The complementary four can be

reached from those two points by addition of a reciprocal lattice vector and, therefore, do

not represent independent states.

EXERCISE Derive an explicit representation of the Dirac-Hamiltonian describing the low-

energy physics of the system. To this end, choose two inequivalent (not connected by reciprocal

lattice vectors) zero-energy points k1,2 in the Brillouin zone. Expand the Hamiltonian (2.25)

around these two points in small momentum deviations q ≡ k − k1,2 up to linear order. Show

that in this approximation, Ĥ reduces to the sum of two two-dimensional Dirac Hamiltonians.

Now, against this background, let us consider the carbon nanotube system. A single-wall

nanotube describes a one-dimensional structure involving a graphene sheet rolled into a

cylinder (see Fig 2.4 for an STM image of a carbon nanotube). Tubes of comparatively

simple structure are obtained by rolling the hexagonal pattern of the sheet along one of its

two axes of symmetry: along the a1-direction one obtains a zig-zag tube and along the

9 P. R. Wallace, The band theory of graphite, Phys. Rev. 71 (1947), 622–34.
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Figure 2.4 STM image of a carbon nanotube contacted with Pt electrodes. (Source: Courtesy of
C. Dekker.)

(a1 + a2)-direction an armchair tube (Exercise: Where do you see an armchair?). More

complex, “chiral” structures involve twists along the circumference of the tube.

–6 –2 2 6

–2

–1

1

2

k a

ε

–4 4

By knowing the band structure of graphene,

the dispersion of the nanotube system can

be straightforwardly inferred. The situation is

most easily visualized for the achiral geome-

tries. Essentially a graphene sheet with peri-

odic boundary conditions and length L in

the direction transverse to the length of the

tube, the quasi-one-dimensional system has

a spectrum that obtains by projection of the

two-dimensional dispersion onto lines indexed by the discrete values k⊥ along the compact

axis. For example, the dispersion of lowest transverse harmonic, k⊥ = 0, of the armchair

tube is given by (see the figure)

εk‖ = ±t
√
3 + 4 cos(k‖a/2) + 2 cos(k‖a).

Notice the presence of two nodal points in the spectrum. Electrons with longitudinal momen-

tum close to one of these two “hot spots” propagate with approximately linear dispersion.

The physics of effectively one-dimensional electron systems of this type will be discussed in

Section 2.2 below.

EXERCISE Verify the one-dimensional dispersion relation εk‖ above. To this end, notice that

the single-electron wave functions of the system must obey periodic boundary conditions ψ(r+

N(a1+a2)) = ψ(r), where N is the number of cells in the transverse direction (i.e. L⊥ ≡ N |a1+

a2| = Na
√
3 is the circumference of the tube). Use this condition to obtain the quantization rule

k1 + k2 = 2π
√
3m/L⊥, where m is integer. When evaluated for the lowest harmonic, m = 0,

the dispersion relation (2.26) collapses to εk‖ (where k‖ = k1 − k2 is the momentum in the

longitudinal direction). Show that the zig-zag tube supports zero-energy excitations only for

specific values of the transverse lattice spacings N . In general, it is insulating with a band gap

of ca. 0.5 eV. In the case of the chiral tubes, it may be shown that a third of the tubes are

semi-metallic while all others are insulating.10

10 For futher details on the electronic structure of carbon nanotubes, we refer to the text Physical Properties of
Carbon Nanotubes by R. Saito, G. Dresselhaus, and M. S. Dresselhaus (Imperial College Press, 1998).
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Interaction effects in the tight-binding system

Although the pseudopotential of the nearly free electron system accommodates the effects

of Coulomb interaction between the conduction and valence band electrons, the mutual

Coulomb interaction between the conduction electrons themselves may lead to new physical

phenomena. These effects can substantially alter the material parameters (e.g. effective

masses), however, they neither change the nature of the ground state, nor that of the

elementary quasi-particle excitations in any fundamental way – this is the content of Fermi-

liquid theory, and a matter to which we will return. By contrast even weak interaction

effects significantly influence the physics of the tight-binding system. Here, commensurability

effects combined with interaction may drive the system towards a correlated magnetic state

or an insulating phase.

To understand why, let us re-express the interaction in field operators associated with

the Wannier states. Once again, to keep our discussion simple (yet generic in scope), let

us focus attention on a single sub-band and drop reference to the band index. Then,

applied to the Coulomb interaction, the transformation (2.23) leads to the expansion V̂ee =∑
ii′jj′ Uii′jj′a

†
iσa

†
i′σ′ajσaj′σ′ where

Uii′jj′ =
1

2

∫
ddr

∫
ddr′ ψ∗

Ri
(r)ψRj (r)V (r− r′)ψ∗

Ri′ (r
′)ψRj′ (r

′). (2.27)

Taken together, the combination of the contributions Ĥ0 and V̂ee,

Ĥ =
∑
ii′

a†iσtii′ai′σ +
∑
ii′jj′

Uii′jj′a
†
iσa

†
i′σ′aj′σ′ajσ, (2.28)

where the sum of repeated spin indices is implied, defines the tight-binding representa-

tion of the interaction Hamiltonian. Apart from the neglect of the neighboring sub-bands,

the Hamiltonian is exact. Yet, to assimilate the effects of the interaction, it is useful to

assess the relative importance of the different matrix elements drawing on the nature of the

atomic limit that justified the tight-binding description. We will thus focus on contributions

to Uii′jj′ where the indices are either equal or, at most, nearest neighbors. Focusing on the

most relevant of these matrix elements, a number of physically different contributions can

be identified:

� The direct terms Uii′ii′ ≡ Vii′ involve integrals over square moduli of Wannier func-

tions and couple density fluctuations at neighboring sites,
∑

i�=i′ Vii′ n̂in̂i′ , where n̂i =∑
σ a

†
iσaiσ. This contribution accounts for the – essentially classical – interaction between

charges localized at neighboring sites (see Fig. 2.5). In certain materials, interactions of

this type have the capacity to induce global instabilities in the charge distribution known

as charge density wave instabilities.

� A second important contribution derives from the exchange coupling, which induces

magnetic correlations among the electron spins. Setting JF
ij ≡ Uijji, and making use of
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(a) (b)

(d)(c)

Figure 2.5 Different types of interaction mechanism induced by the tight-binding interaction Vee.
The curves symbolically indicate wavefunction envelopes. (a) Direct Coulomb interaction between
neighboring sites. Taking account of the exchange interaction, parallel alignment of spins (b) is
preferred since it enforces anti-symmetry of the spatial wave function. By contrast, for anti-parallel
spin configurations (c) the wave function amplitude in the repulsion zone is enhanced. (d) Coulomb
interaction between electrons of opposite spin populating the same site.

Pauli matrix identities (see below), one obtains

∑
i�=j

Uijjia
†
iσa

†
jσ′aiσ′ajσ = −2

∑
i�=j

JF
ij

(
Ŝi · Ŝj +

1

4
n̂in̂j

)
.

Such contributions tend to induce weak ferromagnetic coupling of neighboring spins

(i.e. JF > 0). The fact that an effective magnetic coupling is born out of the electro-

static interaction between quantum particles is easily understood. Consider two electrons

inhabiting neighboring sites. The Coulomb repulsion between the particles is minimized

if the orbital two-particle wave function is anti-symmetric and, therefore, has low ampli-

tude in the interaction zone between the particles. Since the overall wavefunction must

be anti-symmetric, the energetically favored real-space configuration enforces a symmet-

ric alignment of the two spins. Such a mechanism is familiar from atomic physics where

it is manifested as Hund’s rule. In general, magnetic interactions in solids are usually

generated as an indirect manifestation of the much stronger Coulomb interaction.

EXERCISE Making use of the Pauli matrix identity σαβ · σγδ = 2δαδδβγ − δαβδγδ, show that

Ŝi · Ŝj = −a†
iαa

†
jβaiβajα/2 − n̂in̂j/4 where, as usual, Ŝi = a†

iασαβaiβ/2 denotes the operator

for spin 1/2, and the lattice sites i and j are assumed distinct.

� Finally, far into the atomic limit, where the atoms are very well separated, and the overlap

between neighboring orbitals is weak, the matrix elements tij and JF
ij are exponentially

small in the interatomic separation. In this limit, the “on-site” Coulomb or Hubbard

interaction, Uiiii ≡ U/2,
∑

iσσ′ Uiiiia
†
iσa

†
iσ′aiσ′aiσ =

∑
i Un̂i↑n̂i↓, generates the domi-

nant interaction mechanism. Taking only the nearest neighbor contribution to the hopping

matrix elements, and neglecting the energy offset due to the diagonal term, the effective
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Hamiltonian takes a simplified form known as the Hubbard model,

Ĥ = −t
∑
〈ij〉

a†iσajσ + U
∑
i

n̂i↑n̂i↓, (2.29)

where 〈ij〉 is a shorthand used to denote neighboring lattice sites. In hindsight, a model

of this structure could have been proposed from the outset on purely phenomenological

grounds: electrons tunnel between atomic orbitals localized on individual lattice sites

while double occupancy of a lattice site incurs an energetic penalty associated with the

mutual Coulomb interaction.

Mott–Hubbard transition and the magnetic state

Deceptive in its simplicity, the Hubbard model is acknowledged as a paradigm of strong

electron correlation in condensed matter. Yet, after 40 years of intense investigation, the

properties of this seemingly simple model system – the character of the ground state and

nature of the quasi-particle excitations – are still the subject of controversy (at least in

dimensions higher than one – see below). Nevertheless, given the importance attached to this

system, we will close this section with a brief discussion of the remarkable phenomenology

that is believed to characterize the Hubbard system.

As well as dimensionality, the phase behavior of the Hubbard Hamiltonian is character-

ized by three dimensionless parameters: the ratio of the Coulomb interaction scale to the

bandwidth U/t, the particle density or filling fraction n (i.e. the average number of electrons

per site), and the (dimensionless) temperature, T/t. The symmetry of the Hamiltonian

under particle–hole interchange (exercise) allows one to limit consideration to densities in

the range 0 ≤ n ≤ 1 while densities 1 < n ≤ 2 can be inferred by “reflection.”

Sir Neville Francis Mott 1905–
96
Nobel Laureate in Physics in
1977, with Philip W. Anderson
and John H. van Vleck, for their
“fundamental theoretical investi-
gations of the electronic structure
of magnetic and disordered sys-
tems.” Amongst his contributions to science, Mott
provided a theoretical basis to understand the transi-
tion of materials from metallic to nonmetallic states
(the Mott transition). (Image c© The Nobel Foun-
dation.)

Focusing first on the low tem-

perature system, in the dilute limit

n � 1, the typical electron wave-

length is greatly in excess of the

site separation and the dynamics

are free. Here the local interaction

presents only a weak perturbation

and one can expect the properties of

the Hubbard system to mirror those

of the weakly interacting nearly free

electron system. While the inter-

action remains weak one expects a

metallic behavior to persist.

By contrast, let us consider the half-filled system where the average site occupancy is

unity. Here, if the interaction is weak, U/t � 1, one may again expect properties reminiscent
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of the weakly interacting electron system.11 If, on the other hand, the interaction is very

strong, U/t � 1, site double occupancy is inhibited and electrons in the half-filled system

become “jammed”: migration of an electron to a neighboring lattice site necessitates site

double occupancy incurring an energy cost U . Here, in this strongly correlated state, the

mutual Coulomb interaction between the electrons drives the system from a metallic to an

insulating phase with properties very different from those of a conventional band insulator.

INFO Despite the ubiquity of the experimental phenomenon (first predicted in a celebrated

work by Mott) the nature of the Mott–Hubbard transition from the metallic to the insulat-

ing phase in the half-filled system has been the subject of considerable discussion and debate.

In the original formulation, following a suggestion of Peierls, Mott conceived of an insulator

characterized by two “Hubbard bands” with a bandwidth ∼ t separated by a charge gap U .12

States of the upper band engage site double occupancy while those states that make up the lower

band do not. The transition between the metallic and the insulating phase was predicted to

occur when the interaction was sufficiently strong that a charge gap develops between the bands.

Later, starting from the weakly interacting Fermi-liquid, Brinkman and Rice13 proposed that

the transition was associated with the localization of quasi-particles created by an interaction

driven renormalization of the effective mass. Finally, a third school considers the transition to

the Mott insulating phase as inexorably linked to the development of magnetic correlations in

the weak coupling system – the Slater instability.

In fact, the characterizations of the transition above are not mutually exclusive. Indeed, in the

experimental system, one finds that all three possibilities are, in a sense, realized. In particular,

a transition between the Mott insulating phase and an itinerant electron phase can be realized

in two ways. In the first case, one can reduce the interaction strength U/t while, in the second,

one can introduce charge carriers (or vacancies) into the half-filled system. Experimentally, the

characteristic strength of the interaction is usually tuned by changing the bandwidth t through

external pressure (see Fig. 2.6), while a system may be doped away from half-filling by chemical

substitution. Remarkably, by focusing on the scaling behavior close to the critical end-point,

researchers have been able to show that the Mott transition in this system belongs to the uni-

versality class of the three-dimensional Ising model (see the discussion of critical phenomena in

Chapter 8). Lowering the temperature, both the Mott insulating phase and the strongly corre-

lated metallic phase exhibit a transition to a magnetic phase where the local moments order

antiferromagnetically (for the explanation of this phenomenon, see below).

Experimentally, it is often found that the low-temperature phase of the Mott insulator is

accompanied by the anti-ferromagnetic ordering of the local moments. The origin of

these magnetic correlations can be traced to a mechanism known as superexchange and

can be understood straightforwardly within the framework of the Hubbard model system.

11 In fact, one has to exercise some caution since the commensurability of the Fermi wavelength with the lattice
can initiate a transition to an insulating spin density wave state characterized by a small quasi-particle energy
gap. In later chapters, we will discuss the nature of this Slater instability (J. C. Slater, Magnetic effects and
the Hartree–Fock equation, Phys. Rev. 82 (1951), 538–41) within the framework of the quantum field integral.

12 N. F. Mott, The basis of the electron theory of metals with special reference to the transition metals, Proc.
Roy. Soc. A 62 (1949), 416–22 – for a review see, e.g., N. F. Mott, Metal–insulator transition, Rev. Mod. Phys.
40 (1968), 677–83, or N. F. Mott, Metal–Insulator Transitions, 2nd ed. (Taylor and Francis, 1990).

13 W. Brinkman and T. M. Rice, Application of Gutzwiller’s variational method to the metal–insulator transition,
Phys. Rev. B 2 (1970), 4302–4.
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Figure 2.6 Conductivity of Cr-doped V2O3 as a function of decreasing pressure and temperature.
At temperatures below the Mott–Hubbard transition point (Pc = 3738 bar, Tc = 457.5K) the
conductivity reveals hysteretic behavior characteristic of a first-order transition. (Reprinted from
P. Limelette, A. Georges, D. Jérome, et al., Universality and critical behavior at the Mott transition,
Science 302 (2003), 89–92. Copyright 2003 AAAS.)

To this end, one may consider a simple “two-site” system from which the characteristics

of the infinite lattice system can be inferred. For the two-site system, at half-filling (i.e.

with just two electrons to share between the two sites), one can identify a total of six

basis states: two spin-polarized states a†1↑a
†
2↑|Ω〉, a

†
1↓a

†
2↓|Ω〉, and four states with Sz

total = 0:

|s1〉 = a†1↑a
†
2↓|Ω〉, |s2〉 = a†2↑a

†
1↓|Ω〉, |d1〉 = a†1↑a

†
1↓|Ω〉, and |d2〉 = a†2↑a

†
2↓|Ω〉. Recalling

the constraints imposed by the Pauli principle, it is evident that the fully spin polarized

states are eigenstates of the Hubbard Hamiltonian with zero energy, while the remaining

eigenstates involve superpositions of the basis states |si〉 and |di〉. In the strong coupling

limit U/t � 1, the ground state will be composed predominantly of states with no double

occupancy, |si〉. To determine the precise structure of the ground state, we could simply

diagonalize the 4 × 4 Hamiltonian exactly – a procedure evidently infeasible in the large

lattice system. Instead, to gain some intuition for the extended system, we will effect a

perturbation theory which projects the insulating system onto a low-energy effective spin

Hamiltonian. Specifically, we will treat the hopping part of the Hamiltonian Ĥt as a weak

perturbation of the Hubbard interaction ĤU .

To implement the perturbation theory, it is helpful to invoke a canonical transformation

of the Hamiltonian, namely

Ĥ �→ Ĥ ′ ≡ e−tÔĤetÔ = e−t[Ô, ]Ĥ ≡ Ĥ − t[Ô, Ĥ] +
t2

2!
[Ô, [Ô, Ĥ]] + · · · , (2.30)
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where the exponentiated commutator is defined by the series expansion on the right.

EXERCISE Prove the second equality. (Hint: Consider the derivative of Ĥ ′ with respect to t.)

By choosing the operator Ô such that Ĥt + t[ĤU , Ô] = 0, all terms at first order in t can

be eliminated from the transformed Hamiltonian. As a result, the effective Hamiltonian is

brought to the form

Ĥ ′ = ĤU +
t

2
[Ĥt, Ô] +O(t3). (2.31)

Applying the ansatz, tÔ = [P̂sĤtP̂d−P̂dĤtP̂s]/U , where P̂s and P̂d are operators that project

onto the singly and doubly occupied subspaces respectively, the first-order cancellation is

assured.

EXERCISE To verify this statement, take the matrix elements of the first-order equation with

the basis states. Alternatively, it can be confirmed by inspection, noting that P̂sP̂d = 0, ĤU P̂s =

0, and, in the present case, P̂sĤtP̂s = P̂dĤtP̂d = 0.

Substituting this result into Eq. (2.31) and projecting onto the singly occupied subspace

one obtains

P̂sĤ
′P̂s = − 1

U
P̂sĤtP̂dĤtP̂s = −2

t2

U
P̂s

(
1 + a†1σa

†
2σ′a1σ′a2σ

)
P̂s = J

(
Ŝ1 · Ŝ2 −

1

4

)
,

where J = 4t2/U denotes the strength of the anti-ferromagnetic exchange interaction

that couples the spins on neighboring sites.

EXERCISE Remembering the anti-commutation relations of the electron operators, find the

matrix elements of the Hubbard Hamiltonian on the four basis states |si〉 and |di〉. Diagonalizing

the 4×4 matrix Hamiltonian, obtain the eigenstates of the system. In the strong coupling system

U/t � 1, determine the spin and energy dependence of the ground state.

Philip W. Anderson 1923–
Nobel Laureate in Physics in
1977, with Sir Neville Mott and
John H. van Vleck, for their
“fundamental theoretical investi-
gations of the electronic structure
of magnetic and disordered sys-
tems.” Anderson made numerous contributions to
theoretical physics from theories of localization and
antiferromagnetism to superconductivity. (Image c©
The Nobel Foundation.)

The perturbation theory above shows

that electrons subject to a strong

local repulsive Coulomb interac-

tion have a tendency to adopt an

antiparallel or antiferromagnetic spin

configuration between neighboring

sites. This observation has a simple

physical interpretation. Anti-parallel

spins can take advantage of the

hybridization (however small) and

reduce their kinetic energy by hop-

ping to a neighboring site (see Fig. 2.7). Parallel spins on the other hand are restricted from

participating in this virtual process by the Pauli principle. This mechanism, which involves

a two-step process, was first formulated by Anderson14 and is known as superexchange.

14 P. W. Anderson, Antiferromagnetism. Theory of superexchange interaction, Phys. Rev. 79 (1950) 350–6.
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J JU–1

Figure 2.7 Top: hybridization of spin polarized states is forbidden by Pauli exclusion. Bottom:
superexchange mechanism by which two antiparallel spins can lower their energy by a virtual
process in which the upper Hubbard band is occupied.

The calculation presented above is easily generalized to an extended lattice system. Once

again, projecting onto a basis in which all sites are singly occupied, virtual exchange pro-

cesses favor an antiferromagnetic arrangement of neighboring spins. Such a correlated mag-

netic insulator is described by the quantum spin-(1/2) Heisenberg Hamiltonian

Ĥ = J
∑
〈mn〉

Ŝm · Ŝn, (2.32)

where, as usual, 〈mn〉 denotes a sum of neighboring spins on the lattice and the positive

exchange constant J ∼ t2/U . While, in the insulating magnetic phase, the charge degrees

of freedom remain “quenched,” spin fluctuations can freely propagate.

When doped away from half-filling, the behavior of the Hubbard model is notoriously

difficult to resolve. The removal of electrons from the half-filled system introduces vacancies

into the “lower Hubbard band” that may propagate through the lattice. For a low con-

centration of holes, the strong coupling Hubbard system may be described by the effective

t–J Hamiltonian,

Ĥt−J = −t
∑
〈mn〉

P̂sa
†
mσanσP̂s + J

∑
〈mn〉

Ŝm · Ŝn.

However, the passage of vacancies is frustrated by the antiferromagnetic spin correlations

of the background. Here transport depends sensitively on the competition between the

exchange energy of the spins and the kinetic energy of the holes. Oddly, at J = 0 (i.e.

U = ∞), the ground state spin configuration is known to be driven ferromagnetic by a

single hole while, for J > 0, it is generally accepted that a critical concentration of holes is

required to destabilize antiferromagnetic order.

EXERCISE At U = ∞, all 2N states of the half-filled Hubbard model are degenerate – each

site is occupied by a single electron of arbitrary spin. This degeneracy is lifted by the removal

of a single electron from the lower Hubbard band. In such a case, there is a theorem due to
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Nagaoka15 that, on a bipartite lattice (i.e. one in which the neighbors of one sublattice belong to

the other sublattice), the ground state is ferromagnetic. For a four-site “plaquette” with three

electrons determine the eigenspectrum of the Hubbard system with U = ∞ within the manifold

(a) Sz
total = 3/2, and (b) Sz

total = 1/2. In each case, determine the total spin of the ground state.

(Hint: In (b) there are a total of 12 basis states – here it useful to arrange these states in the

order in which they are generated by application of the Hamiltonian.)

INFO The rich behavior of the Mott–Hubbard system is nowhere more exemplified than in the

ceramic cuprate system – the basic material class of the high-temperature superconductors.

Cuprates are built of layers of CuO2 separated by heavy rare earth ions such as lanthanum. Here,

the copper ions adopt a square lattice configuration separated by oxygen ions. At half-filling,

electrons in the outermost occupied shell of the copper sites in the plane adopt a partially filled

3 d9 configuration, while the oxygen sites are completely filled. Elevated in energy by a frozen

lattice distortion, the Fermi energy lies in the dx2−y2 orbital of copper. According to a simple

band picture, the single band is exactly half-filled (one electron per Cu site) and, therefore,

according to the standard band picture, should be metallic. However, strong electron interaction

drives the cuprate system into an insulating antiferromagnetic Mott–Hubbard phase.

When doped away from half-filling (by, for example, replacing the rare earth atoms by others

with a different stoichiometry; see the figure, where the phase diagram of La2−xSrxCuO4 is shown

as a function of the concentration x of Sr atoms replacing La atoms and temperature), charge

carriers are introduced into the “lower Hubbard band.” However, in this case, the collapse of the

Hubbard gap and loss of antiferromagnetic (AF) order is accompanied by the development of a

high-temperature unconventional superconducting (SC) phase whose mechanism is believed to be

rooted in the exchange of antiferromagnetic spin fluctuations. Whether the rich phenomenology

of the cuprate system is captured by the Hubbard model remains a subject of great interest and

speculation.
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T

x0.1 0.2 0.3

100

200

300
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This concludes our preliminary survey of the rich

phenomenology of the interacting electron system.

Notice that, so far, we have merely discussed ways

to distill a reduced model from the original micro-

scopic many-body Hamiltonian (2.17). However, save

for the two examples of free field theories analyzed

in Chapter 1, we have not yet learned how meth-

ods of second quantization can be applied to actually

solve problems. To this end, in the following section

we will illustrate the application of the method on a

prominent strongly interacting problem.

15 Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s-band, Phys. Rev. 147 (1966), 392–405.
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Interacting fermions in one dimension

Within the context of many-body physics, a theory is termed free if the Hamiltonian is

bilinear in creation and annihilation operators, i.e. Ĥ ∼
∑

μν a
†
μHμνaν , where H may be

a finite- or infinite-dimensional matrix.16 Such models are “solvable” in the sense that the

solution of the problem simply amounts to a diagonalization of the matrix Hμν (subject to

the preservation of the commutation relations of the operators a and a†). However, only a

few models of interest belong to this category. In general, interaction contributions typically

quartic in the field operators are present and complete analytical solutions are out of reach.

Yet there are a few precious examples of genuinely interacting systems that are amenable

to (nearly) exact solution. In this section we will address an important representative of

this class, namely the one-dimensional interacting electron gas. Not only is the analysis of

this system physically interesting but, in addition, it provides an opportunity to practice

working with the second quantized operator formalism on a deeper level.

Qualitative discussion

Consider the nearly free electron Hamiltonian (2.18) and (2.19) reduced to a one-dimensional

environment. Absorbing the chemical potential EF into the definition of the Hamiltonian,

and neglecting spin degrees of freedom (e.g. one might consider a fully spin polarized band),

Ĥ =
∑
k

a†k

(
k2

2m
− EF

)
ak +

1

2L

∑
kk′,q �=0

V (q)a†k−qa
†
k′+qak′ak. (2.33)

INFO At first sight, the treatment of a one-dimensional electron system may seem an aca-

demic exercise. However, effective one-dimensional interacting fermion systems are realized in

a surprisingly rich spectrum of materials. We have already met with carbon nanotubes

above. A nanotube is surrounded by clouds of mobile electrons (see earlier discussion in sec-

tion 2.2). With the latter, confinement of the circumferential direction divides the system into

a series of one-dimensional bands, each classified by a sub-band index and a wavenumber k.

At low temperatures, the Fermi surface typically intersects a single sub-band, allowing atten-

tion to be drawn to a strictly one-dimensional system. A similar mechanism renders certain

organic molecules (such as the Bechgaard salt (TMTSF)2PF6, where TMTSF stands for the

tetramethyl-tetraselenafulvalene) one-dimensional conductors.

A third, solid state, realization is presented by artificial low-dimensional structures fab-

ricated from semiconducting devices. Redistribution of electron charge at the interface of a

GaAs/AlGaAs heterostructure results in the formation of a two-dimensional electron gas.

By applying external gates, it is possible to fabricate quasi-one-dimensional semiconductor

quantum wires in which electron motion in the transverse direction is impeded by a large

potential gradient (Fig. 2.8 (a)). At sufficiently low Fermi energies, only the lowest eigenstate

of the transverse Schrödinger equation (the lowest “quantum mode”) is populated and one is

left with a strictly one-dimensional electron system. There are other realizations, such as edge

modes in quantum Hall systems, “stripe phases” in high-tempterature superconductors, or

certain inorganic crystals, but we shall not discuss these here explicitly.

16 More generally, a free Hamiltonian may also contain contributions ∼ aμaν and a†
μa

†
ν .
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(a) (b)

Figure 2.8 Different realizations of one-dimensional electron systems. (a) Steep potential well (real-
izable in, e.g., gated two-dimensional electron systems). (b) (Approximately) cylindrical quantum
system (carbon nanotubes, quasi-one-dimensional molecules, etc.). In both cases, the single-particle
spectrum is subject to mechanisms of size quantization. This leads to the formation of “minibands”
(indicated by shaded areas in the figure), structureless in the transverse direction and extended in
the longitudinal direction.

The one-dimensional fermion system exhibits a number of features not shared by higher-

dimensional systems. The origin of these peculiarities can be easily understood from a simple

qualitative picture. Consider an array of interacting fermions confined to a line. To optimize

their energy the electrons can merely “push” each other around, thereby creating density

fluctuations. By contrast, in higher-dimensional systems, electrons are free to avoid contact

by moving around each other. A slightly different formulation of the same picture can be

given in momentum space. The Fermi “sphere” of the one-dimensional system is defined

through the interval [−kF, kF] of filled momentum states. The Fermi “surface” consists

of two isolated points, {kF,−kF} (see the figure below). By contrast, higher-dimensional

systems typically exhibit continuous and simply connected Fermi surfaces. It takes little

imagination to anticipate that an extended Fermi sphere provides more phase space to

two-particle interaction processes than the two isolated Fermi energy sectors of the one-

dimensional system. The one-dimensional electron system represents a rare exception of an

interacting system that can be solved under no more than a few, physically weak, simplifying

assumptions. This makes it a precious test system on which non-perturbative quantum

manifestations of many-body interactions can be explored.

Quantitative analysis

We now proceed to develop a quantitative picture of the charge density excitations of

the one-dimensional electron system. Anticipating that, at low temperatures, the relevant

dynamics will take place in the vicinity of the two Fermi points {kF,−kF}, the Hamiltonian

(2.33) can be reduced further to an effective model describing the propagation of left and

right moving excitations. To this end, we first introduce the notation that the subscripts

R/L indicate that an operator a†(+/−)kF+q creates an electron that moves to the right/left

with velocity � vF ≡ kF/m.

We next observe (see the figure below) that, in the immediate vicinity of the Fermi points,

the dispersion relation is approximately linear, implying that the non-interacting part of
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the Hamiltonian can be represented as (exercise)

Ĥ0 �
∑

s=R,L

∑
q

a†sqσsvFq asq, (2.34)

where σs = (+/−) for s = R/L and the summation over q is restricted by some momentum

E

k–kF kF

EF qυ
F

q

cut–off |q| < Γ beyond which the linearization of

the dispersion is invalid. (Throughout this section,

all momentum summations will be subject to this

constraint.) Turning to the interacting part of the

Hamiltonian, let us first define the operator

ρ̂sq =
∑
k

a†sk+qask. (2.35)

Crucially, the definition of these operators is not

just motivated by notational convenience. It is

straightforward to verify (exercise) that ρ̂s(q) is obtained from the Fourier transform of the

local density operator ρ̂(x). In other words, ρ̂sq measures density fluctuations of character-

istic wavelength q−1 supported by electron excitations with characteristic momentum ±kF
(see Fig. 2.9 (a)). From our heuristic argument above, suggesting charge density modula-

tions to be the basic excitations of the system, we expect the operators ρ̂sq to represent the

central degrees of freedom of the theory.

Represented in terms of the density operators, the interaction contribution to the Hamil-

tonian may be recast as

V̂ee =
1

2L

∑
kk′q

Vee(q) a
†
k−qa

†
k′+qak′ak ≡ 1

2L

∑
qs

[g4ρ̂sqρ̂s−q + g2ρ̂sqρ̂s̄−q] , (2.36)

where s̄ = L/R denotes the complement of s = R/L, and the constants g2 and g4 measure

the strength of the interaction in the vicinity of the Fermi points, i.e. where q � 0 and

q � 2kF. (With the notation g2,4 we follow a common convention in the literature.)

EXERCISE Explore the relation between the coupling constants g2, g4 and the Fourier transform

of Vee. Show that to the summation
∑

kk′q, not only terms with (k, k′, q) � (±kF,±kF, 0), but

also terms with (k, k′, q) � (±kF,∓kF, 2kF) contribute. When adequately ordered (do it!), these

contributions can be arranged into the form of the right-hand side of Eq. (2.36). (For a detailed

discussion see, e.g., T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press,

2004) or G. Mahan, Many Particle Physics (Plenum Press, 1981)). At any rate, the only point

that matters for our present discussion is that the interaction can be represented through density

operators with positive constants g2,4 determined by the interaction strength.

INFO Working with second quantized theories, one frequently needs to compute commutators of

operators Â(a, a†) polynomial in the elementary boson/fermion operators of the theory (e.g. Â =

aa†, Â = aaa†a†, etc. where we have omitted the quantum number subscripts generally carried

by a and a†). Such types of operation are made easier by a number of operations of elementary
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q

υF

q–1

EF

(a) (b)

Figure 2.9 Two different interpretations of the excitations created by the density operators ρ̂sq.
(a) Real space; ρ̂sq creates density modulations of characteristic wavelength q−1 and characteristic
velocity vF. (b) Momentum space; application of ρ̂sq to the ground state excites electrons from
states k to k + q. This creates particle–hole excitations of energy εk+q − εk = vFq independent
of the particle/hole momentum k. Both particles and holes forming the excitation travel with the
same velocity vF, implying that the excitation does not disperse (i.e. decay).

commutator algebra. The most basic identity, from which all sorts of other formulae can be

generated recursively, is the following:

[Â, B̂Ĉ]± = [Â, B̂]±Ĉ ∓ B̂[Â, Ĉ]−. (2.37)

Iteration of this equation for boson operators a, a† shows that

[a†, an] = −nan−1. (2.38)

(Due to the fact that a2 = 0 in the fermionic case, there is no fermion analog of this equation.)

Taylor expansion then shows that, for any analytic function F (a), [a†, F (a)] = −F ′(a). Similarly,

another useful formula which follows from the above is the relation a†F (aa†) = F (a†a)a†, which
is also verified by series expansion.

So far, we have merely rewritten parts of the Hamiltonian in terms of density operators.

Ultimately, however, we wish to arrive at a representation whereby these operators, instead

of the original electron operators, represent the fundamental degrees of freedom of the

theory. Since the definition of the operators ρ involves the squares of two Fermi operators, we

expect the density operators to resemble bosonic excitations. Thus, as a first and essential

step towards the construction of the new picture, we explore the commutation relations

between the operators ρ̂sq.

From the definition (2.35) and the auxiliary identity (2.37) it is straightforward to verify

the commutation relation [ρ̂sq, ρ̂s′q′ ] = δss′
∑

k(a
†
sk+qask−q′−a†sk+q+q′ask). As it stands, this

relation is certainly not of much practical use. To make further progress, we must resort to a

(not very restrictive) approximation. Ultimately we will want to compute some observables

involving quantum averages taken on the ground state of the theory, 〈Ω| . . . |Ω〉. To simplify

the structure of the theory, we may thus replace the right-hand side of the relation by its

ground state expectation value:

[ρ̂sq, ρ̂s′q′ ] ≈ δss′
∑
k

〈Ω|a†sk+qask−q′ − a†sk+q+q′ask|Ω〉 = δss′δq,−q′
∑
k

〈Ω|(n̂sk+q − n̂sk)|Ω〉 ,

where, as usual, n̂sk = a†skask, and we have made use of the fact that 〈Ω|a†skask′ |Ω〉 = δkk′ .

Although this is an uncontrolled approximation, it is expected to become better the closer we

stay to the zero-temperature ground state |Ω〉 of the theory (i.e. at low excitation energies).
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EXERCISE Try to critically assess the validity of the approximation. (For a comprehensive

discussion, see the text by Giamarchi.17)

At first glance, it would seem that the right-hand side of our simplified commutator relation

actually vanishes. A simple shift of the summation index,
∑

k〈Ω|n̂sk+q|Ω〉 ?
=

∑
k〈Ω|n̂sk|Ω〉

indicates that the two terms contributing to the sum cancel. However, this argument is

certainly too naive. It ignores the fact that our summation is limited by a cut-off momentum

Γ. Since the shift k → k − q changes the cut-off, the interpretation above is invalid.

To obtain a more accurate result, let us consider the case s = R and q > 0. We know

that, in the ground state, all states with momentum k < 0 are occupied while all states

with k ≥ 0 are empty. This implies that

∑
k

〈Ω|(n̂Rk+q − n̂Rk)|Ω〉 =

⎛⎝ ∑
−Γ<k≤−q

+
∑

−q<k≤0

+
∑

0<k<Γ

⎞⎠ 〈Ω|(n̂Rk+q − n̂Rk)|Ω〉

=
∑

−q≤k≤0

〈Ω|(n̂Rk+q − n̂Rk)|Ω〉 = −qL

2π
,

where, with the last equality, we have used the fact that a momentum interval of size q

contains q/(2π/L) quantized momentum states. Similar reasoning for s = L shows that the

effective form of the commutator relation reads

[ρ̂sq, ρ̂s′q′ ] = −δss′δq,−q′σs
qL

2π
. (2.39)

Now, if it were not for the q-dependence of the right-hand side of this relation, we would

indeed have found (approximate) bosonic commutation relations. Therefore, to make the

connection to bosons explicit, let us define

bq ≡ nq ρ̂Lq, b†q ≡ nqρ̂L(−q),

b−q ≡ nqρ̂R(−q), b†−q ≡ nqρ̂Rq,

⎫⎪⎪⎬⎪⎪⎭ (2.40)

where q > 0 and nq ≡ (2π/Lq)1/2. It is easily confirmed that the newly defined operators bq
obey canonical commutation relations (exercise), i.e. we have indeed found that, apart from

the scaling factors nq, the density excitations of the system behave as bosonic “particles.”

Expressed in terms of the operators b, the interaction part of the Hamiltonian takes the

form (exercise)

Vee =
1

2π

∑
q>0

q (bq b†−q)

(
g4 g2
g2 g4

)(
b†q
b−q

)
.

Notice that we have succeeded in representing a genuine two-body interaction, a contribution

that usually renders a model unsolvable, in terms of a quadratic representation. However,

17 T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004).
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the free boson representation of the interaction term will be of little use until the kinetic

part of the Hamiltonian Ĥ0 is represented in terms of the b operators. There are various

ways of achieving this goal. The most straightforward route, a direct construction of a

representation of Ĥ0 in terms of the Bose operators, is cumbersome in practice. However,

there exists a more efficient way that is based on indirect reasoning. As follows from the

discussion of Section 2.1, the properties of second quantized operators are fixed by their

commutation relations.18 So what we are going to do is search for an operator Ĥ ′
0(b, b

†)
that has the same commutation relations with the boson operators (b, b†) as the original

kinetic energy operator Ĥ0(a, a
†). Using Eq. (2.34), the definition (2.35), and the auxiliary

identity (2.37), it is straightforward to verify that [Ĥ0, ρ̂sq] = qvFσsρ̂sq. On the other hand,

using Eq. (2.39) one finds that the same commutation relations hold with the operator

Ĥ ′
0 =

2πvF
L

∑
qs

ρ̂sqρ̂s−q ,

i.e. [Ĥ ′
0, ρ̂sq] = qvFσsρ̂sq. Following the logic of our argument we thus identify Ĥ0 = Ĥ ′

0 (up

to inessential constants) and substitute Ĥ ′
0 for the non-interacting Hamiltonian.

EXERCISE To gain some confidence in the identification Ĥ0 = Ĥ ′
0+const., and to show that the

undetermined constant actually equals zero, compute the energy expectation value of the state

|Ψsq〉 ≡ ρ̂sq|Ω〉 both as 〈Ψsq|Ĥ0|Ψsq〉 and as 〈Ψsq|Ĥ ′
0|Ψsq〉. Confirm that the two expressions

coincide.

Finally, using Eq. (2.40) and adding the interaction contribution Vee we arrive at the effective

Hamiltonian

Ĥ =
∑
q>0

q (bq b†−q)

(
vF + g4

2π
g2
2π

g2
2π vF + g4

2π

)(
b†q
b−q

)
. (2.41)

We have thus succeeded in mapping the full interacting problem onto a free bosonic theory.

The mapping a → ρ̂ → b is our first example of a technique known as bosonization.

Such techniques play an important role in 2(= 1 space+1 time)-dimensional field theory in

general. More sophisticated bosonization schemes will be discussed in Sections 4.3 and 9.4.4.

Conversely, it is sometimes useful to represent a boson problem in terms of fermions via

fermionization. One may wonder why it is indeed possible to effortlessly represent the low-

lying excitations of a gas of fermions in terms of bosons. Fermi–Bose transmutability

is indeed a peculiarity of one-dimensional quantum systems. Particles confined to a line

cannot pass “around” each other. That means that the whole issue of sign factors arising

from the interchange of particle coordinates does not arise, and much of the exclusion-type

18 This argument can be made quantitative by group theoretical reasoning: Eq. (2.4) and (2.7) define the irre-
ducible representation of an operator algebra – an algebra because [ , ] defines a product in the space of

generators {aλ, a
†
λ}, a representation because the operators act in a vector space (namely Fock space F), which

is irreducible because all states |λ1, . . . , λN 〉 ∈ F can be reached by iterative application of operators onto a
unique reference state (e.g. |Ω〉). Under these conditions, Schur’s lemma – to be discussed in more detail in

Chapter 4 – states that two operators Â1 and Â2 having identical commutation relations with all {aλ, a
†
λ} are

equal up to a constant.
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characteristics of the Fermi system are inactivated. A more systematic formulation of Fermi

↔ Bose transformations will be discussed in Chapter 4.

Now, there is one last problem that needs to be overcome to actually solve the interacting

problem. In Chapter 1, we learned how to interpret Hamiltonians of the structure
∑

q b
†
qbq as

superpositions of harmonic oscillators. However, in our present problem, terms of the type

bqb−q and b†−qb
†
q appear. To return to familiar terrain, we need to eliminate these terms.

However, before doing so, it is instructive to discuss the physical meaning of the problem.

Firstly, let us recall that the total number operator of a theory described by operators0
b†λ, bλ

1
is given by N̂ =

∑
λ b

†
λbλ. Now, if the Hamiltonian has the form Ĥ =

∑
μν b

†
μHμνbν ,

the total number operator commutes with Ĥ, i.e. [N̂ , Ĥ] = 0 (exercise). This means that Ĥ

and N̂ can be simultaneously diagonalized, or, in more physical terms, that the Hamiltonian

enjoys the feature of particle number conservation. More generally, any Hamiltonian in

which operators appear as polynomials containing equal numbers of creation and annihila-

tion operators (e.g. b†b†bb, b†b†b†bbb, etc.) has this property. This is because any operator

of this structure creates as many particles as it annihilates. In problems where the total

number of particles is conserved (e.g. the theory of interacting electrons in an isolated piece

of metal), the Hamiltonian is bound to have this structure. Conversely, in situations where

the number of excitations is not fixed (e.g. a theory of photons or phonons) particle number

violating terms like bb or b†b† can appear. Such a situation is realized in our present prob-

lem; the number of density excitations in an electron system is certainly not a conserved

quantity which explains why contributions like bqb−q appear in Ĥ.

To eliminate the non-particle-number-conserving contributions we should, somehow,

transform the matrix

K ≡
(

vF + g4
2π

g2
2π

g2
2π vF + g4

2π

)
,

to a diagonal structure. Transformations of K can be generated by transforming the opera-

tors bq and b†q to a different representation. Specifically, with Ψq ≡ (b†q, b−q)
T , we may define

Ψ′
q ≡ T−1Ψq, where T is a 2× 2 matrix acting on the two components of Ψ. (Since K does

not depend on q, T can be chosen to have the same property.) After the transformation,

the Hamiltonian will have the form

H =
∑
q>0

qΨ†
qKΨq →

∑
q>0

qΨ′†
q T †KT︸ ︷︷ ︸

K′

Ψ′
q , (2.42)

with a new matrix K ′ ≡ T †KT . We will seek for a transformation T that makes K ′ diag-
onal. However, an important point to be kept in mind is that not all 2 × 2 matrices T

qualify as transformations. We must ensure that the transformed “vector” again has the

structure Ψ′
q ≡

(
b′†q , b

′
−q

)T
, with a boson creation/annihilation operator in the first/second

component – i.e. the commutation relations of the operators must be conserved by the

transformation. Remembering that the algebraic properties of the operators b are speci-

fied through commutation relations, this condition can be cast in mathematical form by

requiring that the commutator
[
Ψqi,Ψ

†
qj

]
= (−σ3)ij

!
=

[
Ψ′

qi,Ψ
′†
qj

]
be invariant under the

transformation. Using the fact that Ψ′ = T−1Ψ, this condition is seen to be equivalent to

the pseudo-unitarity condition, T †σ3T
!
= σ3.
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With this background, we are now in a position to find a transformation that brings the

matrix K ′ to a 2×2 diagonal form. Multiplication of the definition K ′ = T †KT by σ3 leads

to

T †KT = K ′ ⇔ σ3T
†σ3︸ ︷︷ ︸

T−1

σ3KT = σ3K
′.

This means that the matrix σ3K
′ is obtained by a similarity transformation T−1(· · · )T

from the matrix σ3K, or, in other words, that the matrix σ3K
′ contains the eigenvalues ±u

of σ3K on its diagonal. (That the eigenvalues sum to 0 follows from the fact that the trace

vanishes, tr(σ3K) = 0.) However, the eigenvalues of σ3K are readily computed as

vρ =
1

2π

[
(2πvF + g4)

2 − g22
]1/2

. (2.43)

Thus, with σ3K
′ = σ3vρ we arrive at K ′ = vρ · id., where “id.” stands for the unit matrix.19

Substitution of this result into Eq. (2.42) finally leads to the diagonal Hamiltonian Ĥ =

vρ
∑

q>0 qΨ
′†
q Ψ

′
q, or equivalently, making use of the identity Ψ′†

q Ψ
′
q = b†qbq + b†−qb−q + 1,

Ĥ = vρ
∑
q

|q|b†qbq. (2.44)

Here we have ignored an overall constant and omitted the prime on our new Bose operators.

Nicolai Nikolaevich Bogoliubov 1909–92
A theoretical physicist acclaimed for his works in
nonlinear mechanics, statistical physics, theory of
superfluidity and superconductivity, quantum field
theory, renormalization group theory, proof of dis-
persion relations, and elementary particle theory.

In the literature, the transfor-

mation procedure outlined above is

known as a Bogoliubov trans-

formation. Transformations of this

type are frequently applied in quan-

tum magnetism (see below), super-

conductivity, or, more generally, all

problems where the particle number is not conserved. Notice that the possibility to trans-

form to a representation ∼ b†b does not imply that miraculously the theory has become

particle number conserving. The new “quasi-particle” operators b are related to the origi-

nal Bose operators through a transformation that mixes b and b†. While the quasi-particle

number is conserved, the number of original density excitations is not.

Equations (2.43) and (2.44) represent our final solution of the problem of spinless inter-

acting fermions in one dimension. We have suceeded in mapping the problem onto a form

analogous to our previous results (1.34) and (1.39) for the phonon and the photon sys-

tem, respectively. Indeed, all that has been said about those Hamiltonians applies equally

to Eq. (2.44): the basic elementary excitations of the one-dimensional fermion system are

waves, i.e. excitations with linear dispersion ω = vρ|q|. In the present context, they are

19 Explicit knowledge of the transformation matrix T , i.e. knowledge of the relation between the operators b and
b′, is not needed for our construction. However, for the sake of completeness, we mention that

T =

	
cosh θk sinh θk
sinh θk cosh θk



with tanh(2θ) = −g2/(2πvF + g4) represents a suitable parameterization.
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termed charge density waves (CDW). The Bose creation operators describing these exci-

tations are, up to the Bogoliubov transformation, and a momentum dependent scaling factor

(2π/Lq)1/2, equivalent to the density operators of the electron gas. For a non-interacting

system, g2 = g4 = 0, and the CDW propagates with the velocity of the free Fermi particles,

vF. A fictitious interaction that does not couple particles of opposite Fermi momentum,

g2 = 0, g4 �= 0, speeds up the CDW. Heuristically, this can be interpreted as an “acceleration

process” whereby a CDW pushes its own charge front. By contrast, interactions between

left and right movers, g2 �= 0, diminish the velocity, i.e. due to the Coulomb interaction it

is difficult for distortions of opposite velocities to penetrate each other. (Notice that, for

a theory with g2 = 0, no Bogoliubov transformation would be needed to diagonalize the

Hamiltonian, i.e. in this case, undisturbed left- and right-moving waves would be the basic

excitations of the theory.)

Our discussion above neglected the spin carried by the conduction electrons. Had we

included the electron spin, the following picture would have emerged (see Problem 2.4): the

long-range dynamics of the electron gas is governed by two independently propagating wave

modes, the charge density wave discussed above, and a spin density wave (SDW).20 The

SDW carries a spin current, but is electrically neutral. As with the CDW, its dispersion

is linear with an interaction-renormalized velocity, vs (which, however, is generally larger

than the velocity vρ of the CDW). To understand the consequences of this phenomenon,

imagine an electron had been thrown into the system (e.g. by attaching a tunnel contact

somewhere along the wire). As discussed above, a single electron does not represent a stable

excitation of the one-dimensional electron gas. What will happen is that the spectral weight

of the particle21 disintegrates into a collective charge excitation and a spin excitation. The

newly excited waves then propagate into the bulk of the system at different velocities ±vρ
and ±vs. In other words, the charge and the spin of the electron effectively “disintegrate”

into two separate excitations, a phenomenon known as spin–charge separation. Spin–

charge separation in one-dimensional metals exemplifies a mechanism frequently observed

in condensed matter systems: the set of quantum numbers carried by elementary particles

may get effectively absorbed by different excitation channels. One of the more spectacular

manifestations of this effect is the appearance of fractionally charged excitations in quantum

Hall systems, to be discussed in more detail in Chapter 9.

The theory of spin and charge density waves in one-dimensional conductors has a long

history spanning four decades. However, despite the rigor of the theory its experimental

verification has proved excruciatingly difficult! While various experiments are consistent

with theory (for a review, see Ref.17), only recently have signatures of spin and charge

density wave excitations been experimentally observed.

20 One may think of the charge density of the electron gas ρ = ρ↑ + ρ↓ as the sum of the densities of the spin up
and spin down populations, respectively. The local spin density is then given by ρs ≡ ρ↑ − ρ↓. After what has
been said above, it is perhaps not too surprising that fluctuations of these two quantities represent the dominant
excitations of the electron gas. What is surprising, though, is that these two excitations do not interact with
each other.

21 For a precise definition of this term, see Chapter 7.
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Quantum spin chains

In the previous section, the emphasis was placed on charging effects generated by Coulomb

interaction. However, as we have seen in Section 2.2, Coulomb interaction may also lead to

the indirect generation of magnetic interactions. In one dimension, one can account for these

mechanisms by adding to our previously structureless electrons a spin degree of freedom.

This leads to the Tomonaga–Luttinger liquid, a system governed by the coexistence of

collective spin and charge excitations. However, to introduce the phenomena brought about

Werner Heisenberg 1901–76
Nobel Laureate in Physics in
1932 “for the creation of quan-
tum mechanics, the application of
which has, inter alia, led to the
discovery of the allotropic forms
of hydrogen.” In 1927 he pub-
lished his uncertainty principle, for
which he is perhaps best known. He also made
important contributions to the theories of hydrody-
namics of turbulent flows, ferromagnetism, cosmic
rays, and subatomic particles, and he was instrumen-
tal in planning the first West German nuclear reac-
tor at Karlsruhe, together with a research reactor in
Munich, in 1957. (Image c© The Nobel Foundation.)

by quantum magnetic correlations,

it is best to first consider systems

where the charge degrees of freedom

are frozen and only spin excitations

remain. Such systems are realized,

for example, in Mott insulators

where interaction between the spins

of localized electrons is mediated by

virtual exchange processes between

neighboring electrons. One can

describe these correlations through

models of localized quantum spins –

either in chains or, more generally,

in higher-dimensional quantum spin

lattices. We begin our discussion with the ferromagnetic spin chain.

Quantum ferromagnet

The quantum Heisenberg ferromagnet is specified by the Hamiltonian

Ĥ = −J
∑
〈mn〉

Ŝm · Ŝn , (2.45)

where J > 0, Ŝm represents the quantum mechanical spin operator at lattice site m, and,

as before, 〈mn〉 denotes summation over neighboring sites. In Section 2.1 (see Eq. (2.13))

the quantum mechanical spin was represented through an electron basis. However, one can

conceive of situations where the spin sitting at site m is carried by a different object (e.g. an

atom with non-vanishing magnetic moment). At any rate, for the purposes of our present

discussion, we need not specify the microscopic origin of the spin. All we need to know is

(i) that the lattice operators Ŝi
m obey the SU(2) commutator algebra,[

Ŝi
m, Ŝj

n

]
= iδmnε

ijkŜk
n, (2.46)

characteristic of quantum spins, and (ii) the total spin at each lattice site is S.22

22 Remember that the finite-dimensional representations of the spin operator are of dimension 2S + 1 where S
may be integer or half integer. While a single electron has spin S = 1/2, the total magnetic moment of electrons
bound to an atom may be much larger.
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Figure 2.10 Showing the spin configuration of an elementary spin-wave excitation from the spin
polarized ground state.

Now, due to the positivity of the coupling constant J , the Hamiltonian favors configura-

tions where the spins at neighboring sites are aligned in the same direction (cf. Fig. 2.10). A

ground state of the system is given by |Ω〉 ≡
2

m |Sm〉, where |Sm〉 represents a state with

maximal spin-z component: Sz
m|Sm〉 = S|Sm〉. We have written “a” ground state instead of

“the” ground state because the system is highly degenerate: a simultaneous change of the

orientation of all spins does not change the ground state energy, i.e. the system possesses a

global rotation symmetry.

EXERCISE Compute the energy expectation value of the state |Ω〉. Defining global spin operators

through Ŝi ≡
∑

m Ŝi
m, consider the state |α〉 ≡ exp(iα·Ŝ)|Ω〉. Verify that the state α is degenerate

with |Ω〉. Explicitly compute the state |(π/2, 0, 0)〉. Convince yourself that, for general α, |α〉 can
be interpreted as a state with rotated quantization axis.

As with our previous examples, we expect that a global continuous symmetry will involve

the presence of energetically low-lying excitations. Indeed, it is obvious that, in the limit

of long wavelength λ, a weak distortion of a ground state configuration (see Fig. 2.10) will

cost vanishingly small energy. To quantitatively explore the physics of these spin waves,

we adopt a “semiclassical” picture, where the spin S � 1 is assumed to be large. In this

limit, the rotation of the spins around the ground state configuration becomes similar to

the rotation of a classical magnetic moment.

INFO To better understand the mechanism behind the semi-classical approximation, con-

sider the Heisenberg uncertainty relation, ΔSi ΔSj ∼ |〈[Ŝi, Ŝj ]〉| = εijk|〈Ŝk〉|, where ΔSi is the

root mean square of the quantum uncertainty of spin component i. Using the fact that |〈Ŝk〉| ≤ S,

we obtain for the relative uncertainty, ΔSi/S,

ΔSi

S

ΔSj

S
∼ S

S2

S�1−→ 0.

I.e., for S � 1, quantum fluctuations of the spin become less important.

In the limit of large spin S, and at low excitation energies, it is natural to describe the

ordered phase in terms of small fluctuations of the spins around their expectation values

(cf. the description of the ordered phase of a crystal in terms of small fluctuations of the

atoms around the ordered lattice sites). These fluctuations are conveniently represented in
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Figure 2.11 Spin-wave spectrum of europium oxide as measured by inelastic neutron scattering at
a reference temperature of 5.5K. Note that, at low values of momenta q, the dispersion is quadratic,
in agreement with the low-energy theory. (Exercise: A closer inspection of the data shows the
existence of a small gap in the spectrum at q = 0. To what may this gap be attributed?) Figure
reprinted with permission from L. Passell, O. W. Dietrich, and J. Als-Nielser, Neutron scattering
from the Heisenberg ferromagnets EuO and EuS I: the exchange interaction, Phys. Rev. B 14
(1976), 4897–907. Copyright (1976) by the American Physical Society.

terms of spin raising and lowering operators: with Ŝ±
m ≡ S1

m ± iS2
m, it is straightforward to

verify that [
Ŝz
m, Ŝ±

n

]
= ±δmnS

±
m,

[
Ŝ+
m, Ŝ−

n

]
= 2δmnS

z
m. (2.47)

Application of Ŝ
−(+)
m lowers (raises) the z-component of the spin at site m by one. To

actually make use of the fact that deviations around |Ω〉 are small, a representation known

as theHolstein–Primakoff transformation23 was introduced in which the spin operators

Ŝ±, Ŝ are specified in terms of bosonic creation and annihilation operators a† and a:

Ŝ−
m = a†m

(
2S − a†mam

)1/2
, Ŝ+

m =
(
2S − a†mam

)1/2
am, Ŝz

m = S − a†mam.

EXERCISE Confirm that the spin operators satisfy the commutation relations (2.47).

The utility of this representation is clear. When the spin is large, S � 1, an expansion

in powers of 1/S gives Ŝz
m = S − a†mam, Ŝ−

m � (2S)1/2a†m, and Ŝ+
m � (2S)1/2am. In this

23 T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetisation of a ferromagnet, Phys.
Rev. 58 (1940), 1098–113.
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approximation, the one-dimensional Heisenberg Hamiltonian takes the form

Ĥ = −J
∑
m

)
Ŝz
mŜz

m+1 +
1

2

(
Ŝ+
mŜ−

m+1 + Ŝ−
mŜ+

m+1

)*
= −JNS2 − JS

∑
m

0
−2a†mam +

(
a†mam+1 + h.c.

)1
+O(S0)

= −JNS2 + JS
∑
m

(a†m+1 − a†m)(am+1 − am) +O(S0).

Keeping fluctuations at leading order in S, the quadratic Hamiltonian can be diagonalized by

Fourier transformation. In this case, it is convenient to impose periodic boundary conditions:

Ŝm+N = Ŝm, and am+N = am, where N denotes the total number of lattice sites. Defining

ak =
1√
N

N∑
m=1

eikmam, am =
1√
N

B.Z.∑
k

e−ikmak,
[
ak, a

†
k′
]
= δkk′ ,

where the summation over k runs over the Brillouin zone, the Hamiltonian for the one-

dimensional lattice system takes the form (exercise)

Ĥ = −JNS2 +
B.Z.∑
k

�ωka
†
kak +O(S0). (2.48)

Here �ωk = 2JS(1 − cos k) = 4JS sin2(k/2) represents the dispersion relation of the spin

excitations. In particular, in the limit k → 0, the energy of the elementary excitations van-

ishes, �ωk → JSk2. These massless low-energy excitations, known asmagnons, describe the

elementary spin-wave excitations of the ferromagnet. Taking into account terms at higher

order in the parameter 1/S, one finds interactions between the magnons. A comparison of

these theoretical predictions and experiment is shown in Fig. 2.11.

Quantum antiferromagnet

Having explored the elementary excitation spectrum of the ferromagnet, we now turn to

the discussion of the spin S Heisenberg antiferromagnetic Hamiltonian

Ĥ = J
∑
〈mn〉

Ŝm · Ŝn,

where, once again, J > 0. As we have seen above, such antiferromagnetic systems occur
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(a)

(b)

Figure 2.12 (a) Example of a two-dimensional bipartite lattice. (b) Example of a non-bipartite
lattice. Notice that, with the latter, no antiferromagnetic arrangement of the spins can be made
that recovers the maximum exchange energy from each and every bond.

Louis Néel 1904–2000
Nobel Laureate in Physics in
1970, shared with Hannes Olof
Gösta Alfvén, for his “funda-
mental work and discoveries
concerning antiferromagnetism
and ferrimagnetism that have led
to important applications in solid
state physics.” (Image c© The Nobel Foundation.)

in the arena of strongly correlated

electron compounds. Although the

Hamiltonian differs from its fer-

romagnetic relative “only” by a

change of sign, the differences in

the physics are drastic. Firstly, the

phenomenology displayed by the

antiferromagnetic Hamiltonian Ĥ

depend sensitively on the morphol-

ogy of the underlying lattice. For a

bipartite lattice, i.e. one in which the neighbors of one sublattice A belong to the other

sublattice B (see Fig. 2.12(a)), the ground states of the Heisenberg antiferromagnet are

close24 to a staggered spin configuration, known as a Néel state, where all neighboring

spins are antiparallel (see Fig. 2.12). Again the ground state is degenerate, i.e. a global

rotation of all spins by the same amount does not change the energy. By contrast, on non-

bipartite lattices such as the triangular lattice shown in Fig. 2.12(b), no spin arrangement

can be found wherein each bond recovers the full exchange energy J . Spin models of this

kind are said to be frustrated.

EXERCISE Engaging only symmetry considerations, try to identify a possible classical ground

state of the triangular lattice Heisenberg antiferromagnet. (Hint: Construct the classical ground

state of a three-site plaquette and then develop the periodic continuation.) Show that the classical

antiferromagnetic ground state of the Kagomé lattice – a periodic array of corner-sharing “stars

of David” – has a continuous spin degeneracy generated by local spin rotations. How might the

degeneracy affect the transition to an ordered phase?

Returning to the one-dimensional system, we first note that a chain is trivially bipartite.

As before, our strategy will be to expand the Hamiltonian in terms of bosonic operators.

However, before doing so, it is convenient to apply a canonical transformation to the Hamil-

tonian in which the spins on one sublattice, say B, are rotated through 180◦ about the

24 It is straightforward to verify that the classical ground state – the Néel state – is now not an exact eigenstate of
the quantum Hamiltonian. The true ground state exhibits zero-point fluctuations reminiscent of the quantum
harmonic oscillator or atomic chain. However, when S � 1, it serves as a useful reference state from which
fluctuations can be examined.
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(a)

(b)

Figure 2.13 (a) Néel state configuration of the spin chain. (b) Cartoon of an antiferromagnetic
spin wave.

x-axis, i.e. Sx
B → S̃x

B = Sx
B , S

y
B → S̃y

B = −Sy
B , and Sz

B → S̃z
B = −Sz

B . That is, when repre-

sented in terms of the new operators, the Néel ground state looks like a ferromagnetic state,

with all spins aligned. We expect that a gradual distortion of this state will produce the

antiferromagnetic analog of the spin waves discussed in the previous section (see Fig. 2.11).

Represented in terms of the transformed operators, the Hamiltonian takes the form

Ĥ = −J
∑
m

[
Sz
mS̃z

m+1 −
1

2

(
S+
mS̃+

m+1 + S−
mS̃−

m+1

)]
.

Once again, applying an expansion of the Holstein–Primakoff representation, S−
m �

(2S)1/2a†m, etc., one obtains the Hamiltonian

Ĥ = −NJS2 + JS
∑
m

[
a†mam + a†m+1am+1 + amam+1 + a†ma†m+1

]
+O(S0).

At first sight the structure of this Hamiltonian, albeit quadratic in the Bose operators, looks

awkward. However, after Fourier transformation, am = N−1/2
∑

k e
−ikmak it assumes the

more accessible form

Ĥ = −NJS(S + 1) + JS
∑
k

(
a†k a−k

)(
1 γk
γk 1

)(
ak
a†−k

)
+O(S0),

where γk = cos k. Apart from the definition of the matrix kernel between the Bose oper-

ators, Ĥ is equivalent to the Hamiltonian (2.41) discussed in connection with the charge

density wave. Performing the same steps as before, the non-particle-number-conserving con-



82 Second quantization

350

300

250

200

150

100

E
ne

rg
y 

(m
eV

)

50

0
(3/4,1/4) (1/2,1/2) (1/2,0) (3/4,1/4) (1,0) (1/2,0)

Figure 2.14 Experimentally obtained spin-wave dispersion of the high-Tc parent compound
LaCuO4 – a prominent spin 1/2 antiferromagnet. Reprinted with permission from R. Coldea
S. M. Hayder, G. Aeppli, et al., Spin waves and electronic excitations in La2CuO4, Phys. Rev. Lett.
86 (2001), 5377–80. Copyright (2001) by the American Physical Society.

tributions a†a† can be removed by Bogoliubov transformation. As a result, the transformed

Hamiltonian assumes the diagonal form

Ĥ = −NJS2 + 2JS
∑
k

| sin k|
[
α†
kαk +

1

2

]
. (2.49)

Thus, in contrast to the ferromagnet, the spin-wave excitations of the antiferromagnet

(Fig. 2.14) display a linear spectrum in the limit k → 0. Surprisingly, although developed

in the limit of large spin, experiment shows that even for S = 1/2 spin chains, the integrity

of the linear dispersion is maintained (see Fig. 2.14).

More generally, it turns out that, for chains of arbitrary half integer spin S =

1/2, 3/2, 5/2, . . ., the low-energy spectrum is linear, in agreement with the results of the

harmonic approximation. In contrast, for chains of integer spin S = 1, 2, 3 . . ., the low-

energy spectrum contains a gap, i.e. these systems do not support long-range excitations.

As a rule, the sensitivity of a physical phenomenon to the characteristics of a sequence

of numbers – such as half integer vs. integer – signals the presence of a mechanism of

topological origin.25 At the same time, the formation of a gap (observed for integer chains)

represents an interaction effect; at orders beyond the harmonic approximation, spin waves

begin to interact nonlinearly with each other, a mechanism that may (S integer) but need

not (S half integer) destroy the-wave like nature of low-energy excitations. In Section 9.3.3

– in a chapter devoted to a general discussion of the intriguing condensed matter phenom-

25 Specifically, the topological signature of a spin field configuration will turn out to be the number of times the
classical analog of a spin (a vector on the unit sphere) will wrap around the sphere in (1+1)-dimensional space
time.
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ena generated by the conspiracy of global (topological) structures with local interaction

mechanisms – we will discuss these phenomena on a deeper level.

2.3 Summary and outlook

This concludes our preliminary discussion of applications of the second quantization. Addi-

tional examples can be found in the problems. In this chapter, we have introduced second

quantization as a tool whereby problems of many-body quantummechanics can be addressed

more efficiently than by the traditional language of symmetrized many-body wave functions.

We have discussed how the two approaches are related to each other and how the standard

operations of quantum mechanics can be performed by second quantized methods.

One may note that, beyond qualitative discussions, the list of concrete applications

encountered in this chapter involved problems that either were non-interacting from the

outset, or could be reduced to a quadratic operator structure by a number of suitable

manipulations. However, we carefully avoided dealing with interacting problems where no

such reductions are possible – the majority by far of the problems encountered in condensed

matter physics. What can be done in situations where interactions, i.e. operator contribu-

tions of fourth or higher order, are present and no tricks like bosonization can be played?

Generically, either interacting problems of many-body physics are fundamentally inaccessi-

ble to perturbation theory, or they necessitate perturbative analyses of infinite order in the

interaction contribution. Situations where a satisfactory result can be obtained by first- or

second-order perturbation theory are exceptional. Within second quantization, large-order

perturbative expansions in interaction operators lead to complex polynomials of creation

and annihilation operators. Quantum expectation values taken over such structures can be

computed by a reductive algorithm, known as Wick’s theorem. However, from a modern

perspective, the formulation of perturbation theory in this way is not very efficient. More

importantly, problems that are principally non-perturbative have emerged as the focus of

interest.

To understand the language of modern condensed matter physics, we thus need to develop

another layer of theory, known as field integration. In essence, the latter is a concept

generalizing the effective action approach of Chapter 1 to the quantum level. However,

before discussing quantum field theory, we should understand how the concept works in

principle, i.e. on the level of single particle quantum mechanics. This will be the subject of

the next chapter.

2.4 Problems

Stone–von Neumann theorem

In the text we introduced creation and annihilation operators in a constructive manner, i.e. by specifying

their action on a fixed Fock space state. We saw that this definition implied remarkably simple algebraic

relations between the newly introduced operators – the Heisenberg algebra (2.7). In this problem we

explore the mathematical structure behind this observation. (The problem has been included for the
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benefit of the more mathematically inclined. Readers primarily interested in the practical aspects of

second quantization may safely skip it.)

Let us define an abstract algebra of objects aλ and ãλ by

[aλ, ãμ]ζ = δλμ, [aλ, aμ]ζ = [ãλ, ãμ]ζ = 0.

Further, let us assume that this algebra is unitarily represented in some vector space F .

This means that (i) to every aλ and ãλ we assign a linear map Taλ
: F → F such that

(ii) T[aλ,ãμ]ζ = [Taλ
, Tãμ ]ζ , and (iii) Tãλ

= T †
aλ
. To keep the notation simple, we will denote

Taλ
by aλ (now regarded as a linear map F → F) and Tãλ

by a†λ.
The Stone–von Neumann theorem states that the representation above is unique, i.e. that,

up to unitary transformations of basis, there is only one such representation. The statement

is proven by explicit construction of a basis on which the operators act in a specific and well-

defined way. We will see that this action is given by Eq. (2.6), i.e. the reference basis is but

the Fock space basis used in the text. This proves that the Heisenberg algebra encapsulates

the full mathematical structure of the formalism of second quantization.

(a) We begin by noting that the operators n̂λ ≡ a†λaλ are Hermitian and commute with each

other, i.e. they can be simultaneously diagonalized. Let |nλ1 , nλ2 , . . .〉 be an orthonor-

malized eigenbasis of the operators {n̂λ}, i.e. n̂λi |nλ1 , nλ2 , . . .〉 = nλi |nλ1 , nλ2 , . . .〉. Show
that, up to unit-modular factors, this basis is unique. (Hint: Use the irreducibility of

the transformation.)

(b) Show that aλi |nλ1 , nλ2 , . . .〉 is an eigenstate of n̂λi with eigenvalue nλi − 1. Use this

information to show that all eigenvalues nλi are positive integers. (Hint: note positivity

of the scalar norm.) Show that the explicit representation of the basis is given by

|nλ1 , nλ2 , . . .〉 =
∏
i

a
†nλi

λi√
nλi !

|0〉, (2.50)

where |0〉 is the unique state which has eigenvalue 0 for all n̂i. Comparison with Eq. (2.4)

shows that the basis constructed above indeed coincides with the Fock space basis

considered in the text.

Answer:

(a) Suppose we had identified two bases {|nλ1
, nλ2

, . . .〉} and {|nλ1
, nλ2

, . . .〉′} on which

all operators n̂i assumed equal eigenvalues. The irreducibility of the representation

implies the existence of some polynomial P ({aμi , a
†
μi
}) such that |nλ1 , nλ2 , . . .〉 =

P ({aμi , a
†
μi
})|nλ1 , nλ2 , . . .〉′. Now, the action of P must not change any of the eigen-

values of n̂i, which means that P contains the operators aμ and a†μ in equal numbers.

Reordering operators, we may thus bring P into the form P ({aμi , a
†
μi
}) = P̃ ({n̂μi}).

However, the action of this latter expression on |nλ1 , nλ2 , . . .〉′ just produces a number,

i.e. the bases are equivalent.
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(b) For a given state |n〉, (concentrating on a fixed element of the single-particle basis, we

suppress the subscript λi throughout), let us choose an integer q such that n̂aq−1|n〉 =
(n− q + 1)aq−1|n〉 with n− q + 1 > 0 while n− q ≤ 0. We then obtain

0 ≥ (n− q)〈n|a†qaq|n〉 = 〈n|a†qn̂aq|n〉 = 〈n|(a†)q+1aq+1|n〉 ≥ 0.

The only way to satisfy this sequence of inequalities is to require that 〈n|a†q+1|aq+1|n〉 =
0 and n− q = 0. The last equation implies the “integer-valuedness” of n. (In principle,

we ought to prove that a zero-eigenvalue state |0〉 exists. To show this, take any reference

state |nλ1
, nλ2

, . . .〉 and apply operators aλi
as long as it takes to lower all eigenvalues

nλi to zero.) Using the commutation relations, it is then straightforward to verify that

the r.h.s. of Eq. (2.50) (a) is unit normalized and (b) has eigenvalue nλi for each n̂λi .

Semiclassical spin waves

In Chapter 1, the development of a theory of lattice vibrations in the harmonic atom chain was motivated

by the quantization of the continuum classical theory. The latter provided insight into the nature of

the elementary collective excitations. Here we will employ the semiclassical theory of spin dynamics to

explore the nature of elementary spin-wave excitations.

(a) Making use of the spin commutation relation, [Ŝα
i , Ŝ

β
j ] = iδijε

αβγ Ŝγ
i , apply the operator

identity i
˙̂
Si = [Ŝi, Ĥ] to express the equation of motion of a spin in a nearest neighbor

spin-S one-dimensional Heisenberg ferromagnet as a difference equation (N.B. � = 1).

(b) Interpreting the spins as classical vectors, and taking the continuum limit, show that

the equation of motion of the hydrodynamic modes takes the form Ṡ = JS×∂2S where

we have assumed a unit lattice spacing. (Hint: In taking the continuum limit, apply a

Taylor expansion to the spins i.e. Si+1 = Si + ∂Si + · · · .) Find and sketch a wave-like

solution describing small angle precession around a globally magnetized state Si = Sez
(i.e. a solution as shown in Fig. 2.10).

Answer:

(a) Making use of the equation of motion, and the commutation relation, substitution of

the Heisenberg ferromagnetic Hamiltonian gives the difference equation

˙̂
Si = J Ŝi × (Ŝi+1 + Ŝi−1).

(b) Interpreting the spins as classical vectors, and applying the Taylor expansion Si+1 �→
S(x+ 1) = S+ ∂S+ ∂2S/2 + · · · , one obtains the classical equation of motion shown.

Making the ansatz S = (c cos(kx− ωt), c sin(kx− ωt),
√
S2 − c2) one may confirm that

the equation of motion is satisfied if ω = Jk2.
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(c)

(a) (b)

Figure 2.15 (a) An sp2-hybridized polymer chain. (b) One of the configurations of the Peierls
distorted chain. The double bonds represent the short links of the lattice. (c) A topological defect
separating two domains of the ordered phase.

Su–Shrieffer–Heeger model of a conducting polymer chain

Polyacetylene consists of bonded CH groups forming an isomeric long-chain polymer. According to

molecular orbital theory, the carbon atoms are expected to be sp2-hybridized suggesting a planar config-

uration of the molecule. An unpaired electron is expected to occupy a single π-orbital which is oriented

perpendicular to the plane. The weak overlap of the π-orbitals delocalizes the electrons into a narrow

conduction band. According to the nearly free electron theory, one might expect the half-filled con-

duction band of a polyacetylene chain to be metallic. However, the energy of a half-filled band of a

one-dimensional system can always be lowered by imposing a periodic lattice distortion known as a

Peierls instability (see Fig. 2.15). The aim of this problem is to explore the instability.

(a) At its simplest level, the conduction band of polyacetylene can be modeled by a simple

(arguably over-simplified) microscopic Hamiltonian, due to Su, Shrieffer, and Heeger,26

in which the hopping matrix elements of the electrons are modulated by the lattice

distortion of the atoms. By taking the displacement of the atomic sites to be un, and

treating their dynamics as classical, the effective Hamiltonian can be cast in the form

Ĥ = −t

N∑
n=1

(1 + un)
[
c†nσcn+1σ + h.c.

]
+

N∑
n=1

ks
2
(un+1 − un)

2
,

where, for simplicity, the boundary conditions are taken to be periodic, and summation

over the spins σ is assumed. The first term describes the hopping of electrons between

neighboring sites with a matrix element modulated by the periodic distortion of the

bond-length, while the last term represents the associated increase in the elastic energy.

Taking the lattice distortion to be periodic, un = (−1)nα, and the number of sites to

be even, bring the Hamiltonian to diagonal form. (Hint: Note that the lattice distortion

lowers the symmetry of the lattice. The Hamiltonian is most easily diagonalized by

distinguishing the two sites of the sublattice – i.e. doubling the size of the elementary

unit cell.) Show that the Peierls distortion of the lattice opens a gap in the spectrum at

the Fermi level of the half-filled system.

(b) By estimating the total electronic and elastic energy of the half-filled band (i.e. an

average of one electron per lattice site), show that the one-dimensional system is always

unstable towards the Peierls distortion. To complete this calculation, you will need

26 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42 (1979), 1698–701.
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the approximate formula for the (elliptic) integral,
∫ π/2

−π/2
dk

(
1−

(
1− α2

)
sin2 k

)1/2 �
2+(a1−b1 lnα

2)α2+O(α2 lnα2), where a1 and b1 are (unspecified) numerical constants.

(c) For an even number of sites, the Peierls instability has two degenerate configurations

(see Fig. 2.15(a)) – ABABAB. . . and BABABA. . . Comment on the qualitative form of

the ground state lattice configuration if the number of sites is odd (see Fig. 2.15(b)).

Explain why such configurations give rise to mid-gap states.

Answer:

(a) Since each unit cell is of twice the dimension of the original lattice, we begin by recasting

the Hamiltonian in a sublattice form

Ĥ = −t

N/2∑
m=1,σ

0
(1 + α)

[
a†mσbmσ + h.c.

]
+ (1− α)

[
b†mσam+1σ + h.c.

]1
+ 2Nksα

2,

where the creation operators a†m and b†m act on the two sites of the elemental unit cell of

the distorted lattice. Switching to the Fourier basis, am =
√
2/N

∑
k e

2ikmak (similarly

bm), where k takes N/2 values uniformly on the interval [−π/2, π/2] and the lattice

spacing of the undistorted system is taken to be unity, the Hamiltonian takes the form

Ĥ = 2Nksα
2

− t
∑
k

(
a†kσ, b

†
kσ

)(
0 (1 + α) + (1− α)e2ik

(1 + α) + (1− α)e−2ik 0

)(
akσ
bkσ

)
.

Diagonalizing the 2 × 2 matrix , one obtains ε(k) = ±2t
[
1 + (α2 − 1) sin2 k

]1/2
. Reas-

suringly, in the limit α → 0, one recovers the cosine spectrum characteristic of the undis-

torted tight-binding problem while, in the limit α → 1, pairs of monomers become

decoupled and we obtain a massively degenerate bonding and antibonding spectrum.

(b) According to the formula given in the text, the total shift in energy is given by δε =

−4t(a1 − b1 lnα
2)α2 + 2ksα

2. Maximizing the energy gain with respect to α, one finds

that the stable configuration is found when α2 = exp[a1

b1
− 1− ksα

2tb1
].

(c) If the number of sites is odd, the Peierls distortion is inevitably frustrated. The result is

that the polymer chain must accommodate a topological excitation. The excitation

is said to be topological because the defect cannot be removed by a smooth continu-

ous deformation. Its effect on the spectrum of the model is to introduce a state that

lies within the band gap of the material. The consideration of an odd number of sites

forces a topological defect into the system. However, even if the number of sites is even,

one can create low energy topological excitations of the system either by doping (see

Fig. 2.15(b)), or by the creation of excitons, particle–hole excitations of the system.

Indeed, such topological excitations can dominate the transport properties of the system.
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Schwinger boson representation

As with the Holstein–Primakoff representation, the Schwinger boson provides another representation of

quantum mechanical spin. The aim of this problem is to confirm the validity of the representation. For

practical purposes, the value of the particular representation depends on its application.

Julian Schwinger 1918–1994
Nobel Laureate in Physics with
Sin-Itiro Tomonaga and Richard
P. Feynman, for their fundamen-
tal work in quantum electrody-
namics, with far-reaching conse-
quences for the physics of ele-
mentary particles. (Image c© The
Nobel Foundation.)

In the Schwinger boson repre-

sentation, the quantum mechanical

spin is expressed in terms of two

bosonic operators a and b in the form

Ŝ+ = a†b, Ŝ− = (Ŝ+)†,

Ŝz =
1

2

(
a†a− b†b

)
.

(a) Show that this definition is consistent with the commutation relations for spin:

[Ŝ+, Ŝ−] = 2Ŝz.

(b) Using the bosonic commutation relations, show that

|S,m〉 = (a†)S+m√
(S +m)!

(b†)S−m√
(S −m)!

|Ω〉,

is compatible with the definition of an eigenstate of the total spin operator S2 and Sz.

Here |Ω〉 denotes the vacuum of the Schwinger bosons, and the total spin S defines the

physical subspace {|na, nb〉|na + nb = 2S}.

Answer:

(a) Using the commutation relation for bosons, one finds [Ŝ+, Ŝ−] = a†b b†a − b†a a†b =

a†a− b†b = 2Ŝz, as required.

(b) Using the identity Ŝ2 = (Ŝz)2+ 1
2 (Ŝ

+Ŝ−+Ŝ−Ŝ+) = 1
4 (n̂a−n̂b)

2+n̂an̂b+
1
2 (n̂a+n̂b) one

finds that Ŝ2|S,m〉 =
[
m2 + (S +m)(S −m) + S

]
|S,m〉 = S(S+1)|S,m〉, as required.

Similarly, one finds Ŝz|S,m〉 = 1
2 (na−nb)|na = S+m,nb = S−m〉 = m|S,m〉 showing

|S,m〉 to be an eigenstate of the operator Ŝz with eigenvalue m.

Jordan–Wigner transformation

So far we have shown how the algebra of quantum mechanical spin can be expressed using boson

operators – cf. the Holstein–Primakoff transformation and the Schwinger boson representation. In this

problem we show that a representation for spin-(1/2) can be obtained in terms of Fermion operators.

Let us represent an up spin as a particle and a down spin as the vacuum, i.e. |↑〉 ≡ |1〉 =
f†|0〉, | ↓〉 ≡ |0〉 = f |1〉. In this representation the spin raising and lowering operators are

expressed in the forms Ŝ+ = f† and Ŝ− = f , while Ŝz = f†f − 1/2.
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(a) With this definition, confirm that the spins obey the algebra [Ŝ+, Ŝ−] = 2Ŝz.

However, there is a problem: spins on different sites commute while fermion operators

anticommute, e.g. S+
i S+

j = S+
j S+

i , but f†
i f

†
j = −f†

j f
†
i . To obtain a faithful spin repre-

sentation, it is necessary to cancel this unwanted sign. Although a general procedure is

hard to formulate, in one dimension this can be achieved by a nonlinear transformation,

namely

Ŝ+
l = f†

l e
iπ

∑
j<l n̂j , Ŝ−

l = e−iπ
∑

j<l n̂jfl, Ŝz
l = f†

l fl −
1

2
.

Operationally, this seemingly complicated transformation is straightforward: in one

dimension, the particles can be ordered on the line. By counting the number of par-

ticles “to the left” we can assign an overall sign of +1 or −1 to a given configuration

and thereby transmute the particles into fermions. (Put differently, the exchange of

two fermions induces a sign change that is compensated by the factor arising from the

phase – the “Jordan–Wigner string.”)

(b) Using the Jordan–Wigner representation, show that Ŝ+
mŜ−

m+1 = f†
mfm+1.

(c) For the spin-(1/2) anisotropic quantum Heisenberg spin chain, the spin Hamiltonian

assumes the form Ĥ = −
∑

n

[
JzŜ

z
nŜ

z
n+1 +

J⊥
2

(
Ŝ+
n Ŝ−

n+1 + Ŝ−
n Ŝ+

n+1

)]
. Turning to the

Jordan–Wigner representation, show that the Hamiltonian can be cast in the form

Ĥ = −
∑
n

[
J⊥
2

(
f†
nfn+1 + h.c.

)
+ Jz

(
1

4
− f†

nfn + f†
nfnf

†
n+1fn+1

)]
.

(d) The mapping above shows that the one-dimensional quantum spin-(1/2) XY-model (i.e.

Jz = 0) can be diagonalized as a non-interacting theory of spinless fermions. In this

case, show that the spectrum assumes the form ε(k) = −J⊥ cos ka.

Answer:

(a) Using the fermionic anti-commutation relations, one finds [Ŝ+, Ŝ−]− = [f†, f ]− = f†f−
ff† = 2f†f − 1 = 2Ŝz.

(b) Using the fact that the number operators on different sites commute, one finds

Ŝ+
mŜ−

m+1 = f†
meiπ

∑
j<m nje−iπ

∑
l<m+1 nlfm+1 = f†

me−iπnmfm+1 = f†
mfm+1, where we

have made use of the fact that, for fermionic particles, f†
me−iπnm ≡ f†

m.

(c) The fermion representation is simply obtained by substitution.

(d) With Jz = 0, the spin Hamiltonian assumes the form of a non-interacting tight-binding

Hamiltonian Ĥ = J⊥
2

∑
n(f

†
nfn+1+h.c.). This Hamiltonian, which has been encountered

previously, is diagonalized in the Fourier space, after which one obtains the cosine band

dispersion.
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Spin–charge separation in one-dimension

In Section 2.2 a free theory of interacting spinless fermions was developed in one dimension making

use of the bosonization formalism. This analysis showed that the low-energy degrees of freedom were

described by hydrodynamic charge (i.e. density) fluctuations that propagated with a linear dispersion.

However, as well as charge, the electron degrees of freedom carry spin. The aim of this problem is to

explore the fate of the spin degrees of freedom in a one-dimensional environment.

As a first step, we introduce operators (cf. Eq. (2.35)) ρ̂sqα =
∑

k a
†
s(k+q)αaskα, α =↑, ↓

generalizing the previously introduced density operators for the presence of spin. Similarly,

the bosonic degrees of freedom of the theory (cf. Eq. (2.40)) now carry a spin index, bq → bqα.

One aspect that makes the problem more difficult to tackle than the previously explored

spinless case is that the 2kF-momentum transfer interaction |kF + q + q1, ↑; kF + q − q1, ↓
〉 → |− kF + q+ q2, ↑;−kF + q− q2, ↓〉 in which a right-moving spin up electron is scattered

to a left-moving spin up electron cannot be expressed in terms of slowly fluctuating density

operators. (If you don’t believe this, try!) However, using the renormalisation group methods

introduced in Chapter 8, it can be shown that this type of interaction is physically largely

irrelevant and can be neglected from the outset.

Concentrating on the low-momentum-transfer interaction, the effective bosonic Hamilto-

nian assumes the form (exercise)

Ĥ =
∑

q>0,s,α

vFqb
†
sqαbsqα +

∑
q>0,s,α,α′

|q|
[ g2
2π

(
b†sqαb

†
s̄qα′ + h.c.

)
+

g4
2π

b†sqαbsqα′
]
.

Introducing operators that create charge (ρ) and spin (σ) fluctuations, bsqρ = 1√
2
(bsq↑ +

bsq↓), bsqσ = 1√
2
(bsq↑ − bsq↓), rearrange the Hamiltonian, and thereby show that it assumes

a diagonal form with the spin and charge degrees of freedom exhibiting different velocities.

This is a manifestation of spin–charge separation: even without the introduction of spin-

dependent forces, the spin and charge degrees of freedom of the electron in the metallic

conductor separate and propagate at different velocities. In this sense, there is no way

to adiabatically continue from non-interacting electrons to the collective charge and spin

excitations of the system.

Despite the “fragility” of the electron, and the apparent ubiquity of this phenomenon,

the observation of spin–charge separation in one-dimensional conductors has pre-

sented a significant challenge to experimentalists. The reason is subtle. The completion

of an electrical circuit necessarily requires contact of the quantum wire with bulk leads.

The leads involve a reservoir of electrons with conventional Fermi-liquid character. Electri-

cal transport requires the recombination of the collective charge (holon) and spin (spinon)

degrees of freedom at the contact to reconstitute physical electrons. It is an exasperating

fact that this reconstitution of the physical electron “masks” the character of spin–charge

separation. Instead, the phenomenon of spin–charge separation has been inferred indirectly

through spectroscopic techniques.

Answer:
Motivated by the separation into spin and charge degrees of freedom, a rearrangement of
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the Hamiltonian gives

Ĥ =
∑
q>0,s

4
vFq

(
b†sqρbsqρ + b†sqσbsqσ

)
+ |q|

[g2
π

(
b†sqρb

†
s̄qρ + h.c.

)
+

g4
π
b†sqρbsqρ

]5
.

Once again, applying a Bogoliubov transformation, the Hamiltonian is brought to the diag-

onal form

Ĥ =
∑
q>0,s

[
|q|

√
(vF + g4/π)2 − (g2/π)2α

†
sqραsqρ + |q|vFα†

sqσαsqσ

]
+ const..

The Kondo problem

Historically, the Kondo problem has assumed a place of great significance in the development of the field

of strongly correlated quantum systems. It represents perhaps the simplest example of a phenomenon

driven by strong electron interaction and, unusually for this arena of physics, admits a detailed theoretical

understanding. Further, in respect of the principles established in Chapter 1, it exemplifies a number of

important ideas from the concept of reducibility – the collective properties of the system may be captured

by a simplified effective Hamiltonian which includes only the relevant low-energy degrees of freedom –

and the renormalization group. In the following problem, we will seek to develop the low-energy theory

of the “Kondo impurity system” leaving the discussion of its phenomenology to Problems 5.5 and 8.8.5

in subsequent chapters.

The Kondo effect is rooted in the experimental observation that, when small amounts of

magnetic ion impurities are embedded in a metallic host (such as manganese in copper, or

iron in CuAu alloys), a pronounced minimum develops in the temperature dependence of

the resistivity. Although the phenomenon was discovered experimentally in 1934,27 it was

not until 1964 that a firm understanding of the phenomenon was developed by Kondo.28

Historically, the first step towards the resolution of this phenomenon came with a suggestion

by Anderson that the system could be modeled as an itinerant band of electron states inter-

acting with local dilute magnetic moments associated with the ion impurities.29 Anderson

proposed that the integrity of the local moment was protected by a large local Coulomb

repulsion which inhibited multiple occupancy of the orbital state – a relative of the Hubbard

U -interaction. Such behavior is encoded in the Anderson impurity Hamiltonian

Ĥ =
∑
kσ

[
εkc

†
kσckσ +

(
Vkd

†
σckσ + h.c.

)]
+

∑
σ

εdndσ + Und↑nd↓,

where the operators c†kσ create itinerant electrons of spin σ and εk in the metallic host

while the operators d†σ create electrons of spin σ on the local impurity at position r = 0.

Here we have used ndσ = d†σdσ to denote the number operator. While electrons in the band

27 de Haas, de Boer, and van den Berg, The electrical resistance of gold, copper, and lead at low temperatures,
Physica 1 (1934), 1115.

28 J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32 (1964), 37–69.
29 P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124 (1961), 41–53.
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are assumed to be characterized by a Fermi-liquid-like behavior, those associated with the

impurity state experience an on-site Coulomb interaction of a strength characterized by a

Hubbard energy U .

According to the experimental phenomenology, the Fermi level εF is assumed to lie some-

where in between the single-particle impurity level εd and εd + U so that, on average, the

site occupancy of the impurity is unity. Nevertheless, the matrix element coupling the local

moment to the itinerant electron states Vk = L−d/2
∫
drV (r)eik·r admits the existence of

virtual processes in which the site occupancy can fluctuate between zero and two. These

virtual fluctuations allow the spin on the impurity site to flip through exchange.

The discussion of the half-filled Hubbard system in Section 2.2 suggests that it will

be helpful to transform the Anderson impurity Hamiltonian to an effective theory which

exposes the low-energy content of the system. To this end, let us express the total wave-

function of the many-body Hamiltonian |ψ〉 as the sum of terms |ψ0〉, |ψ1〉, and |ψ2〉, where
the subscript denotes the occupancy of the impurity site. With this decomposition, the

Schrödinger equation for the Hamiltonian can be cast in matrix form,
∑2

n=0 Ĥmn|ψn〉 =

E|ψm〉, where Ĥmn = P̂mĤP̂n, and the operators P̂m project onto the subspace with m

electrons on the impurity (i.e. P̂0 =
∏

σ(1− ndσ), etc.).

(a) Construct the operators Ĥmn explicitly and explain why Ĥ20 = Ĥ02 = 0.

(b) Since we are interested in the effect of virtual excitations from the |ψ1〉 subspace, we may

proceed by formally eliminating |ψ0〉 and |ψ2〉 from the Schrödinger equation. Doing so,

show that the equation for |ψ1〉 can be written as[
Ĥ10

1

E − Ĥ00

Ĥ01 + Ĥ11 + Ĥ12
1

E − Ĥ22

Ĥ21

]
|ψ1〉 = E|ψ1〉.

(c) At this stage, the equation for |ψ1〉 is exact. Show that, when substituted into this

expression, an expansion to leading order in 1/U and 1/εd leads to the expression

Ĥ12
1

E − Ĥ22

Ĥ21 + Ĥ10
1

E − Ĥ00

Ĥ01 �

−
∑

kk′σσ′
VkV

∗
k′

(
c†kσck′σ′dσd

†
σ′

U + εd − εk′
+

ck′σ′c†kσd
†
σ′dσ

εk − εd

)
.

To obtain the first term in the expression, consider the commutation of (E − Ĥ22)
−1

with Ĥ21 and make use of the fact that the total operator acts upon the singly occupied

subspace. A similar line of reasoning will lead to the second term in the expression. Here

U + εd − εk′ and εd − εk denote the respective excitation energies of the virtual states.

Making use of the Pauli matrix identity, σαβ ·σγδ = 2δαδδβγ − δαβδγδ, it follows that

(exercise) ∑
σσ′

c†kσck′σ′d†σ′dσ = 2ŝkk′ · Ŝd +
1

2

∑
σσ′

c†kσck′σndσ′ ,

where Ŝd =
∑

αβ d
†
ασαβdβ/2 denotes the impurity spin 1/2 degree of freedom associated

with the impurity and ŝkk′ =
∑

αβ c
†
kασαβck′β/2. Combining this result with that
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obtained above, up to an irrelevant constant, the total effective Hamiltonian (including

Ĥ11) acting in the projected subspace, |ψ1〉 is given by

Ĥsd =
∑
kσ

εkc
†
kσckσ +

∑
kk′

[
2Jk,k′ ŝkk′ · Ŝd +Kk,k′

∑
σ

c†kσck′σ

]
,

where

Jk,k′ = V ∗
k′Vk

[
1

U + εd − εk′
+

1

εk − εd

]
,

Kk,k′ =
V ∗
k′Vk

2

[
1

εk − εd
− 1

U + εd − εk′

]
.

With both U + εd and εd greatly in excess of the typical excitation energy scales, one

may safely neglect the particular energy dependence of the parameters Jk,k′ and Kk,k′ .

In this case, the exchange interaction Jk,k′ can be treated as local, the scattering term

Kk,k′ can be absorbed into a shift of the single-particle energy of the itinerant band, and

the positive (i.e. antiferromagnetic) exchange coupling can be accommodated through

the effective sd-Hamiltonian

Ĥsd =
∑
kσ

εkc
†
kσckσ + 2J Ŝd · ŝ(r = 0), (2.51)

where ŝ(r = 0) =
∑

kk′σσ′ c
†
kσσσσ′ck′σ′/2 denotes the spin density of the itinerant

electron band at the impurity site. To understand how the magnetic impurity affects

the low-temperature transport, we refer to Problem 5.5, where the sd-Hamiltonian is

explored in the framework of a diagrammatic perturbation theory in the spin interaction.

Answer:

(a) Since the diagonal elements Ĥmm leave the occupation number fixed, they may be

identified with the diagonal elements of the microscopic Hamiltonian, i.e.

Ĥ00 =
∑
k

εkc
†
kσckσ, Ĥ11 =

∑
k

εkc
†
kσckσ + εd, Ĥ22 =

∑
k

εkc
†
kσckσ + 2εd + U.

The off-diagonal terms arise from the hybridization between the free electron states and

the impurity. Since the coupling involves only the transfer of single electrons, Ĥ02 =

Ĥ20 = 0 and

Ĥ10 =
∑
kσ

Vkd
†
σ(1− ndσ̄)ckσ, Ĥ21 =

∑
kσ

Vkd
†
σndσ̄ckσ,

where σ̄ =↑ for σ =↓ and vice versa, Ĥ01 = Ĥ†
10 and Ĥ12 = Ĥ†

21.

(b) Using the fact that Ĥ00|ψ0〉+Ĥ01|ψ1〉 = E|ψ0〉, one may set |ψ0〉 = (E−Ĥ00)
−1Ĥ01|ψ1〉

and, similarly, |ψ2〉 = (E − Ĥ22)
−1Ĥ21|ψ1〉. Then, substituting into the equation for

|ψ1〉, one obtains the required expression.
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(c) Making use of the expressions from part (a), we have

Ĥ12
1

E − Ĥ22

Ĥ21 =
∑

kk′σσ′
VkV

∗
k′ c

†
kσndσ̄dσ

1

E − Ĥ22

d†σ′ndσ̄′ck′σ′ ,

Ĥ10
1

E − Ĥ00

Ĥ01 =
∑

kk′σσ′
VkV

∗
k′ d†σ(1− ndσ̄)ckσ

1

E − Ĥ00

c†k′σ′(1− ndσ̄′)dσ′ .

Then, substituting for Ĥ22 and Ĥ00 from (a), and commuting operators, we have

1

E − Ĥ22

d†σ′ndσ̄′ck′σ′ = − d†σ′ndσ̄′ck′σ′

U + εd − εk′

[
1− E − εd − Ĥ00

U + εd − εk′

]−1

,

1

E − Ĥ00

c†k′σ′(1− ndσ̄′)dσ′ = −c†k′σ′(1− ndσ̄′)dσ′

εk′ − εd

[
1− E − εd − Ĥ00

εk′ − εd

]−1

.

Then expanding in large U and εd, to leading order we obtain

Ĥ12
1

E − Ĥ22

Ĥ21 + Ĥ10
1

E − Ĥ00

Ĥ01 �

−
∑

kk′σσ′
VkV

∗
k′

(
c†kσnd,σ̄dσd

†
σ′ndσ̄′ck′σ′

U + εd − εk′
+

d†σ(1− nd,σ̄)ckσc
†
k′σ′(1− ndσ̄′)dσ′

εk′ − εd

)
.

Finally, noting that this operator acts upon the singly-occupied subspace spanned by

|ψ1〉, we see that the factors involving ndσ are redundant and can be dropped. As a

result, swapping the momentum and spin indices in the second part of the expression,

we obtain the required expression.
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Feynman path integral

The aim of this chapter is to introduce the concept of the Feynman path integral. As well as develop-

ing the general construction scheme, particular emphasis is placed on establishing the interconnections

between the quantum mechanical path integral, classical Hamiltonian mechanics, and classical statistical

mechanics. The practice of path integration is discussed in the context of several pedagogical applica-

tions. As well as the canonical examples of a quantum particle in a single and a double potential well,

we discuss the generalization of the path integral scheme to tunneling of extended objects (quantum

fields), dissipative and thermally assisted quantum tunneling, and the quantum mechanical spin.

In this chapter we temporarily leave the arena of many-body physics and second quantiza-

tion and, at least superficially, return to single-particle quantum mechanics. By establishing

the path integral approach for ordinary quantum mechanics, we will set the stage for the

introduction of field integral methods for many-body theories explored in the next chap-

ter. We will see that the path integral not only represents a gateway to higher-dimensional

functional integral methods but, when viewed from an appropriate perspective, already

represents a field theoretical approach in its own right. Exploiting this connection, various

concepts of field theory, namely stationary phase analysis, the Euclidean formulation of field

theory, instanton techniques, and the role of topology in field theory, are introduced in this

chapter.

3.1 The path integral: general formalism

Broadly speaking, there are two approaches to the formulation of quantum mechanics: the

“operator approach” based on the canonical quantization of physical observables and the

associated operator algebra, and the Feynman path integral.1 Whereas canonical quantiza-

tion is usually taught first in elementary courses on quantum mechanics, path integrals seem

to have acquired the reputation of being a sophisticated concept that is better reserved for

1 For a more extensive introduction to the Feynman path integral, one can refer to one of the many standard
texts including R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965),
J. W. Negele and H. Orland, Quantum Many Particle Systems (Addison-Wesley, 1988), and L. S. Schulman,
Techniques and Applications of Path Integration (Wiley, 1981). Alternatively, one may turn to the original
paper, R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948),
362–87. Historically, Feynman’s development of the path integral was motivated by earlier work by Dirac on
the connection between classical and quantum mechanics, P. A. M. Dirac, On the analogy between classical and
quantum mechanics, Rev. Mod. Phys. 17 (1945), 195–9.

95
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Richard P. Feynman 1918–88
Nobel Laureate in Physics in 1965
(with Sin-Itiro Tomonaga, and
Julian Schwinger) for “fundamen-
tal work in quantum electrody-
namics, with far-reaching conse-
quences for the physics of elemen-
tary particles.” He was also well
known for his unusual life style and for his popu-
lar books and lectures on mathematics and physics.
(Image c© The Nobel Foundation.)

advanced courses. Yet this treat-

ment is hardly justified! In fact,

the path integral formulation has

many advantages, most of which

explicitly support an intuitive under-

standing of quantum mechanics.

Moreover, integrals – even the

infinite-dimensional ones encoun-

tered below – are hardly more

abstract than infinite-dimensional

linear operators. Further merits of

the path integral include the following:

� Whereas the classical limit is not always easy to retrieve within the canonical formulation

of quantum mechanics, it constantly remains visible in the path integral approach. The

latter makes explicit use of classical mechanics as a “platform” on which to construct a

theory of quantum fluctuations. The classical solutions of Hamilton’s equation of motion

always remain a central ingredient of the formalism.2

� Path integrals allow for an efficient formulation of non-perturbative approaches to the

solution of quantum mechanical problems. Examples include the “instanton” formulation

of quantum tunneling discussed below. The extension of such methods to continuum

theories has led to some of the most powerful concepts of quantum field theory.

� The Feynman path integral represents a prototype of the higher-dimensional field integrals

to be introduced in the next chapter. However, even the basic “zero-dimensional” path

integral is of relevance to applications in many-body physics. Very often, one encounters

environments such as the superconductor, superfluid, or strongly correlated few-electron

devices where a macroscopically large number of degrees of freedom “lock” to form a

single collective variable. (For example, to a first approximation, the phase information

carried by the order parameter field in moderately large superconducting grains can often

be described in terms of a single phase degree of freedom, i.e. a “quantum particle” living

on the unit circle.) Path integral techniques have proven ideally suited to the analysis of

such systems.

What then is the basic idea of the path integral approach? More than any other formula-

tion of quantum mechanics, the path integral formalism is based on connections to classical

mechanics. The variational approach employed in Chapter 1 relied on the fact that classi-

cally allowed trajectories in configuration space extremize an action functional. A principal

constraint to be imposed on any such trajectory is energy conservation. By contrast, quan-

tum particles have a little bit more freedom than their classical counterparts. In particular,

by the Uncertainty Principle, energy conservation can be violated by an amount ΔE over a

time ∼ �/ΔE (here, and throughout this chapter, we will use � for clarity). The connection

2 For this reason, path integration has turned out to be an indispensable tool in fields such as quantum chaos
where the quantum manifestations of classically non-trivial behavior are investigated – for more details, see
Section 3.3.
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to action principles of classical mechanics becomes particularly apparent in problems of

quantum tunneling: a particle of energy E may tunnel through a potential barrier of height

V > E. However, this process is penalized by a damping factor ∼ exp(i
∫
barrier

dx p/�),

where p =
√

2m(E − V ), i.e. the exponent of the (imaginary) action associated with the

classically forbidden path.

These observations motivate the idea of a new formulation of quantum propagation: could

it be that, as in classical mechanics, the quantum amplitude A for propagation between

any two points in coordinate space is again controlled by the action functional – controlled

in a relaxed sense where not just a single extremal path xcl(t), but an entire manifold

of neighboring paths contribute? More specifically, one might speculate that the quantum

amplitude is obtained as A ∼
∑

x(t) exp(iS[x]/�), where
∑

x(t) symbolically stands for a

summation over all paths compatible with the initial conditions of the problem, and S

denotes the classical action. Although, at this stage, no formal justification for the path

integral has been presented, with this ansatz some features of quantum mechanics would

obviously be borne out correctly. Specifically, in the classical limit (� → 0), the quantum

mechanical amplitude would become increasingly dominated by the contribution to the

sum from the classical path xcl(t). This is because non-extremal configurations would be

weighted by a rapidly oscillating amplitude associated with the large phase S/� and would,

therefore, average to zero.3 Secondly, quantum mechanical tunneling would be a natural

element of the theory; non-classical paths do contribute to the net amplitude, but at the cost

of a damping factor specified by the imaginary action (as in the traditional formulation).

Fortunately, no fundamentally novel “picture” of quantum mechanics needs to be declared

to promote the idea of the path “integral”
∑

x(t) exp(iS[x]/�) to a working theory. As we

will see in the next section, the new formulation can be developed from the established

principles of canonical quantization.

3.2 Construction of the path integral

All information about an autonomous4 quantum system is contained in its time evolution

operator. A formal integration of the time-dependent Schrödinger equation i�∂t|Ψ〉 = Ĥ|Ψ〉
gives the time evolution operator

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉, Û(t′, t) = e−
i
�
Ĥ(t′−t)Θ(t′ − t). (3.1)

The operator Û(t′, t) describes dynamical evolution under the influence of the Hamiltonian

from a time t to time t′. Causality implies that t′ > t, as indicated by the step or Heaviside

Θ-function. In the real space representation we can write

Ψ(q′, t′) = 〈q′|Ψ(t′)〉 = 〈q′|Û(t′, t)Ψ(t)〉 =
∫

dq U(q′, t′; q, t)Ψ(q, t),

3 More precisely, in the limit of small �, the path sum can be evaluated by saddle-point methods, as detailed
below.

4 A system is classified as autonomous if its Hamiltonian does not explicitly depend on time. Actually the
construction of the path integral can be straightforwardly extended so as to include time-dependent problems.
However, in order to keep the introductory discussion as simple as possible, here we assume time independence.
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where U(q′, t′; q, t) = 〈q′|e− i
�
Ĥ(t′−t)|q〉Θ(t′ − t) defines the (q′, q)-component of the time

evolution operator. As the matrix element expresses the probability amplitude for a par-

ticle to propagate between points q and q′ in a time t′ − t, it is sometimes known as the

propagator of the theory.

The basic idea behind Feynman’s path integral approach is easy to formulate. Rather

than attacking the Schrödinger equation governing the time evolution for general times t,

one may first attempt to solve the much simpler problem of describing the time evolution

for infinitesimally small times Δt. In order to formulate this idea one must first divide the

time evolution into N � 1 time steps,

e−iĤt/� =
[
e−iĤΔt/�

]N
, (3.2)

where Δt = t/N . Albeit nothing more than a formal rewriting of Eq. (3.1), the representa-

tion (3.2) has the advantage that the factors e−iĤΔt/� (or, rather, their expectation values)

are small. (More precisely, if Δt is much smaller than the [reciprocal of the] eigenvalues of

the Hamiltonian in the regime of physical interest, the exponents are small in comparison

with unity and, as such, can be treated perturbatively.) A first simplification arising from

this fact is that the exponentials can be factorized into two pieces, each of which can be

readily diagonalized. To achieve this factorization, we make use of the identity

e−iĤΔt/� = e−iT̂Δt/�e−iV̂Δt/� +O(Δt2),

where the Hamiltonian Ĥ = T̂ + V̂ is the sum of a kinetic energy T̂ = p̂2/2m, and some

potential energy operator V̂ .5 (The following analysis, restricted for simplicity to a one-

dimensional Hamiltonian, is easily generalized to arbitrary spatial dimension.) The advan-

tage of this factorization is that the eigenstates of each factor e−iT̂Δt/� and e−iV̂Δt/� are

known independently. To exploit this fact we consider the time evolution operator factorized

as a product,

〈qf |
[
e−iĤΔt/�

]N
|qi〉 � 〈qf | ∧ e−iT̂Δt/�e−iV̂Δt/� ∧ · · · ∧ e−iT̂Δt/�e−iV̂Δt/�|qi〉, (3.3)

and insert at each of the positions indicated by the symbol “∧” the resolution of identity

id =

∫
dqn

∫
dpn |qn〉〈qn|pn〉〈pn|. (3.4)

Here |qn〉 and |pn〉 represent a complete set of position and momentum eigenstates respec-

tively, and n = 1, . . . , N serves as an index keeping track of the time steps at which the

unit operator is inserted. The rationale behind the particular choice (3.4) is clear. The

unit operator is arranged in such a way that both T̂ and V̂ act on the corresponding

5 Although this ansatz covers a wide class of quantum problems, many applications (e.g. Hamiltonians involving
spin or magnetic fields) do not fit into this framework. For a detailed exposition covering its realm of applicability,
we refer to the specialist literature such as, e.g., Schulman1.
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qi
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0N  N–1

phase space

t

(a) (b)

Figure 3.1 (a) Visualization of a set of phase space points contributing to the discrete time con-
figuration integral (3.5). (b) In the continuum limit, the set of points becomes a smooth curve.

eigenstates. Inserting Eq. (3.4) into (3.3), and making use of the identity 〈q|p〉 = 〈p|q〉∗ =

eiqp/�/(2π�)1/2, one obtains

〈qf |e−iĤt/�|qi〉 �
∫ N−1∏

n=1
qN=qf ,q0=qi

dqn

N∏
n=1

dpn
2π�

e
−iΔt

�

∑N−1
n=0

(
V (qn)+T (pn+1)−pn+1

qn+1−qn
Δt

)
. (3.5)

Thus, the matrix element of the time evolution operator has been expressed as a (2N − 1)-

dimensional integral over eigenvalues. Up to corrections of higher order in VΔt/� and

TΔt/�, the expression (3.5) is exact. At each “time step” tn = nΔt, n = 1, . . . , N , we are

integrating over a pair of coordinates xn ≡ (qn, pn) parameterizing the classical phase

space. Taken together, the points {xn} form an N -point discretization of a path in this

space (see Fig. 3.1).

To make further progress, we need to develop some intuition for the behavior of the

integral (3.5). We first notice that rapid fluctuations of the integration arguments xn as

a function of the index n are strongly inhibited by the structure of the integrand. When

taken together, contributions for which (qn+1 − qn)pn+1 > O(�) (i.e. when the phase of the

exponential exceeds 2π) tend to lead to a “random phase cancellation.” In the language of

wave mechanics, the superposition of partial waves of erratically different phases destruc-

tively interferes. The smooth variation of the paths that contribute significantly motivates

the application of a continuum limit analogous to that employed in Chapter 1.

To be specific, sending N → ∞ whilst keeping t = NΔt fixed, the formerly discrete set

tn = nΔt, n = 1, . . . , N , becomes dense on the time interval [0, t], and the set of phase space

points {xn} becomes a continuous curve x(t). In the same limit,

Δt
N−1∑
n=0

�→
∫ t

0

dt′,
qn+1 − qn

Δt
�→ ∂t′q |t′=tn ≡ q̇|t′=tn ,

while [V (qn) + T (pn+1)] �→ [T (p|t′=tn) + V (q|t′=tn)] ≡ H(x|t′=tn) denotes the classical

Hamiltonian. In the limit N → ∞, the fact that kinetic and potential energies are evaluated
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at neighboring time slices, n and n+ 1, becomes irrelevant.6 Finally,

lim
N→∞

∫ N−1∏
n=1

qN=qf ,q0=qi

dqn

N∏
n=1

dpn
2π�

≡
∫

q(t)=qf
q(0)=qi

Dx,

defines the integration measure of the integral.

INFO Integrals extending over infinite-dimensional integration measures like D(q, p) are gener-

ally called functional integrals (recall our discussion of functionals in Chapter 1). The question

of the way functional integration can be rigorously defined is far from innocent and represents

a subject of current, and partly controversial, mathematical research. In this book – as in most

applications in physics – we take a pragmatic point of view and deal with the infinite-dimensional

integration naively unless mathematical problems arise (which actually will not be the case!).

Then, applying these conventions to Eq. (3.5), one finally obtains

〈qf |e−iĤt/�|qi〉 =
∫

q(t)=qf
q(0)=qi

Dx exp

[
i

�

∫ t

0

dt′ (pq̇ −H(p, q))

]
. (3.6)

Equation (3.6) represents the Hamiltonian formulation of the path integral. The

integration extends over all possible paths through the classical phase space of the system

which begin and end at the same configuration points qi and qf respectively (cf. Fig. 3.1).

The contribution of each path is weighted by its Hamiltonian action.

INFO Remembering the connection of the Hamiltonian to the Lagrangian through the Legendre

transform, H(p, q) = pq̇ − L(p, q), the classical action of a trajectory t �→ q(t) is given by

S[p, q] =
∫ t

0
dt′ L(q, q̇) =

∫ t

0
dt′ [pq̇ −H(p, q)].

Before we turn to the discussion of the path integral (3.6), it is useful to recast the integral in

an alternative form which will be both convenient in applications and physically instructive.

The search for an alternative formulation is motivated by the resemblance of Eq. (3.6) to

the Hamiltonian formulation of classical mechanics. Given that, classically, Hamiltonian

and Lagrangian mechanics can be equally employed to describe dynamical evolution, it is

natural to seek a Lagrangian analog of Eq. (3.6). Focusing on Hamiltonians for which the

kinetic energy T (p) is quadratic in p, the Lagrangian form of the path integral can indeed

be inferred from Eq. (3.6) by straightforward Gaussian integration.

6 To see this formally, one may Taylor expand T (pn+1) = T (p(t′ +Δt))|t′=nΔt around p(t′). For smooth p(t′), all
but the zeroth-order contribution T (p(t′)) scale with powers of Δt, thereby becoming irrelevant. Note, however,
that all of these arguments are based on the assertion that the dominant contributions to the path integral are
smooth in the sense qn+1−qn ∼ O(Δt). A closer inspection, however, shows that in fact qn+1−qn ∼ O(

√
Δt) (see

Schulman1.) In some cases, the most prominent one being the quantum mechanics of a particle in a magnetic
field, the lowered power of Δt spoils the naive form of the continuity argument above, and more care must be
applied in taking the continuum limit. In cases where a “new” path integral description of a quantum mechanical
problem is developed, it is imperative to delay taking the continuum limit until the fluctuation behavior of the
discrete integral across individual time slices has been thoroughly examined.
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To make this point clear, let us rewrite the integral in a way that emphasizes its depen-

dence on the momentum variable p:

〈qf |e−iĤt/�|qi〉 =
∫

q(t)=qf
q(0)=qi

Dq e−
i
�

∫ t
0
dt′V (q)

∫
Dp e

− i
�

∫ t
0
dt′

(
p2

2m−pq̇
)
. (3.7)

The exponent is quadratic in p which means that we are dealing with the continuum gener-

alization of a Gaussian integral. Carrying out the integration by means of Eq. (3.13) below,

one obtains

〈qf |e−iĤt/�|qi〉 =
∫

q(t)=qf
q(0)=qi

Dq exp

[
i

�

∫ t

0

dt′L(q, q̇)
]
, (3.8)

where Dq = limN→∞
(

Nm
it2π�

)N/2 ∏N−1
n=1 dqn denotes the functional measure of the remaining

q-integration, and L(q, q̇) = mq̇2/2 − V (q) represents the classical Lagrangian. Strictly

speaking, the (finite-dimensional) integral formula (3.13) is not directly applicable to the

infinite-dimensional Gaussian integral (3.7). This, however, does not represent a substantial

problem as we can always rediscretize the integral (3.7), apply Eq. (3.13), and reinstate the

continuum limit after integration (exercise).

Together Eq. (3.6) and (3.8) represent the central results of this section. A quantum

mechanical transition amplitude has been expressed in terms of an infinite-dimensional

integral extending over paths through phase space, Eq. (3.6), or coordinate space, Eq. (3.8).

Johann Carl Friedrich Gauss
1777–1855
Worked in a wide variety of
fields in both mathematics and
physics including number the-
ory, analysis, differential geome-
try, geodesy, magnetism, astron-
omy, and optics. As well as sev-
eral books, Gauss published a number of memoirs
(reports of his experiences), mainly in the journal
of the Royal Society of Göttingen. However, in gen-
eral, he was unwilling to publish anything that could
be regarded as controversial and, as a result, some
of his most brilliant work was found only after his
death.

All paths begin (end) at the initial

(final) coordinate of the matrix ele-

ment. Each path is weighted by its

classical action. Notice in particular

that the quantum transition ampli-

tude has been cast in a form that

does not contain quantum mechani-

cal operators. Nonetheless, quantum

mechanics is still fully present! The

point is that the integration extends

over all paths and not just the sub-

set of solutions of the classical equa-

tions of motion. (The distinguished

role classical paths play in the path

integral will be discussed below in Section 3.2.) The two forms of the path integral, Eq. (3.6)

and Eq. (3.8), represent the formal implementation of the “alternative picture” of quantum

mechanics proposed heuristically at the beginning of the chapter.

INFO Gaussian integration: Apart from a few rare exceptions, all integrals encountered in

this book will be of Gaussian form. In most cases the dimension of the integrals will be large if

not infinite. Yet, after a bit of practice, it will become clear that high-dimensional representatives

of Gaussian integrals are no more difficult to handle than their one-dimensional counterparts.
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Therefore, considering the important role played by Gaussian integration in field theory, we will

here derive the principal formulae once and for all. Our starting point is the one-dimensional

integral (both real and complex). The ideas underlying the proofs of the one-dimensional formulae

will provide the key to the derivation of more complex functional identities that will be used

liberally throughout the remainder of the text.

One-dimensional Gaussian integral: The basic ancestor of all Gaussian integrals is the

identity

∫ ∞

−∞
dx e−

a
2
x2

=

�
2π

a
, Re a > 0. (3.9)

In the following we will need various generalizations of Eq. (3.9). Firstly, we have
∫∞
−∞ dx e−ax2/2x2 =√

2π/a3, a result established either by substituting a → a+ ε in Eq. (3.9) and expanding both

the left and the right side of the equation to leading order in ε, or by differentiating Eq. (3.9).

Often one encounters integrals where the exponent is not purely quadratic from the outset but

rather contains both quadratic and linear pieces. The generalization of Eq. (3.9) to this case

reads ∫ ∞

−∞
dx e−

a
2
x2+bx =

�
2π

a
e

b2

2a . (3.10)

To prove this identity, one simply eliminates the linear term by means of the change of variables

x → x + b/a which transforms the exponent −ax2/2 + bx → −ax2/2 + b2/2a. The constant

factor scales out and we are left with Eq. (3.9). Note that Eq. (3.10) holds even for complex

b. The reason is that as a result of shifting the integration contour into the complex plane no

singularities are encountered, i.e. the integral remains invariant.

Later, we will be concerned with the generalization of the Gaussian integral to complex argu-

ments. The extension of Eq. (3.9) to this case reads∫
d(z̄, z) e−z̄wz =

π

w
, Re w > 0,

where z̄ represents the complex conjugate of z. Here,
∫
d(z̄, z) ≡

∫∞
−∞ dx dy represents the

independent integration over the real and imaginary parts of z = x+ iy. The identity is easy to

prove: owing to the fact that z̄z = x2+y2, the integral factorizes into two pieces, each of which is

equivalent to Eq. (3.9) with a = w. Similarly, it may be checked that the complex generalization

of Eq. (3.10) is given by ∫
d(z̄, z) e−z̄wz+ūz+z̄v =

π

w
e

ūv
w , Rew > 0. (3.11)

More importantly ū and v may be independent complex numbers; they need not be related to

each other by complex conjugation (exercise).

Gaussian integration in more than one dimension: All of the integrals above have higher-

dimensional counterparts. Although the real and complex versions of the N -dimensional integral

formulae can be derived in a perfectly analogous manner, it is better to discuss them separately

in order not to confuse the notation.

(a) Real case: The multi-dimensional generalization of the prototype integral (3.9) reads∫
dv e−

1
2
vTAv = (2π)N/2detA−1/2, (3.12)
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whereA is a positive definite real symmetric N -dimensional matrix and v is an N -component

real vector. The proof makes use of the fact that A (by virtue of being symmetric) can be

diagonalized by orthogonal transformation, A = OTDO, where the matrix O is orthogonal,

and all elements of the diagonal matrix D are positive. The matrix O can be absorbed

into the integration vector by means of the variable transformation, v �→ Ov, which has

unit Jacobian, detO = 1. As a result, we are left with a Gaussian integral with exponent

−vTDv/2. Due to the diagonality of D, the integral factorizes into N independent Gaussian

integrals, each of which contributes a factor
√

2π/di, where di, i = 1, . . . , N , is the ith entry

of the matrix D. Noting that
�N

i=1 di = detD = detA, Eq. (3.12) is derived.

The multi-dimensional generalization of Eq. (3.10) reads

∫
dv e−

1
2
vTAv+jT ·v = (2π)N/2detA−1/2e

1
2
jTA−1j, (3.13)

where j is an arbitrary N -component vector. Equation (3.13) is proven by analogy with

Eq. (3.10), i.e. by shifting the integration vector according to v → v+A−1j, which does not

change the value of the integral but removes the linear term from the exponent, − 1
2
vTAv+

jT · v → − 1
2
vTAv+ 1

2
jTA−1j. The resulting integral is of the type (3.12), and we arrive at

Eq. (3.13).

The integral (3.13) not only is of importance in its own right, but also serves as a “generator”

of other useful integral identities. Applying the differentiation operation ∂2
jmjn |j=0 to the

left- and the right-hand side of Eq. (3.13), one obtains the identity7
∫
dv e−

1
2
vTAvvmvn =

(2π)N/2detA−1/2A−1
mn. This result can be more compactly formulated as

〈vmvn〉 = A−1
mn, (3.14)

where we have introduced the shorthand notation

〈· · · 〉 ≡ (2π)−N/2detA1/2

∫
dv e−

1
2
vTAv(· · · ), (3.15)

suggesting an interpretation of the Gaussian weight as a probability distribution.

Indeed, the differentiation operation leading to Eq. (3.14) can be iterated. Differentiating four

times, one obtains 〈vmvnvqvp〉 = A−1
mnA

−1
qp +A−1

mqA
−1
np +A−1

mpA
−1
nq . One way of memorizing the

structure of this – important – identity is that the Gaussian “expectation” value 〈vmvnvpvq〉
is given by all “pairings” of type (3.14) that can be formed from the four components vm. This

rule generalizes to expectation values of arbitrary order: 2n-fold differentiation of Eq. (3.13)

yields

〈vi1vi2 . . . vi2n〉 =
∑

pairings of
{i1,...,i2n}

A−1
ik1

ik2
. . . A−1

ik2n−1
ik2n

. (3.16)

This result is the mathematical identity underlyingWick’s theorem (for real bosonic fields),

to be discussed in more physical terms below.

7 Note that the notation A−1
mn refers to the mn-element of the matrix A−1.
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(b) Complex case: The results above are straightforwardly extended to multi-dimensional com-

plex Gaussian integrals. The complex version of Eq. (3.12) is given by∫
d(v†,v) e−v†Av = πNdetA−1, (3.17)

where v is a complex N -component vector, d(v†,v) ≡
�N

i=1 d Re vi d Im vi, and A is a

complex matrix with positive definite Hermitian part. (Remember that every matrix can be

decomposed into a Hermitian and an anti-Hermitian component, A = 1
2
(A+A†) + 1

2
(A−

A†).) For Hermitian A, the proof of Eq. (3.17) is analogous to that of Eq. (3.12), i.e. A is

unitarily diagonalizable,A = U†AU, the matricesU can be transformed into v, the resulting

integral factorizes, etc. For non-Hermitian A the proof is more elaborate, if unedifying, and

we refer to the literature for details. The generalization of Eq. (3.17) to exponents with linear

contributions reads

∫
d(v†,v) e−v†Av+w†·v+v†·w′

= πN detA−1ew
†A−1w′

. (3.18)

Note that w and w′ may be independent complex vectors. The proof of this identity mirrors

that of Eq. (3.13), i.e. by effecting the shift v† → v† +w†, v → v+w′.8 As with Eq. (3.13),

Eq. (3.18) may also serve as a generator of integral identities. Differentiating the integral

twice according to ∂2
w′

m,w̄n
|w=w′=0 gives

〈v̄mvn〉 = A−1
nm,

where 〈· · · 〉 ≡ π−N detA
∫
d(v†,v) e−v†Av(· · · ). The iteration to more than two derivatives

gives 〈v̄nv̄mvpvq〉 = A−1
pmA−1

qn +A−1
pnA

−1
qm and, eventually,

〈v̄i1 v̄i2 · · · v̄invj1vj2 · · · vjn〉 =
∑
P

A−1
j1iP1

· · ·A−1
jniPn

,

where
∑

P represents for the sum over all permutations of n integers.

Gaussian functional integration: With this preparation, we are in a position to investigate

the main practice of quantum and statistical field theory – the method of Gaussian functional

integration. Turning to Eq. (3.13), let us suppose that the components of the vector v parame-

terize the weight of a real scalar field on the sites of a one-dimensional lattice. In the continuum

limit, the set {vi} translates to a function v(x), and the matrix Aij is replaced by an operator

kernel or propagator A(x, x′). In this limit, the natural generalization of Eq. (3.13) is∫
Dv(x) exp

[
−1

2

∫
dx dx′ v(x)A(x, x′)v(x′) +

∫
dx j(x)v(x)

]

∝ (detA)−1/2exp

[
1

2

∫
dx dx′ j(x)A−1(x, x′)j(x′)

]
, (3.19)

8 For an explanation of why v and v† may be shifted independently of each other, cf. the analyticity remarks
made in connection with Eq. (3.11).
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where the inverse kernel A−1(x, x′) satisfies the equation

∫
dx′ A(x, x′)A−1(x′, x′′) = δ(x− x′′), (3.20)

i.e. A−1(x, x′) can be interpreted as the Green function of the operator A(x, x′). The notation

Dv(x) is used to denote the measure of the functional integral. Although the constant of propor-

tionality, (2π)N , left out of Eq. (3.19) is formally divergent in the thermodynamic limit N → ∞,

it does not affect averages that are obtained from derivatives of such integrals. For example, for

Gaussian distributed functions, Eq. (3.14) has the generalization

〈v(x)v(x′)〉 = A−1(x, x′).

Accordingly, Eq. (3.16) assumes the form

〈v(x1)v(x2) · · · v(x2n)〉 =
∑

pairings of
{x1,...,x2n}

A−1(xk1 , xk2) · · ·A
−1(xk2n−1 , xk2n). (3.21)

The generalization of the other Gaussian averaging formulae discussed above should be obvious.

To make sense of Eq. (3.19) one must interpret the meaning of the determinant, detA. When

the variables entering the Gaussian integral were discrete, the integral simply represented the

determinant of the (real symmetric) matrix. In the present case, one must interpret A as a

Hermitian operator having an infinite set of eigenvalues. The determinant simply represents the

product over this infinite set (see, e.g., Section 3.3).

Before turning to specific applications of the Feynman path integral, let us stay with the

general structure of the formalism and identify two fundamental connections of the path

integral to classical point mechanics and classical and quantum statistical mechanics.

Path integral and statistical mechanics

The path integral reveals a connection between quantum mechanics and classical (and

quantum) statistical mechanics whose importance to all areas of field theory and statis-

tical physics can hardly be exaggerated. To reveal this link, let us for a moment forget

about quantum mechanics and consider, by way of an example, a perfectly classical, one-

dimensional continuum model describing a “flexible string.” We assume that our string is

held under constant tension, and confined to a “gutter-like potential” (as shown in Fig. 3.2).

For simplicity, we also assume that the mass density of the string is pretty high, so that

its fluctuations are “asymptotically slow” (the kinetic contribution to its energy is negligi-

ble). Transverse fluctuations of the string are then penalized by its line tension, and by the

external potential.

Assuming that the transverse displacement of the string u(x) is small, the potential energy

stored in the string separates into two parts. The first arises from the line tension stored in

the string, and the second comes from the external potential. Starting with the former, a

transverse fluctuation of a line segment of length dx by an amount du leads to a potential
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x

u

V(u)

Figure 3.2 A string held under tension and confined to a potential well V .

energy of magnitude δVtension = σ[(dx2+du2)1/2−dx] � σdx (∂xu)
2/2, where σ denotes the

tension. Integrating over the length of the string, one obtains Vtension[∂xu] ≡
∫
δVtension =

1
2

∫ L

0
dx σ(∂xu(x))

2. The second contribution, arising from the external potential, is given

by Vexternal[u] ≡
∫ L

0
dx V (u(x)). Adding the two contributions, we find that the total energy

of the string is given by V = Vtension + Vexternal =
∫ L

0
dx [σ2 (∂xu)

2 + V (u)].

EXERCISE Find an expression for the kinetic energy contribution assuming that the string has

a mass per unit length of m. How does this model compare to the continuum model of lattice

vibrations discussed in Chapter 1? Convince yourself that in the limit m → ∞, the kinetic

contribution to the partition function Z = tr
[
e−βH

]
is inessential.

According to the general principles of statistical mechanics, the equilibrium properties of a

system are encoded in the partition function Z = tr
[
e−βV

]
, where “tr” denotes a summation

over all possible configurations of the system and V is the total potential energy functional.

Applied to the present case, tr →
∫
Du, where

∫
Du stands for the functional integration

over all configurations of the string u(x), x ∈ [0, L]. Thus, the partition function of the

string is given by

Z =

∫
Du exp

[
−β

∫ L

0

dx
(σ
2
(∂xu)

2 + V (u)
)]

. (3.22)

A comparison of this result with Eq. (3.8) shows that the partition function of the classical

system coincides with the quantum mechanical amplitude

Z =

∫
dq 〈q|e−itĤ/�|q〉

∣∣∣
�=1/β,
t=−iL

,

evaluated at an imaginary “time” t → −iτ ≡ −iL, where Ĥ = p̂2/2σ + V (q), and Planck’s

constant is identified with the “temperature,” � = 1/β. (Here we have assumed that our

string is subject to periodic boundary conditions.)

To see this explicitly, let us assume that we had reason to consider quantum propagation

in imaginary time, i.e. e−itĤ/� → e−τĤ/�, or t → −iτ . Assuming convergence (i.e. positivity

of the eigenvalues of Ĥ), a construction scheme perfectly analogous to the one outlined in

Section 3.1 would have led to a path integral formula of the structure (3.8). Formally, the

only differences would be (a) that the Lagrangian would be integrated along the imaginary

time axis t′ → −iτ ′ ∈ [0,−iτ ] and (b) that there would be a change of the sign of the kinetic
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energy term, i.e. (∂t′q)
2 → −(∂τ ′q)2. After a suitable exchange of variables, τ → L, � → 1/β,

the coincidence of the resulting expression with the partition function (3.22) is clear.

The connection between quantum mechanics and classical statistical mechanics outlined

above generalizes to higher dimensions. There are close analogies between quantum field

theories in d dimensions and classical statistical mechanics in d + 1. (The equality of the

path integral above with the one-dimensional statistical model is merely the d = 0 version

of this connection.) In fact, this connection turned out to be one of the major driving forces

behind the success of path integral techniques in modern field theory/statistical mechanics.

It offered, for the first time, a possibility to draw connections between systems that had

seemed unrelated.

However, the concept of imaginary times not only provides a bridge between quantum

and classical statistical mechanics, but also plays a role within a purely quantum mechanical

context. Consider the partition function of a single-particle quantum mechanical system,

Z = tr[e−βĤ ] =

∫
dq 〈q|e−βĤ |q〉.

The partition function can be interpreted as a trace over the transition amplitude

〈q|e−iĤt/�|q〉 evaluated at an imaginary time t = −i�β. Thus, real time dynamics and

quantum statistical mechanics can be treated on the same footing, provided that we allow

for the appearance of imaginary times.

Later we will see that the concept of imaginary or even generalized complex times plays an

important role in all of field theory. There is even some nomenclature regarding imaginary

times. The transformation t → −iτ is described as a Wick rotation (alluding to the

fact that a multiplication by the imaginary unit can be interpreted as a (π/2)-rotation

in the complex plane). Imaginary time representations of Lagrangian actions are termed

Euclidean, whereas the real time forms are called Minkowski actions.

INFO The origin of this terminology can be understood by considering the structure of the

action of, say, the phonon model (1.4). Forgetting for a moment about the magnitude of the

coupling constants, we see that the action has the bilinear structure ∼ xμg
μνxν , where μ = 0, 1,

the vector xμ = ∂μφ, and the diagonal matrix g = diag(−1, 1) is the two-dimensional version

of a Minkowski metric. (In three spatial dimensions, g would take the form of the standard

Minkowski metric of special relativity.) On Wick rotation of the time variable, the factor −1 in

the metric changes sign to +1, and g becomes a positive definite Euclidean metric. The nature

of this transformation motivates the notation above.

Once one has grown accustomed to the idea that the interpretation of time as an imaginary

quantity can be useful, yet more general concepts can be conceived. For example, one

may contemplate propagation along temporal contours that are neither purely real nor

purely imaginary but rather are generally complex. Indeed, it has turned out that path

integrals with curvilinear integration contours in the complex “time plane” find numerous

applications in statistical and quantum field theory.
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Semiclassics from the path integral

In deriving the two path integral representations (3.6) and (3.8) no approximations were

made. Yet the vast majority of quantum mechanical problems are unsolvable in closed form,

and it would be hoping for too much to expect that within the path integral approach this

situation would be any different. In fact no more than the path integrals of problems with a

quadratic Hamiltonian – corresponding to the quantum mechanical harmonic oscillator and

generalizations thereof – can be carried out in closed form. Yet what counts more than the

(rare) availability of exact solutions is the flexibility with which approximation schemes can

be developed. As to the path integral formulation, it is particularly strong in cases where

semiclassical limits of quantum theories are explored. Here, by “semiclassical,” we

mean the limit � → 0, i.e. the case where the theory is expected to be largely governed by

classical structures with quantum fluctuations superimposed.

To see more formally how classical structures enter the path integral approach, let us

explore Eq. (3.6) and (3.8) in the limit of small �. In this case the path integrals are

dominated by path configurations with stationary action. (Non-stationary contributions to

the integral imply massive phase fluctuations that largely average to zero.) Now, since the

exponents of the two path integrals (3.6) and (3.8) involve the classical action functionals

in their Hamiltonian and Lagrangian forms respectively, the extremal path configurations

are simply the solutions of the classical equations of motion, namely,

Hamiltonian: δS[x] = 0 ⇒ dtx = {H(x), x} ≡ ∂pH ∂qx− ∂qH ∂px,

Lagrangian: δS[q] = 0 ⇒ (dt∂q̇ − ∂q)L(q, q̇) = 0.

8
(3.23)

These equations are to be solved subject to the boundary conditions q(0) = qi and q(t) = qf .

(Note that these boundary conditions do not uniquely specify a solution, i.e. in general there

are many solutions to the equations (3.23). As an exercise, one may try to invent examples!)

Now the very fact that the stationary phase configurations are classical does not imply

that quantum mechanics has disappeared completely. As with saddle-point approximations

in general, it is not just the saddle-point itself that matters but also the fluctuations around

it. At least it is necessary to integrate out Gaussian (quadratic) fluctuations around the point

of stationary phase. In the case of the path integral, fluctuations of the action around the

stationary phase configurations involve non-classical (in that they do not solve the classical

equations of motion) trajectories through phase or coordinate space. Before exploring how

this mechanism works in detail, let us consider the stationary phase analysis of functional

integrals in general.

INFO Stationary phase approximation: Consider a general functional integral
∫
Dx e−F [x]

where Dx = limN→∞
�N

n=1 dxn represents a functional measure resulting from taking the con-

tinuum limit of some finite-dimensional integration space, and the “action” F [x] may be an

arbitrary complex functional of x (leading to convergence of the integral). The function resulting

from taking the limit of infinitely many discretization points, {xn}, is denoted by x : t �→ x(t)

(where t plays the role of the formerly discrete index n). Evaluating the integral above within a

stationary phase approximation amounts to performing the following steps:
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q
q

h1/2

t

Figure 3.3 Quantum fluctuations around a classical path in coordinate space (here we assume a
set of two-dimensional coordinates). Non-classical paths q fluctuating around a classical solution
qcl typically extend a distance O(h1/2). All paths begin and end at qi and qf , respectively.

1. Firstly, find the “points” of stationary phase, i.e. configurations x̄ qualified by the condition

of vanishing functional derivative (cf. Section 1.2),

DFx = 0 ⇔ ∀t : δF [x]

δx(t)

∣∣∣∣
x=x̄

= 0.

Although there may, in principle, be one or many solutions, for clarity we first discuss the

case in which the stationary phase configuration x̄ is unique.

2. Secondly, Taylor expand the functional to second order around x̄, i.e.

F [x] = F [x̄+ y] = F [x̄] +
1

2

∫
dt

∫
dt′ y(t′)A(t, t′)y(t) + · · · , (3.24)

where A(t, t′) = δ2F [x]
δx(t) δx(t′)

∣∣
x=x̄

denotes the second functional derivative. Due to the station-

arity of x̄, no first-order contribution can appear.

3. Thirdly, check that the operator Â ≡ {A(t, t′)} is positive definite. If it is not, there is a

problem – the integration over the Gaussian fluctuations y diverges. (In practice, where the

analysis is rooted in a physical context, such eventualities arise only rarely. In situations

where problems do occur, the resolution can usually be found in a judicious rotation of the

integration contour.) For positive definite Â, however, the functional integral over y can be

performed, after which one obtains
∫
Dx e−F [x] � e−F [x̄] det( Â

2π
)−1/2, (cf. the discussion of

Gaussian integrals above and, in particular, Eq. (3.19)).

4. Finally, if there are many stationary phase configurations, x̄i, the individual contributions

have to be added: ∫
Dx e−F [x] �

∑
i

e−F [x̄i] det

(
Âi

2π

)−1/2

. (3.25)

Equation (3.25) represents the most general form of the stationary phase evaluation of a (real)

functional integral.

EXERCISE Applied to the Gamma function, Γ(z + 1) =
∫∞
0

dx xze−x, with z complex, show

that the stationary phase approximation is consistent with Stirling’s approximation, i.e. Γ(s+

1) =
√
2πses(ln s−1).
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Applied to the Lagrangian form of the Feynman path integral, this program can be imple-

mented directly. In this case, the extremal field configuration q̄(t) is identified as the classical

solution associated with the Lagrangian, i.e. q̄(t) ≡ qcl(t). Defining r(t) = q(t) − qcl(t) as

the deviation of a general path, q(t), from a nearby classical path, qcl(t) (see Fig. 3.3), and

assuming for simplicity that there exists only one classical solution connecting qi with qf in

a time t, a stationary phase analysis obtains

〈qf |e−iĤt/�|qi〉 � eiS[qcl]/�

∫
r(0)=r(t)=0

Dr exp

[
i

2�

∫ t

0

dt′
∫

dt′′r(t′)
δ2S[q]

δq(t′) δq(t′′)

∣∣∣∣
q=qcl

r(t′′)

]
,

(3.26)

as the Gaussian approximation to the path integral (cf. Eq. (3.24)). For free Lagrangians

of the form L(q, q̇) = mq̇2/2 − V (q), the second functional derivative of the action can be

straightforwardly computed by means of the rules of functional differentiation formulated

in Chapter 1. Alternatively, one can obtain this result by simply expanding the action as a

Taylor series in the deviation r(t). As a result, one obtains (exercise)

1

2

∫ t

0

dt

∫
dt′ r(t)

δ2S[q]

δq(t) δq(t′)

∣∣∣∣
q=qcl

r(t′) = −1

2

∫
dt r(t)

[
m∂2

t + V ′′(qcl(t))
]
r(t), (3.27)

where V ′′(qcl(t)) ≡ ∂2
qV (q)|q=qcl represents an ordinary derivative of the potential function.

Thus, the Gaussian integration over r yields the square root of the determinant of the

operator m∂2
t +V ′′(qcl(t)) – interpreted as an operator acting in the space of functions r(t)

with boundary conditions r(0) = r(t) = 0. (Note that, as we are dealing with a differential

operator, the issue of boundary conditions is crucial.)

INFO More generally, Gaussian integration over fluctuations around the stationary phase con-

figuration obtains the formal expression

〈qf |e−iĤt/�|qi〉 � det

(
i

2π�

∂2S[qcl]

∂qi ∂qf

)1/2

e
i
�
S[qcl], (3.28)

as the final result for the transition amplitude evaluated in the semiclassical approxima-

tion. (In cases where there is more than one classical solution, the individual contributions have

to be added.) To derive this expression, one shows that the operator controlling the quadratic

action (3.27) fulfils some differential relations which can again be related back to the classical

action. While a detailed formulation of this calculation9 is beyond the scope of the present text,

the heuristic interpretation of the result is straightforward, as detailed below.

According to the rules of quantum mechanics P (qf , qi, t) = |〈qf |e−iĤt/�|qi〉|2 defines the prob-

ability density function for a particle injected at coordinate qi to arrive at coordinate qf after

a time t. In the semiclassical approximation, the probability density function assumes the form

P (qf , qi, t) = | det( 1
2π�

∂2S[qcl]
∂qi∂qf

)|. We can gain some physical insight into this expression from the

following consideration: for a fixed initial coordinate qi, the final coordinate qf(qi, pi) becomes

a function of the initial momentum pi. The classical probability density function P (qi, qf) can

9 See, e.g., Schulman1.
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then be related to the probability density function P̃ (qi, pi) for a particle to leave from the initial

phase space coordinate (qi, pi) according to

P (qi, qf)dqidqf = P (qi, qf(qi, pi))

∣∣∣∣det
(
∂qf
∂pi

)∣∣∣∣ dqidpi = P̃ (qi, pi)dqidpi.

Now, if we say that our particle actually left at the phase space coordinate (qi, pi), P̃ must be

singular at (qi, pi) while being zero everywhere else. In quantum mechanics, however, all we

can say is that our particle was initially confined to a Planck cell centered around (qi, pi) :

P̃ (qi, pi) = 1/(2π�)d. We thus conclude that P (qi, qf) = | det(∂pi/∂qf)|(2π�)−d. Finally, noticing

that pi = −∂qiS we arrive at the result of the semiclassical analysis above.
In deriving Eq. (3.28) we have restricted

ourselves to the consideration of quadratic fluc-

tuations around the classical paths. Under what

conditions is this semiclassical approximation

justified? Unfortunately there is no rigorous and

generally applicable answer to this question. For

finite �, the quality of the approximation depends

largely on the sensitivity of the action to path

variations. Whether or not the approximation is

legitimate is a question that has to be judged

from case to case. However, the asymptotic sta-

bility of the semiclassical approximation in the

limit � → 0 can be deduced simply from power counting. From the structure of Eq. (3.28) it

is clear that the typical magnitude of fluctuations r(t) scales as r ∼ (�/δ2qS)
1/2, where δ2qS is

a symbolic shorthand for the functional variation of the action. (Variations larger than that

lead to phase fluctuations > 2π, thereby being negligible.) Non-Gaussian contributions to the

action would have the structure ∼ �−1rnδnq S, n > 2. For a typical r, this is of the order

∼ δnq S/(δ
2
qS)

n/2 × �n/2−1. Since the S-dependent factors are classical (�-independent), these

contributions scale to zero as � → 0.

This concludes the conceptual part of the chapter. Before turning to the discussion of

applications of the path integral, let us first briefly summarize the main steps taken in its

construction.

Construction recipe of the path integral

Consider a general quantum transition amplitude 〈ψ|e−iĤt/�|ψ′〉, where t may be real,

purely imaginary, or generally complex. To construct a functional integral representation of

the amplitude:

1. Partition the time interval into N � 1 steps,

e−iĤt/� =
[
e−iĤΔt/�

]N
, Δt = t/N.
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2. Regroup the operator content appearing in the expansion of each factor e−iĤΔt/� accord-

ing to the relation

e−iĤΔt/� = 1 +Δt
∑
mn

cmnÂ
mB̂n +O(Δt2),

where the eigenstates |a〉, |b〉 of Â, B̂ are known and the coefficients cmn are c-numbers.

(In the quantum mechanical application above Â = p̂, B̂ = q̂.) This “normal ordering”

procedure emphasizes that distinct quantum mechanical systems may be associated with

the same classical action.

3. Insert resolutions of identity according to

e−iĤΔt/� =
∑
a,b

|a〉〈a|
(
1 + Δt

∑
mn

cmnÂ
mB̂n +O(Δt2)

)
|b〉〈b|

=
∑
a,b

|a〉〈a|e−iH(a,b)Δt/�|b〉〈b|+O(Δt2),

where H(a, b) is the Hamiltonian evaluated at the eigenvalues of Â and B̂.

4. Regroup terms in the exponent: due to the “mismatch” of the eigenstates at neighboring

time slices n and n+1, not only the Hamiltonians H(a, b), but also sums over differences

of eigenvalues, appear (cf. the last term in the action (3.5)).

5. Take the continuum limit.

3.3 Applications of the Feynman path integral

Having introduced the general machinery of path integration we now turn to the discussion

of specific applications. Our starting point will be an investigation of a low-energy quantum

particle confined to a single potential well, and the phenomenon of tunneling in a double

well. With the latter, we become acquainted with instanton techniques and the role of

topology in field theory. The ideas developed in this section are generalized further in the

investigation of quantum mechanical decay and quantum dissipation. Finally, we turn our

attention to the development of the path integral for quantum mechanical spin and, as a

case study, explore the semiclassical trace formulae for quantum chaos.

The simplest example of a quantum mechanical problem is that of a free particle

(Ĥ = p̂2/2m). Yet, within the framework of the path integral, this example, which can be

dealt with straightforwardly by elementary means, is far from trivial: the Gaussian func-

tional integral engaged in its construction involves divergences which must be regularized

by rediscretizing the path integral. Nevertheless, its knowledge will be useful as a means to

normalize the path integral in the applications below. Therefore, we leave it as an exercise

to show10

Gfree(qf , qi; t) ≡ 〈qf |e−
i
�

p̂2

2m t|qi〉Θ(t) =
( m

2πi�t

)1/2

e
i
�

m
2t (qf−qi)

2

Θ(t), (3.29)

10 Compare this result with the solution of a classical diffusion equation.
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where the Heaviside Θ-function reflects causality.11

EXERCISE Derive Eq. (3.29) by the standard methodology of quantum mechanics. (Hint: Insert

a resolution of identity and perform a Gaussian integral.)

EXERCISE Using the path integral, obtain a perturbative expansion for the scattering amplitude

〈p′|U(t → ∞, t′ → −∞)|p〉 of a free particle from a short-range central potential V (r). In

particular, show that the first-order term in the expansion recovers the Born scattering amplitude

−i�e−i(t−t′)E(p)/�δ(E(p)− E(p′))〈p′|V |p〉.

Quantum particle in a well

As a first application of the path integral, let us consider the problem of a quantum particle

in a one-dimensional potential well (see figure). The discussion of this example illustrates

how the semiclassical evaluation scheme discussed above works in practice. For simplicity

we assume the potential to be symmetric, V (q) = V (−q) with V (0) = 0. The quantity we

wish to compute is the probability amplitude that a particle injected at q = 0 returns after

a time t, i.e. with Ĥ = p̂2/2m + V (q̂), G(0, 0; t) ≡ 〈qf = 0|e−iĤt/�|qi = 0〉Θ(t). Drawing

on our previous discussion, the path integral representation of the transition amplitude is

given by

G(0, 0; t) =

∫
q(t)=q(0)=0

Dq exp

[
i

�

∫ t

0

dt′ L(q, q̇)
]
,

where L = mq̇2/2− V (q) represents the corresponding Lagrangian.

V

q

ω

Now, for a generic potential V (q), the path inte-

gral cannot be evaluated exactly. Instead, we wish

to invoke the semiclassical analysis outlined above.

Accordingly, we must first find solutions to the clas-

sical equation of motion. Minimizing the action with

respect to variations of q(t), one obtains the Euler–

Lagrange equation of motion mq̈ = −V ′(q). Accord-
ing to the Feynman path integral, this equation must

be solved subject to the boundary conditions q(t) = q(0) = 0. One solution is obvious,

namely qcl(t) = 0. Assuming that this is in fact the only solution,12 we obtain (cf. Eq. (3.26)

11 Motivated by its interpretation as a Green function, in the following we refer to the quantum transition prob-
ability amplitude by the symbol G (as opposed to U used above).

12 In general, this assumption is wrong. For smooth potentials V (q), a Taylor expansion of V at small q obtains
the harmonic oscillator potential, V (q) = V0 + mω2q2/2 + · · · . For times t that are commensurate with π/ω,
one has periodic solutions, qcl(t) ∝ sin(ωt) that start out from the origin at time t = 0 and revisit it at just
the right time t. In the next section we will see why the restriction to just the trivial solution was nonetheless
legitimate (for arbitrary times t).
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and (3.27))

G(0, 0; t) �
∫

r(0)=r(t)=0

Dr exp

[
− i

�

∫ t

0

dt′r(t′)
m

2

(
∂2
t′ + ω2

)
r(t′)

]
,

where, by definition, mω2 ≡ V ′′(0) is the second derivative of the potential at the origin.13

Note that, in this case, the contribution to the action from the stationary phase field con-

figuration vanishes: S[qcl] = 0. Following the discussion of Section 3.2, Gaussian functional

integration over r then leads to the semiclassical expansion

G(0, 0; t) � J det
(
−m(∂2

t + ω2)/2
)−1/2

, (3.30)

where the prefactor J absorbs various constant prefactors.

Operator determinants are usually most conveniently obtained by presenting them as a

product over eigenvalues. In the present case, the eigenvalues εn are determined by the

equation

−m

2

(
∂2
t + ω2

)
rn = εnrn,

which is to be solved subject to the boundary condition rn(t) = rn(0) = 0. A complete set of

solutions to this equation is given by,14 rn(t
′) = sin(nπt′/t), n = 1, 2, . . . , with eigenvalues

εn = m[(nπ/t)2 − ω2]/2. Applying this to the determinant, one finds

det
(
−m(∂2

t + ω2)/2
)−1/2

=

∞∏
n=1

[
m

2

((nπ
t

)2

− ω2

)]−1/2

.

To interpret this result, one must make sense of the infinite product (which even seems

divergent for times commensurate with π/ω). Moreover the value of the constant J has

yet to be determined. To resolve these difficulties, one may exploit the facts that (a) we

do know the transition amplitude Eq. (3.29) of the free particle system, and (b) the latter

coincides with the transition amplitude G in the special case where the potential V ≡ 0.

In other words, had we computed Gfree via the path integral, we would have obtained the

same constant J and, more importantly, an infinite product like the one above, but with

ω = 0. This allows the transition amplitude to be regularized as

G(0, 0; t) ≡ G(0, 0; t)

Gfree(0, 0; t)
Gfree(0, 0; t) =

∞∏
n=1

[
1−

(
ωt

nπ

)2
]−1/2 ( m

2πi�t

)1/2

Θ(t).

Then, with the help of the identity
∏∞

n=1[1 − (x/nπ)2]−1 = x/ sinx, one finally arrives at

the result

G(0, 0; t) �
√

mω

2πi� sin(ωt)
Θ(t). (3.31)

13 Those who are uncomfortable with functional differentiation can arrive at the same expression simply by sub-
stituting q(t) = qcl(t) + r(t) into the action and expanding in r.

14 To find the solutions of this equation, recall the structure of the Schrödinger equation of a particle in a one-
dimensional box of width L = t.
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In the case of the harmonic oscillator, the expansion of the potential necessarily truncates

at quadratic order and, in this case, the expression above is exact. (For a more wide-

ranging discussion of the path integral for the quantum harmonic oscillator system, see

Problem 3.5.) For a general potential, the semiclassical approximation effectively involves

the replacement of V (q) by a quadratic potential with the same curvature. The calculation

above also illustrates how coordinate space fluctuations around a completely static solution

may reinstate the zero-point fluctuations characteristic of quantummechanical bound states.

Double well potential: tunneling and instantons

q

V As a second application of the path integral let

us now consider the motion of a particle in a dou-

ble well potential (see figure). Our aim will be to

estimate the quantum probability amplitude for a

particle either to stay at the bottom of one of the

local minima or to go from one minimum to the

other. In doing so, it is understood that the energy

range accessible to the particle (i.e. ΔE ∼ �/t) is

well below the potential barrier height, i.e. quantum

mechanical transfer between minima is by tunnel-

ing. Here, in contrast to the single well system, it

is far from clear what kind of classical stationary

phase solutions may serve as a basis for a description of the quantum dynamics; there appear

to be no classical paths connecting the two minima. Of course one may think of particles

“rolling” over the potential hill. Yet, these are singular and, by assumption, energetically

inaccessible.

The key to resolving these difficulties is an observation, already made above, that the

time argument appearing in the path integral should be considered as a general complex

quantity that can (according to convenience) be set to any value in the complex plane. In

the present case, a Wick rotation to imaginary times will reveal a stationary point of the

action. At the end of the calculation, the real time amplitudes we seek can be obtained by

analytic continuation.

INFO The mechanism of quantum double (or multiple) well tunneling plays a role in a number

of problems of condensed matter physics. A prominent example is in the physics of amorphous

solids such as glasses.

d

VA caricature of a glass is shown in the figure. The

absence of long-range order in the system implies that

individual chemical bonds cannot assume their optimal

binding lengths. For understretched bonds this leads to

the formation of two approximately equal metastable min-

ima around the ideal binding axis (see the inset). The

energetically lowest excitations of the system are transi-

tions of individual atoms between nearly degenerate minima of this type, i.e. flips of atoms around
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the binding axis. A prominent phenomenological model15 describes the system by an ensemble

of quantum double wells of random center height and width. This model effortlessly explains the

existence of a vast system of metastable points in the landscape of low-energy configurations of

glassy systems.

To be specific, let us consider the imaginary time transition amplitudes

GE(a,±a; τ) ≡
〈
a
∣∣ exp(

−τ

�
Ĥ

) ∣∣± a
〉
= GE(−a,∓a; τ), (3.32)

where the coordinates ±a coincide with the two minima of the potential. From Eq. (3.32)

the real time amplitudes G(a,±a; t) = GE(a,±a; τ → it) can be recovered by the analytic

continuation τ → it. According to Section 3.2, the Euclidean path integral formulation

of the transition amplitudes is given by

GE(a,±a; τ) =

∫
q(0)=±a,q(τ)=a

Dq exp

[
−1

�

∫ τ

0

dτ ′
(m
2
q̇2 + V (q)

)]
, (3.33)

where the function q now depends on imaginary time. From Eq. (3.33) we obtain the sta-

tionary phase (or saddle-point) equations

−mq̈ + V ′(q) = 0. (3.34)

From this result, one can infer that, as a consequence of the Wick rotation, there is an

effective inversion of the potential, V → −V (shown dashed in the figure on page 115). The

crucial point is that, within the inverted potential landscape, the barrier has become a sink,

i.e. within the new formulation, there are classical solutions connecting the two points, ±a.

More precisely, there are three different types of classical solution that fulfill the condition

to be at coordinates ±a at times 0 and/or τ : (a) the solution wherein the particle rests

permanently at a;16 (b) the corresponding solution staying at −a; and, most importantly,

(c) the solution in which the particle leaves its initial position at ±a, accelerates through

the minimum at 0 and eventually reaches the final position ∓a at time τ . In computing

the transition amplitudes, all three types of path have to be taken into account. As to

(a) and (b), by computing quantum fluctuations around these solutions, one can recover

the physics of the zero-point motion described in Section 3.3 for each well individually.

(Exercise: Convince yourself that this is true!) Now let us see what happens if the paths

connecting the two coordinates are added to this picture.

15 P. W. Anderson, B. I. Halperin, and C. M. Varma, Anomalous low-temperature thermal properties of glasses
and spin glasses, Phil. Mag. 25 (1972), 1–9.

16 Note that the potential inversion answers a question that arose above, i.e. whether or not the classical solution
staying at the bottom of the single well was actually the only one to be considered. As with the double well,
we could have treated the single well within an imaginary time representation, whereupon the well would have
become a hill. Clearly, the boundary condition requires the particle to start and finish at the top of the hill, i.e.
the solution that stays there forever. By formulating the semiclassical expansion around that path, we would
have obtained Eq. (3.31) with t → −iτ , which, upon analytic continuation, would have led back to the real
time result.
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The instanton gas

The classical solution of the Euclidean equation of motion that connects the two poten-

tial maxima is called an instanton solution while a solution traversing the same path

but in the opposite direction (“−a → a” → “a → −a”) is called an anti-instanton. The

name “instanton” was invented by ’t Hooft with the idea that these objects are very sim-

ilar in their mathematical structure to “solitons,” particle-like solutions of classical field

theories. However, unlike solitons, they are structures in time (albeit Euclidean time); thus

the “instant-.” As another etymological remark, note that the syllable “-on” in “instanton”

hints at an interpretation of these states as a kind of particle. The background is that, as a

function of the time coordinate, instantons are almost everywhere constant save for a short

Gerardus ’t Hooft 1946–
Nobel Laureate in Physics in
1999, with Martinus J. G.
Veltman, “for elucidating the
quantum structure of elec-
troweak interactions in physics.”
Together, they were able to iden-
tify the properties of the W and
Z particles. The ’t Hooft–Veltman model allowed
scientists to calculate the physical properties of
other particles, including the mass of the top quark,
which was directly observed in 1995. (Image c© The
Nobel Foundation.)

region of variation (see below).

Alluding to the interpretation of

time as something akin to a spa-

tial dimension, these states can be

interpreted as a well-localized exci-

tation or, according to standard field

theoretical practice, a particle.17

To proceed, we must first compute

the classical action associated with

a single-instanton solution. Multiply-

ing Eq. (3.34) by q̇cl, integrating over

time (i.e. performing the first integral

of the equation of motion), and using the fact that, at qcl = ±a, ∂τqcl = V = 0, one finds

that
m

2
q̇2cl = V (qcl). (3.35)

With this result, one obtains the instanton action

Sinst =

∫ τ

0

dτ ′

mq̇2cl︷ ︸︸ ︷(m
2
q̇2cl + V (qcl)

)
=

∫
dτ ′

dqcl
dτ ′

(mq̇cl) =

∫ a

−a

dq (2mV (q))1/2. (3.36)

Notice that Sinst is determined solely by the functional profile of the potential V (i.e. does

not depend on the structure of the solution qcl).

Secondly, let us explore the structure of the instanton as a function of time. Defining the

second derivative of the potential at ±a by V ′′(±a) = mω2, Eq. (3.35) implies that, for large

times (where the particle is close to the right maximum), q̇cl = −ω(qcl−a), which integrates

to qcl(τ)
τ→∞−→ a−e−τω. Thus the temporal extension of the instanton is set by the oscillator

frequencies of the local potential minima (the maxima of the inverted potential) and, in

17 In addition to the original literature, the importance that has been attached to the instanton method has inspired
a variety of excellent and pedagogical reviews of the field. Of these, the following are highly recommended: A.
M. Polyakov, Quark confinement and topology of gauge theories, Nucl. Phys. B120 (1977), 429–58 – see also
A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987); S. Coleman, Aspects of Symmetry – Selected
Erice Lectures (Cambridge University Press, 1985), Chapter 7.
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cases where tunneling takes place on time scales much larger than that, can be regarded as

short (see Fig. 3.4).

q

q
V

– a

– a aa

τ

ω 

–1

Figure 3.4 Single-instanton configuration.

The confinement of the instanton configuration to a narrow interval of time has an impor-

tant implication – there must exist approximate solutions of the stationary equation involv-

ing further anti-instanton/instanton pairs (physically, the particle repeatedly bouncing to

and fro in the inverted potential). According to the general philosophy of the saddle-point

scheme, the path integral is obtained by summing over all solutions of the saddle-point

equations and hence over all instanton configurations. The summation over multi-instanton

configurations – termed the “instanton gas” – is substantially simplified by the fact that

individual instantons have short temporal support (events of overlapping configurations are

rare) and that not too many instantons can be accommodated in a finite time interval (the

instanton gas is dilute). The actual density is dictated by the competition between the con-

figurational “entropy” (favoring high density), and the “energetics,” the exponential weight

implied by the action (favoring low density) – see the estimate below.

In practice, multi-instanton configurations imply a transition amplitude

G(a,±a; τ) �
∑

n even/odd

Kn

∫ τ

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn An(τ1, . . . , τn), (3.37)

where An denotes the amplitude associated with n instantons, and we have taken into

account the fact that, in order to connect a with ±a, the number of instantons must be

even/odd. The n instanton bounces contributing to each An can take place at arbitrary times

τi ∈ [0, τ ], i = 1, . . . , n, and all these possibilities have to be added (i.e. integrated). Here K

denotes a (dimensionful) constant absorbing the temporal dimension [time]n introduced by

the time integrations, and An(τ1, . . . , τn) is the transition amplitude, evaluated within the

semiclassical approximation around a configuration of n instanton bounces at times 0 ≤ τn ≤
τn−1 ≤ · · · ≤ τ1 ≤ τ (see Fig. 3.5). In the following, we first focus on the transition amplitude

An, which controls the exponential dependence of the tunneling amplitude, returning later

to consider the prefactor K.

According to the general semiclassical principle, each amplitude An = An,cl × An,qu

factorizes into two parts: a classical contribution An,cl accounting for the action of the

instanton configuration; and a quantum contribution An,qu resulting from quadratic fluctu-

ations around the classical path. Focusing initially on An,cl we note that, at intermediate

times, τi � τ ′ � τi+1, where the particle rests on top of either of the maxima at ±a, no
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τ1 ττ5 τ 4 τ3 τ2

q

– a
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Figure 3.5 Dilute instanton gas configuration.

action accumulates (cf. the previous section). However, each instanton bounce has a finite

action Sinst (see Eq. (3.36)) and these contributions add up to give the full classical action,

An,cl(τ1, . . . , τn) = e−nSinst/�, (3.38)

which is independent of the time coordinates τi. (The individual instantons “do not know

of each other”; their action is independent of their relative position.)

As to the quantum factor An,qu, there are, in principle, two contributions. Whilst the

particle rests on either of the hills (the straight segments in Fig. 3.5), quadratic fluctuations

around the classical (i.e. spatially constant) configuration play the same role as the quantum

fluctuations considered in the previous section, the only difference being that we are working

in a Wick rotated picture. There it was found that quantum fluctuations around a classical

configuration which stays for a (real) time t at the bottom of the well result in a factor√
1/ sin(ωt) (the remaining constants being absorbed into the prefactor Kn). Rotating to

imaginary times, t → −iτ , one can infer that the quantum fluctuation accumulated during

the stationary time τi+1 − τi is given by

√
1

sin(−iω(τi+1 − τi))
∼ e−ω(τi+1−τi)/2,

where we have used the fact that, for the dilute configuration, the typical separation times

between bounces are much larger than the inverse of the characteristic oscillator scales of

each of the minima. (It takes the particle much longer to tunnel through a high barrier than

to oscillate in either of the wells of the real potential.)

Now, in principle, there are also fluctuations around the “bouncing” segments of the

path. However, due to the fact that a bounce takes a time of O(ω−1) � Δτ , where Δτ

represents the typical time between bounces, one can neglect these contributions (which is

to say that they can be absorbed into the prefactor K without explicit calculation). Within

this approximation, setting τ0 ≡ 0, τn+1 ≡ τ , the overall quantum fluctuation correction is

given by

An,qu(τ1, . . . , τn) =

n∏
i=0

e−ω(τi+1−τi)/2 = e−ωτ/2, (3.39)
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again independent of the particular spacing configuration {τi}. Combining Eq. (3.38) and

(3.39), one finds that

G(a,±a; τ) �
∞∑

n even/odd

Kne−nSinst/�e−ωτ/2

τn/n!︷ ︸︸ ︷∫ τ

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τn−1

0

dτn

= e−ωτ/2
∑

n even/odd

1

n!

(
τKe−Sinst/�

)n

. (3.40)

Finally, performing the summation, one obtains the transition amplitude

G(a,±a; τ) � Ce−ωτ/2

)
cosh

(
τKe−Sinst/�

)
,

sinh
(
τKe−Sinst/�

) *
(3.41)

where C is some factor that depends in a non-exponential way on the transition time.

Before we turn to a discussion of the physical content of this result, let us check the

self-consistency of our central working hypothesis – the diluteness of the instanton gas. To

this end, consider the representation of G in terms of the partial amplitudes (3.40). To

determine the typical number of instantons contributing to the sum, one may make use of

the fact that, for a general sum
∑

n cn of positive quantities cn > 0, the “typical” value

of the summation index can be estimated as 〈n〉 ≡
∑

n cnn/
∑

n cn. With the abbreviation

X ≡ τKe−Sinst/� the application of this estimate to our current sum yields

〈n〉 ≡
∑

n nX
n/n!∑

n X
n/n!

= X,

where we have used the fact that, as long as 〈n〉 � 1, the even/odd distinction in the sum

is irrelevant. Thus, we can infer that the average instanton density, 〈n〉/τ = Ke−Sinst/�, is

both exponentially small in the instanton action Sinst, and independent of τ , confirming the

validity of our diluteness assumptions above.

Finally, let us discuss how the form of the transition amplitude (3.41) can be understood

in physical terms. To this end, let us reconsider the basic structure of the problem we are

dealing with (see Fig. 3.6). While there is no coupling across the barrier, the Hamiltonian

has two independent, oscillator-like sets of low-lying eigenstates sitting in the two local

minima. Allowing for a weak inter-barrier coupling, the oscillator ground states (like all

higher states) split into a doublet of a symmetric and an antisymmetric eigenstate, |S〉 and
|A〉 with energies εA and εS , respectively. Focusing on the low-energy sector formed by the

ground state doublet, we can express the transition amplitudes (3.32) as

G(a,±a; τ) � 〈a|
(
|S〉e−εSτ/�〈S|+ |A〉e−εAτ/�〈A|

)
| ± a〉.

Setting εA/S = �ω/2±Δε/2, where Δε represents the tunnel-splitting, the symmetry prop-

erties |〈a|S〉|2 = |〈−a|S〉|2 = C/2 and 〈a|A〉〈A| − a〉 = −|〈a|A〉|2 = −C/2 imply that

G(a,±a; τ) � C

2

(
e−(�ω−Δε)τ/2� ± e−(�ω+Δε)τ/2�

)
= Ce−ωτ/2

)
cosh(Δετ/�),

sinh(Δετ/�).
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q
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ψ

Figure 3.6 Quantum states of the double well. The thick lines indicate energy levels of harmonic
oscillator states; the thin and dotted lines indicate exact symmetric (S) and antisymmetric (A)
eigenstates.

Comparing this expression with Eq. (3.41) the interpretation of the instanton calculation

becomes clear: at long times, the transition amplitude engages the two lowest states – the

symmetric and anti-symmetric combinations of the two oscillator ground states. The energy

splitting Δε accommodates the energy shift due to the tunneling between the two wells.

Remarkably, the effect of tunneling was obtained from a purely classical picture (formulated

in imaginary time!). The instanton calculation also produced a prediction for the tunnel

splitting of the energies, namely

Δε = �K exp(−Sinst/�),

which, up to the prefactor, agrees with the result of a WKB-type analysis of the tunnel

process.

Before leaving this section, some general remarks on instantons are in order:

� In hindsight, was the approximation scheme used above consistent? In particular, terms

at second order in � were neglected, while terms non-perturbative in � (the instanton)

were kept. Yet, the former typically give rise to a larger correction to the energy than

the latter. However, the large perturbative shift affects the energies of the symmetric and

antisymmetric states equally. The instanton contribution gives the leading correction to

the splitting of the levels. It is the latter that is likely to be of more physical significance.

� Secondly, it may – legitimately – appear as though the development of the machinery

above was a bit of an “overkill” for describing a simple tunneling process. As a matter

of fact, the basic result Eq. (3.41) could have been obtained in a simpler way by more

elementary means (using, for example, the WKB method). Why then did we discuss

instantons at such length? One reason is that, even within a purely quantum mechanical

framework, the instanton formulation of tunneling is much stronger than WKB. The
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latter represents, by and large, an uncontrolled approximation. In general it is hard to

tell whether WKB results are accurate or not. In contrast, the instanton approximation

to the path integral is controlled by a number of well-defined expansion parameters. For

example, by going beyond the semiclassical approximation and/or softening the diluteness

assumption, the calculation of the transition amplitudes can, in principle, be driven to

arbitrary accuracy.

� A second and, for our purposes, more important motivation is that instanton techniques

are of crucial importance within higher-dimensional field theories (here we regard the path

integral formulation of quantum mechanics as a (0 space + 1 time) = 1-dimensional field

theory). The reason is that instantons are intrinsically non-perturbative objects, which is

to say that instanton solutions to stationary phase equations describe a type of physics

that cannot be obtained by a perturbative expansion around a non-instanton sector of the

theory. (For example, the bouncing orbits in the example above cannot be incorporated

into the analysis by doing a kind of perturbative expansion around a trivial orbit.) This

non-perturbative nature of instantons can be understood by topological reasoning.

Relatedly, one of the features of the instanton analysis above was that the number of instan-

tons involved was a stable quantity; “stable” in the sense that by including perturbative

fluctuations around the n-instanton sector, say, one does not connect with the n + 2 sec-

tor. Although no rigorous proof of this statement has been given, it should be heuristically

clear: a trajectory involving n bounces between the hills of the inverted potential cannot be

smoothly connected with one of a different number. Suppose for instance we should forcibly

attempt to interpolate between two paths with different bounce numbers. Inevitably, some

of the intermediate configurations would be charged with actions that are far apart from

any stationary phase-like value. Thus, the different instanton sectors are separated by an

energetic barrier that cannot be penetrated by smooth interpolation and, in this sense, they

are topologically distinct.

INFO Fluctuation determinant: Our analysis above provided a method to extract the tun-

neling rate between the quantum wells to a level of exponential accuracy. However, in some

applications, it is useful to compute the exponential prefactor K. Although such a computation

follows the general principles outlined above and implemented explicitly for the single well, there

are some idiosyncrasies in the tunneling system that warrant discussion.

According to the general principles outlined in Section 3.2, integrating over Gaussian fluctua-

tions around the saddle-point field configurations, the contribution to the transition amplitude

from the n-instanton sector is given by

Gn = J det
 
−m∂2

τ + V ′′(qcl,n)
!
e−nSinst ,

where qcl,n(τ) represents an n-instanton configuration and J the normalization. Now, in the zero-

instanton sector, the evaluation of the functional determinant recovers the familiar harmonic

oscillator result, G(a, a, τ) = (mω/π�)
1
2 exp[−ωτ/2]. Let us now consider the one-instanton

sector of the theory. To evaluate the functional determinant, one must consider the spectrum

of the operator −m∂2
τ + V ′′(qcl,1). Differentiating the defining equation for qcl,1 Eq. (3.34), one

may confirm that  
−m∂2

τ + V ′′(qcl,1)
!
∂τqcl,1 = 0,
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i.e. the function ∂τqcl,1 presents a zero mode of the operator! Physically, the origin of the zero

mode is elucidated by noting that a translation of the instanton along the time axis, qcl,1(τ) →
qcl,1(τ+δτ), should leave the action approximately invariant. However, for small δτ , qcl,1(τ+δτ) �
qcl,1(τ) + δτ∂τqcl,1, i.e. to first order, the addition of the increment function ∂τqcl,1 leaves the

action invariant, and δτ is a “zero mode coordinate.”

With this interpretation, it becomes clear how to repair the formula for the fluctuation deter-

minant. While the Gaussian integral over fluctuations is controlled for the non-zero eigenvalues,

its execution for the zero mode must be rethought. Indeed, by integrating over the coordinate

of the instanton, that is
∫ τ

0
dτ0 = τ , one finds that the contribution to the transition amplitude

in the one-instanton sector is given by

Jτ

�
Sinst

2π�
det′

[
−m∂2

τ + V ′′(qcl,1)
]−1/2

e−Sinst ,

where the prime indicates the exclusion of the zero mode from the determinant, and the factor√
Sinst/2π� reflects the Jacobian associated with the change to a new set of integration variables

which contains the zero mode coordinate τ as one of its elements.18 To fix the, as yet, unde-

termined coupling constant J , we normalize by the fluctuation determinant of the (imaginary

time) harmonic oscillator, i.e. we use the fact that (cf. Section 3.3), for the harmonic oscillator,

the return amplitude evaluates to G(a, a, τ) = J det(m(−∂2
τ +ω2)/2)−1/2 = (mω/π�)1/2 e−ωτ/2,

where the first/second representation is the imaginary time variant of Eq. (3.30)/Eq.(3.31). Using

this result, and noting that the zero mode analysis above generalizes to the n-instanton sector,

we find that the pre-exponential constant K used in our analysis of the double-well problem

above affords the explicit representation

K = ω

�
Sinst

2π�

"
mω2det′

[
−m∂2

τ + V ′′(qcl,1)
]

det [−m∂2
τ +mω2]

#−1/2

.

Naturally, the instanton determinant depends sensitively on the particular nature of the potential

V (q). For the quartic potential V (q) = mω2(x2 − a2)2/8a2, it may be confirmed that

mω2det′
[
−m∂2

τ + V ′′(qcl,1)
]

det [−m∂2
τ +mω2]

=
1

12
,

while Sinst = (2/3)mωa2. For further details of the calculation, we refer to, e.g., Zinn-Justin

(1993).
18

Escape from a metastable minimum: “bounces”

The instanton gas approximation for the double-well system can be easily adapted to explore

the problem of quantum mechanical tunneling from a metastable state such as that pre-

sented by an unstable nucleus. In particular, suppose one wishes to estimate the “survival

probability” of a particle captured in a metastable minimum of a one-dimensional potential

such as that shown in Fig. 3.7.

According to the path integral scheme, the survival probability, defined by the probability

amplitude of remaining at the potential minimum qm, i.e. the propagator G(qm, qm; t), can

18 See J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, 1993) for an
explicit calculation of this Jacobian.
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Figure 3.7 Effective potential showing a metastable minimum together with the inverted potential
and a sketch of a bounce solution. To obtain the tunneling rate it is necessary to sum over a dilute
gas of bounce trajectories.

be evaluated by making use of the Euclidean time formulation of the Feynman path integral.

As with the double well, in the Euclidean time formalism the dominant contribution to the

transition probability arises from the classical path minimizing the action corresponding

to the inverted potential (see Fig. 3.7). However, in contrast to the double-well potential,

the classical solution takes the form of a “bounce” (i.e. the particle spends only a short

time away from the potential minimum – there is only one metastable minimum of the

potential). As with the double well, one can expect multiple bounce trajectories to present

a significant contribution. Summing over all bounce trajectories (note that in this case we

have an exponential series – no even/odd parity effect), one obtains the survival probability

G(qm, qm; τ) = Ce−ωτ/2 exp
[
τKe−Sbounce/�

]
.

Applying an analytic continuation to real time, one finds G(qm, qm; t) = Ce−iωt/2 exp[−Γ
2 t],

where the decay rate is given by Γ/2 = |K|e−Sbounce/�. (Note that on physical grounds we

can see that K must be imaginary.19)

EXERCISE Consider a heavy nucleus having a finite rate of α-decay. The nuclear forces can

be considered very short-range so that the rate of α particle emission is controlled by tunneling

under a Coulomb barrier. Taking the effective potential to be spherically symmetric with a deep

minimum core of radius r0 beyond which it decays as U(r) = 2(Z−1)e2/r where Z is the nuclear

charge, find the temperature of the nuclei above which α-decay will be thermally assisted if the

energy of the emitted particles is E0. Estimate the mean energy of the α particles as a function

of temperature.

EXERCISE A uniform electric field E is applied perpendicular to the surface of a metal with

work functionW . Assuming that the electrons in the metal describe a Fermi gas of density n, with

exponential accuracy, find the tunneling current at zero temperature (“cold emission”). Show

that, effectively, only electrons with energy near the Fermi level are tunneling. With the same

accuracy, find the current at finite temperature (“hot emission”). What is the most probable

energy of tunneling electrons as a function of temperature?

19 In fact, a more careful analysis shows that this estimate of the decay rate is too large by a factor of 2 (for
further details see, e.g., the discussion in Coleman.17
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Figure 3.8 Snapshot of a field configuration φ(x, t = const.) in a potential landscape with two
nearly degenerate minima. For further discussion, see the text.

Tunneling of quantum fields: “fate of the false vacuum”

Hitherto we have focused on applications of the Feynman path integral to the quantum

mechanics of isolated point-like particles. In this setting, the merit of the path integral

scheme over, say, standard perturbative methods or the “WKB” approach is perhaps not

compelling. Therefore, by way of motivation, let us present an example that builds on the

structures elucidated above and illustrates the power of the path integral method.

To this end, let us consider a theory involving a continuous classical field that can adopt

two homogeneous equilibrium states with different energy densities. To be concrete, one may

consider a harmonic chain confined to one or other minimum of an asymmetric quasi-one-

dimensional “gutter-like” double-well potential (see Fig. 3.8). When quantized, the state of

higher energy density becomes unstable through barrier penetration – it is said to be a “false

vacuum”.20 Specifically, drawing on our discussion of the harmonic chain in Chapter 1, let

us consider a quantum system specified by the Hamiltonian density

Ĥ =
π̂2

2m
+

ksa
2

2
(∂xφ̂)

2 + V (φ̂), (3.42)

where [π̂(x), φ̂(x′)] = −i�δ(x − x′). Here we have included a potential V (φ) which, in the

present case, assumes the form of a double well. The inclusion of a weak bias −fφ in V (φ)

identifies a stable and a metastable potential minimum. Previously, we have seen that, in

the absence of the confining potential, the quantum string exhibits low-energy collective

wave-like excitations – phonons. In the confining potential, these harmonic fluctuations are

rendered massive. However, drawing on the quantum mechanical principles established in

the single-particle system, one might assume that the string tunnels freely between the two

potential minima. To explore the capacity of the system to tunnel, let us suppose that, at

20 For a detailed discussion of the history and ramifications of this idea, we refer to the original insightful paper by
Sidney Coleman, Fate of the false vacuum: semiclassical theory, Phys. Rev. D 15 (1977), 2929–36. In fact, many
of the ideas developed in this work were anticipated in an earlier analysis of metastability in the context of
classical field theories by J. S. Langer, Theory of the condensation point, Ann. Phys. (NY) 41 (1967), 108–57.
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some time t = 0, the system adopts a field configuration in which the string is located in

the (metastable) minimum of the potential at, say, φ = −a. What is the probability that

the entire string of length L will tunnel across the barrier into the potential minimum at

φ = a in a time t?

INFO The tunneling of fields between nearly degenerate ground states plays a role in numerous

physical contexts. By way of example, consider a superheated liquid. In this context, the

“false” vacuum is the liquid state, the true one the gaseous phase. The role of the field is taken by

the local density distribution in the liquid. Thermodynamic fluctuations trigger the continuous

appearance of vapor bubbles in the liquid. For bubbles of too small a diameter, the gain in

volume energy is outweighed by the surface energy cost – the bubble will collapse. However,

for bubbles beyond a certain critical size, the energy balance is positive. The bubble will grow

and, eventually, swallow the entire mass density of the system; the liquid has vaporized or, more

formally, the density field tunneled21 from the false ground state into the true one.

More speculative (but also potentially more damaging) manifestations of the phenomenon

have been suggested in the context of cosmology:22 what if the big bang released our universe

not into its true vacuum configuration but into a state separated by a huge barrier from a more

favorable sector of the energy landscape. In this case, everything would depend on the tunneling

rate:

If this time scale is of the order of milliseconds, the universe is still hot when the false vacuum

decays. . . if this time is of the order of years, the decay will lead to a sort of secondary big bang

with interesting cosmological consequences. If this time is of the order of 109 years, we have

occasion for anxiety.

(S. Coleman)

Previously, for the point-particle system, we have seen that the transition probability

between the minima of the double well is most easily accessed by exploring the classical

field configurations of the Euclidean time action. In the present case, anticipating to some

extent our discussion of the quantum field integral in the next chapter, the Euclidean time

action associated with the Hamiltonian density (3.42) assumes the form23

S[φ] =

∫ T

0

dτ

∫ L

0

dx

[
m

2
(∂τφ)

2 +
ksa

2

2
(∂xφ)

2 + V (φ)

]
,

where the time integral runs over the interval [0, T = it]. Here, for simplicity, let us assume

that the string obeys periodic boundary conditions in space, namely φ(x+L, τ) ≡ φ(x, τ). To

estimate the tunneling amplitude, we will explore the survival probability of the metastable

state, imposing the boundary conditions φ(x, τ = 0) = φ(x, τ = T ) = −a on the path

integral. Once again, when the potential barrier is high, and the time T is long, one may

assume that the path integral is dominated by the saddle-point field configuration of the

21 At this point, readers should no longer be confused regarding the mentioning of “tunneling” in the context of
a classical system. Within the framework of the path integral, the classical partition sum maps onto the path
integral of a fictitious quantum system. It is this tunneling that we have in mind.

22 See note 25.
23 Those readers who wish to develop a more rigorous formulation of the path integral for the string may either

turn to the discussion of the field integral in the next chapter or, alternatively, may satisfy themselves of the
validity of the Euclidean action by (re-)discretizing the harmonic chain, presenting the transition amplitude as
a series of Feynman path integrals for each element of the string and, finally, taking the continuum limit.
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Euclidean action. In this case, varying the action with respect to the field φ(x, τ), one

obtains the classical equation of motion

m∂2
τφ+ ksa

2∂2
xφ = ∂φV (φ),

which must be solved subject to the boundary conditions above.

Now, motivated by our consideration of the point-particle problem, one might seek a

solution in which the string tunnels as a single rigid entity without “flexing.” However, it

is evident from the spatial translational invariance of the system that the instanton action

would scale with the system size L. In the infinite system L → ∞, such a trajectory would

therefore not contribute significantly to the tunneling amplitude. Instead, one must consider

a different type of field configuration in which the transfer of the chain is by degree. In this,

φ

τ

x

–a

a

elements of the string cross the barrier in a con-

secutive sequence as two outwardly propagat-

ing “domain walls” (see the figure, where the

emergence of such a double-kink configuration

is shown as a function of space and time; notice

the circular shape of the resulting space-time

droplet – a consequence of the rotational sym-

metry of the rescaled problem). Such a field con-

figuration can be motivated from symmetry con-

siderations by noting that, after rescaling x �→
vsx (where vs =

√
ksa2/m denotes the classical

sound wave velocity), the saddle-point equation

assumes the isotropic form m∂2φ = ∂φV (φ),

where ∂2 = ∂2
τ + ∂2

x. Then, setting r =
√
x2 + (τ − T/2)2, and sending (T, L) → ∞, the

space-time rotational symmetry suggests a solution of the form φ = φ(r), where φ(r) obeys

the radial diffusion equation

m∂2
rφ+

m

r
∂rφ = ∂φV,

with the boundary condition limr→∞ φ(r) = −a. This equation describes the one-

dimensional motion of a particle in a potential −V and subject to a strange “friction force”

−mr−1∂rφ whose strength is inversely proportional to “time” r.

To understand the profile of the bounce solution, suppose that at time r = 0 the particle

has been released from rest at a position slightly to the left of the (inverted) potential

maximum at a. After rolling through the potential minimum it will climb the potential hill

at −a. Now, the initial position may be fine-tuned in such a way that the viscous damping

of the particle compensates for the excess potential energy (which would otherwise make the

particle overshoot and disappear to infinity): there exists a solution where the particle starts

close to φ = a and eventually winds up at φ = −a, in accord with the imposed boundary

conditions. In general, the analytical solution for the bounce depends sensitively on the form

of the confining potential. However, while we assume that the well asymmetry imposed by

external potential −fφ is small, the radial equation may be considerably simplified. In this

limit, one may invoke a “thin-wall” approximation in which one assumes that the bounce
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configuration is described by a domain wall of thickness Δr, at a radius r0 � Δr separating

an inner region where φ(r < r0) = a from the outer region where φ(r > r0) = −a. In this

case, and to lowest order in an expansion in f , the action of the friction force is immaterial,

i.e. we may set m∂2
rφ = ∂φV – the very instanton equation formulated earlier for the

point-particle system!

Then, substituting back into S, one finds that the bounce (or kink-like) solution is char-

acterized by the Euclidean action

S = vs
[
2πr0Sinst − πr202af

]
,

where Sinst denotes the action of the instanton associated with the point-particle system

Eq. (3.36), and the last term accommodates the effect of the potential bias on the field

configuration. Crucially, one may note that the instanton contribution to the action scales

with the circumference of the domain wall in the space-time, while that of the potential

bias scales with the area of the domain. From this scaling dependence, it is evident that,

however small the external force f , at large enough r0 the contribution of the second term

will always outweigh the first and the string will tunnel from the metastable minimum to

the global minimum of the potential. More precisely, the optimal size of domain is found by

minimizing the action with respect to r0. In doing so, one finds that r0 = Sinst/2af . Then,

substituting back into the action, one obtains the tunneling rate

Γ ∼ exp

[
−1

�

πvsS
2
inst

2af

]
.

From this result, one can conclude that, in the absence of an external force f , the tunneling

of the string across the barrier is completely quenched! In the zero-temperature unbiased

system, the symmetry of the quantum Hamiltonian is broken: the ground state exhibits a

two-fold degeneracy in which the string is confined to one potential minimum or another.

The ramifications of the tunneling amplitude suppression can be traced to the statis-

tical mechanics of the corresponding classical system. As emphasized in Section 3.2, any

Euclidean time path integral of a d-dimensional system can be identified with the statistical

mechanics of a classical system (d + 1)-dimensional problem. In the double-well system,

the Euclidean time action of the point-particle quantum system is isomorphic to the one-

dimensional realization of the classical Ising ferromagnet, namely

βHIsing =

∫ L

0

dx

[
t

2
m2 + um4 +

K

2
(∇m)2

]
. (3.43)

Translated into this context, the saddle-point (or mean-field) analysis suggests that the

system will exhibit a spontaneous symmetry breaking to an ordered phase (m �= 0) when

the parameter t (the reduced temperature) becomes negative. However, drawing on our

analysis of the quantum point-particle system, in the thermodynamic limit, we see that fluc-

tuations (non-perturbative in temperature) associated with instanton field configurations

of the Hamiltonian m(x) may restore the symmetry of the system and destroy long-range

order at any finite temperature 1/β. Whether this happens or not depends on the compe-

tition between the energy cost of instanton creation and the entropy gained by integrating

over the instanton zero-mode coordinates. It turns out that, in d = 1, the latter wins, i.e.
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the system is “disordered” at any finite temperature. In contrast, for d ≥ 2, the creation

of instantons is too costly, i.e. the system will remain in its energetically preferred ground

state. For further discussion of these issues, we refer to the Info block in Section 8.1.1.

Tunneling in a dissipative environment

In the condensed matter context it is, of course, infeasible to completely divorce a system

from its environment. Indeed, in addition to the dephasing effect of thermal fluctuations,

the realization of quantum mechanical phenomena depends sensitively on the strength and

nature of the coupling to the external degrees of freedom. For example, the tunneling of an

atom from one interstitial site in a crystal to another is likely to be heavily influenced by its

coupling to the phonon degrees of freedom that characterize the crystal lattice. By exchang-

ing energy with the phonons, which act in the system as an external bath, a quantum

particle can lose its phase coherence and with it, its quantum mechanical character. Begin-

ning with the seminal work of Caldeira and Leggett,24 there have been numerous theoretical

investigations of the effect of an environment on the quantum mechanical properties of a

system. Such effects are particularly acute in systems where the quantum mechanical degree

of freedom is macroscopic, such as the magnetic flux trapped in a superconducting quantum

interference device (SQUID). In the following, we show that the Feynman path integral

provides a natural (and almost unique) setting in which the effects of the environment on

a microscopic or macroscopic quantum mechanical degree of freedom can be explored. For

further discussion of the response of quantum wave coherence to environmental coupling,

we refer to Chapter 11.

Before we begin, let us note that the phenomenon of macroscopic quantum tunneling

represents an extensive and still active area of research recently reinvigorated by the bur-

geoning field of quantum computation. By contrast, our discussion here will be necessarily

limited in scope, targeting a particular illustrative application, and highlighting only the

guiding principles. For a more thorough and detailed discussion, we refer the reader to one

of the many comprehensive reviews.25

Caldeira–Leggett model

Previously, we have discussed the ability of the Feynman path integral to describe quantum

mechanical tunneling of a particle q across a potential barrier V (q). In the following, we will

invoke the path integral to explore the capacity for quantum mechanical tunneling when the

particle is coupled to degrees of freedom of an external environment. Following Caldeira and

24 A. O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys.
Rev. Lett. 46 (1981), 211–14.

25 See, e.g., A. J. Leggett et al., Dynamics of the dissipative two-state system, Rev. Mod. Phys 59 (1976), 1–85,
and U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, 1993).
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Leggett’s original formulation, let us represent the environment by a bath of quantum

harmonic oscillators characterized by a set of frequencies {ωα},

Ĥbath[qα] =
N∑
α

[
p̂2α
2mα

+
mα

2
ω2
αq

2
α

]
,

where N is the number of bath-oscillators. For simplicity, let us suppose that, in the leading

approximation, the particle–bath coupling is linear in the bath coordinates and such that

Ĥc[q, qα] = −
∑N

α fα[q]qα, where fα[q] represents some function of the particle coordinate

q. Expressed as a Feynman path integral, the survival probability of a particle confined to

a metastable minimum at a position q = a, and coupled to an external environment, can

then be expressed as (� = 1)

〈a|e−iĤt/�|a〉 =
∫

q(0)=q(t)=a

Dq eiSpart.[q]

∫
Dqα eiSbath[qα]+iSc[q,qα],

where Ĥ = Ĥpart + Ĥbath + Ĥc denotes the total Hamiltonian of the system,

Spart[q] =

∫ t

0

dt′
[m
2
q̇2 − V (q)

]
, Sbath[qα] =

∫ t

0

dt′
∑
α

mα

2

[
q̇2α − ω2

αq
2
α

]
,

denote, respectively, the actions of the particle and bath, while

Sc[q, qα] = −
∫ t

0

dt′
(∑

α

fα[q]qα +
∑
a

fα[q]
2

2maω2
a

)

represents their coupling.26 Here we assume that the functional integral over qα(t) is taken

over all field configurations of the bath while, as before, the path integral on q(t) is subject

to the boundary conditions q(0) = q(t) = a.

To reveal the effect of the bath on the capacity for tunneling of the particle, it is instructive

to integrate out fluctuations qα and thereby obtain an effective action for q. Being Gaussian

in the coordinates qα, the integration can be performed straightforwardly. Although not

crucial, since we are dealing with quantum mechanical tunneling, it is useful to transfer to

the Euclidean time representation. Taking the boundary conditions on the fields qα(τ) to

be periodic on the interval [0, T−1 ≡ β], it may be confirmed that the Gaussian functional

integral over qα induces a time non-local interaction of the particle (exercise) 〈a|e−iĤt/�|a〉 =∫
Dq e−Seff [q] where a constant of integration has been absorbed into the measure and

Seff [q] = Spart[q] +
1

2T

∑
ωn,α

ω2
nfα[q(ωn)]fα[q(−ωn)]

mαω2
α(ω

2
α + ω2

n)
.

26 The second term in the coupling action has been added to keep the effect of the environment minimally invasive
(purely dissipative). If it were not present, the coupling to the oscillator degrees of freedom would effectively shift
the extremum of the particle potential, i.e. change its potential landscape. (Exercise: Substitute the solutions of
the Euler–Lagrange equations δqαS[q, qα] = 0 [computed for a fixed realization of q] into the action to obtain
the said shift.)
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Here, the sum
∑

ωn
runs over the discrete set of Fourier frequencies ωn = 2πnT with n

integer.27 By integrating out of the bath degrees of freedom, the particle action acquires an

induced contribution. To explore its effect on dissipation and tunneling, it is necessary to

specialize our discussion to a particular form of coupling.

In the particular case that the coupling to the bath is linear, i.e. fα[q(τ)] = cαq(τ), the

effective action assumes the form (exercise)

Seff [q] = Spart[q]− T

∫ β

0

dτ dτ ′ K(τ − τ ′)q(τ)q(τ ′),

where K(τ) =
∫∞
0

dω
π J(ω)Dω(τ), J(ω) =

π
2

∑
α

c2α
mαωα

δ(ω − ωα) and

Dω(τ) = −
∑
ωn

ω2
n

ω(ω2 + ω2
n)

eiωnτ ,

resembles the Green function of a boson with energy �ω. Physically, the non-locality of the

action is easily understood. By exchanging fluctuations with the external bath, a particle

can effect a self-interaction, retarded in time. Taken as a whole, the particle and the bath

maintain quantum phase coherence. However, when projected onto the particle degree of

freedom, the total energy of the system appears to fluctuate and the phase coherence of

the particle transport is diminished. To explore the properties of the dissipative action,

it is helpful to separate the non-local interaction according to the identity q(τ)q(τ ′) =

[q2(τ) + q2(τ ′)]/2 − [q(τ) − q(τ ′)]2/2. The first square-bracketed contribution presents an

innocuous renormalization of the potential V (q) and, applying equally to the classically

allowed motion and quantum tunneling, presents an unobservable perturbation. Therefore,

we will suppose that its effect has been absorbed into a redefinition of the particle potential

V (q). By contrast, the remaining contribution is always positive.

Either the particular form of the “spectral function” J(ω) may be obtained from an a

priori knowledge of the microscopic interactions of the bath or, phenomenologically, it can

be inferred from the structure of the classical damped equations of motion. For example, for

a system subject to an “ohmic” dissipation (where, in real time, the classical equations of

motion obtain a dissipative term −ηq̇ with a “friction coefficient” η), one has J(ω) = η|ω|
for all frequencies smaller than some characteristic cut-off (at the scale of the inverse Drude

relaxation time of the environment). By contrast, for a defect in a three-dimensional crystal,

interaction with acoustic phonons presents a frequency dependence of ω3 or ω5 depending

on whether ω is below or above the Debye frequency.

INFO Consider, for example, the coupling of a particle to a continuum of bosonic modes whose

spectral density J(ω) = ηω grows linearly with frequency. In this case,

K(ωn) =
ω2
n

π

∫ ∞

0

dω
J(ω)

ω(ω2 + ω2
n)

=
η

2
|ωn|,

27 More precisely, anticipating our discussion of the Matsubara frequency representation, we have defined
the Fourier decomposition on the Euclidean time interval T , namely q(τ) =

∑
m qmeiωmτ , qm =

T
∫ β
0

dτ q(τ)e−iωmτ , where ωm = 2πm/β with m integer.
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describes Ohmic dissipation of the particle. Fourier transforming this expression we obtain

K(τ) =
πTη

2

1

sin2(πTτ)

τ
T−1

� η

2πT

1

τ2
, (3.44)

i.e. a strongly time non-local “self-interaction” of the particle.

Disssipative quantum tunneling

To return to the particular problem at hand, previously we have seen that the tunneling rate

of a particle from a metastable potential minimum can be inferred from the extremal field

configurations of the Euclidean action: the bounce trajectory. To explore the effect of the

dissipative coupling, it is necessary to understand how it revises the structure of the bounce

solution. Now, in general, the non-local character of the interaction inhibits access to an

exact solution of the classical equation of motion. In such cases, the effect of the dissipative

coupling can be explored perturbatively or with the assistance of the renormalization group

(see the discussion in Section 8.2). However, by tailoring our choice of potential V (q), we

can gain some intuition about the more general situation.

To this end, let us consider a particle of mass m confined in a metastable minimum by a

(semi-infinite) harmonic potential trap (see figure),

V (q) =

{
mω2

cq
2/2, 0 < |q| ≤ a,

−∞, |q| > a.

Further, let us assume that the environment imparts an ohmic dissipation with a damping

or viscosity η. To keep our discussion general, let us consider the combined impact of

dissipation and temperature on the rate of tunneling from the potential trap. To do so,

following Langer28 it is natural to investigate the “quasi-equilibrium” quantum partition

function Z of the combined system. In this case, the tunneling rate appears as an imaginary

contribution to the free energy F = −T lnZ, namely Γ = −(2/�)ImF .

By drawing on the path integral, the quantum partition function of the system can be

presented as a functional integral Z =
∫
q(β)=q(0)

Dq e−Seff/� where, as we have seen above,

q

V

a

for ohmic coupling, the Euclidean action assumes the

form

Seff [q] =

∫ β

0

dτ
(m
2
q̇2 + V (q)

)
+

η

4π

∫ β

0

dτ dτ ′
(
q(τ)− q(τ ′)

τ − τ ′

)2

.

Once again, to estimate the tunneling rate, we will

suppose that the barrier is high and the temperature

is low, so that the path integral is dominated by stationary configurations of the action.

In this case, one may identify three distinct solutions. In the first place, the particle may

28 J. S. Langer, Theory of the condensation point, Ann. Phys. (NY) 41 (1967), 108–57.
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remain at q = 0 poised precariously on the maximum of the inverted harmonic potential.

Contributions from this solution and the associated harmonic fluctuations reproduce terms

in the quantum partition function associated with states of the closed harmonic potential

trap. Secondly, there exists a singular solution in which the particle remains at the minimum

of the inverted potential, i.e. perched on the potential barrier. The latter presents a negligible

contribution to the quantum partition function and can be neglected. Finally, there exists

a bounce solution in which the particle injected at a position q inside the well accelerates

down the inverted potential gradient, is reflected from the potential barrier, and returns to

the initial position q in a time β. While, in the limit β → ∞, the path integral singles out

the boundary condition q(0) = q(β) → 0, at finite β the boundary condition will depart

from 0 in a manner that depends non-trivially on the temperature. It is this general bounce

solution that governs the decay rate.

Since, in the inverted potential, the classical bounce trajectory stays within the interval

over which the potential is quadratic, a variation of the Euclidean action with respect to

q(τ) obtains the classical equation of motion

−mq̈ +mω2
cq +

η

π

∫ β

0

dτ ′
q(τ)− q(τ ′)
(τ − τ ′)2

= Aδ(τ − β/2),

where the term on the right-hand side of the equation imparts an impulse that changes

discontinuously the velocity of the particle, while the coefficient A is chosen to ensure

symmetry of the bounce solution on the Euclidean time interval. Turning to the Fourier

representation, the solution of the saddle-point equation then assumes the form

qn = ATe−iωnβ/2g(ωn), g(ωn) ≡ [m(ω2
n + ω2

c ) + η|ωn|]−1. (3.45)

Imposing the condition that q(τ = β/2) = a, one finds that A = a/f where f ≡ T
∑

n g(ωn).

Finally, the action of the bounce is given by

Sbounce =
1

2T

∑
n

(m(ω2
n + ω2

c ) + η|ωm|)|qn|2 =
a2

2f
. (3.46)

1. To make sense of these expressions, as a point of reference, let us first determine the

zero-temperature tunneling rate in the absence of dissipation, that is η → 0 and

β → ∞. In this case, the (Matsubara) frequency summation translates to the continuous

integral, f =
∫∞
−∞(dω/2π)g(ω) = (2mωc)

−1. Using this result, the bounce action (3.46)

takes the form Sbounce = mωca
2. As one would expect, the tunneling rate Γ ∼ e−Sbounce is

controlled by the ratio of the potential barrier height mω2
ca

2/2 to the attempt frequency

ωc. Also notice that the bounce trajectory is given by

q(τ) =
a

f

∫ ∞

−∞

dω

2π
eiω(τ−β/2)g(ω) = a e−ωc|τ−β/2|,

i.e., as expected from our discussion in section 3.3, the particle spends only a time 1/ωc

in the under-barrier region.

2. Now, restricting attention to the zero-temperature limit, let us consider the influence

of dissipation on the nature of the bounce solution and the capacity for tunneling.

Focusing on the limit in which the dynamics of the particle is overdamped, η � mωc,
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f =
∫∞
−∞ dωg(ω) � (2/πη) ln (η/mωc), which implies Sbounce = πηa2/(4 ln[η/(mωc)]). In

particular, this result shows that, in the limit η → ∞, the coupling of the particle to the

ohmic bath leads to an exponential suppression of the tunneling rate while only a weak

dependence on the jump frequency persists. Physically, this result is easy to rationalize:

under-barrier tunneling is a feature of the quantum mechanical system. In the transfer

of energy to and from the external bath, the phase coherence of the particle is lost. At

zero temperature, the tunneling rate becomes suppressed and the particle confined.

3. Let us now consider the influence of temperature on the tunneling rate when the

dissipative coupling is inactive, η → 0. In this case, the discrete frequency summation

takes the form29 f = T
∑

n g(ωn) = (coth(βωc/2)/2ωcm). Using this result, one obtains

the action Sbounce = mωca
2 tanh(βωc/2). In the low temperature limit β → ∞, Sbounce =

mωca
2 as discussed above. At high temperatures β → 0, as expected, one recovers a

classical activated dependence of the escape rate, namely Sbounce � βmω2
ca

2/2.

4. Finally, let us briefly remark on the interplay of thermal activation with ohmic dis-

sipation. Applying the the Euler–Maclaurin formula
∑∞

m=0 f(m) =
∫∞
0

dx f(x)+ f(0)
2 −

f ′(0)
12 + · · · to relate discrete sums over Matsubara frequencies to their zero-temperature

integral limits, one finds that Sbounce(T ) − Sbounce(T = 0) ∝ ηT 2. This shows that, in

the dissipative regime, an increase in temperature diminishes the tunneling rate with a

scale proportion to the damping.

This concludes our cursory discussion of the application of the Feynman path integral to

dissipative quantum tunneling. As mentioned above, our brief survey was able only to

touch upon the broad field of research. Those interested in learning more about the field of

macroscopic quantum tunneling are referred to the wider literature. To close this chapter,

we turn now to our penultimate application of the path integral – quantum mechanical spin.

Path integral for spin

The quantum mechanics of a spin-(1/2) particle is a standard example in introductory

courses. Indeed, there is hardly any other system whose quantum mechanics is as easy to

formulate. Given that, it is perhaps surprising that for a long time the spin problem defied

all attempts to cast it in path integral form: Feynman, the architect of the path integral,

did not succeed in incorporating spin into the new formalism. It took several decades to

fill this gap (for a review of the early history up to 1980, see Schulman’s text1), and a

fully satisfactory formulation of the subject was obtained no earlier than 1988. (The present

exposition follows closely the lines of the review by Michael Stone.30)

Why then is it so difficult to find a path integral of spin? In hindsight it turns out that

the spin path integral is in fact no more complex than any other path integral, it merely

appears to be a bit unfamiliar. The reason is that, on the one hand, the integrand of the path

integral is essentially the exponentiated classical action whilst, on the other, the classical

29 For details on how to implement the discrete frequency summation, see the Info block on page 170 below.
30 M. Stone, Supersymmetry and the quantum mechanics of spin, Nucl. Phys B 314 (1989), 577–86.
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mechanics of spin is a subject that is not standard in introductory or even advanced

courses. In other words, the path integral approach must, by necessity, lead to an unusual

object. The fact that the classical mechanics of spin is hardly ever mentioned is related

not only to the common view that spin is something “fundamentally quantum” but also to

the fact that the mechanics of a classical spin (see below) cannot be expressed within the

standard formulation of Hamiltonian mechanics, i.e. there is no formulation in terms of a set

of globally defined coordinates and equally many global momenta. It is therefore inevitable

that one must resort to the (less widely applied) symplectic formulation of Hamiltonian

mechanics.31 However, as we will see below, the classical mechanics of spin can nevertheless

be quite easily understood physically.

Besides attempting to elucidate the connections between quantum and classical mechanics

of spin, there is yet another motivation for discussing the spin path integral. Pretending that

we have forgotten essential quantum mechanics, we will formulate the path integral ignoring

the fact that spin quantum numbers are half integer or integer. The quantization of spin

will then be derived in hindsight, by way of a geometric consideration. In other words, the

path integral formulation demonstrates how quantum mechanical results can be obtained

by geometric rather than standard algebraic reasoning. Finally, the path integral of spin will

serve as a basic platform on which our analysis of higher-dimensional spin systems below

will be based.

A reminder of finite-dimensional SU(2)-representation theory

In order to formulate the spin path integral, it is necessary to recapitulate some facts

regarding the role of SU(2) in quantum mechanics. The special unitary group in two

dimensions, SU(2), is defined by SU(2) = {g ∈ Mat(2× 2,C)|g†g = 12, det g = 1}, where
12 is the two-dimensional unit matrix. Counting independent components one finds that the

group has three free real parameters or, equivalently, that its Lie algebra, su(2), is three-

dimensional. As we have seen, the basis vectors of the algebra – the group generators –

Ŝi, i = x, y, z, satisfy the closure relation [Ŝi, Ŝj ] = iεijkŜ
k, where εijk is the familiar fully

antisymmetric tensor. Another useful basis representation of su(2) is given by the spin

raising and lowering operators, Ŝ± = Ŝx ± iŜy. Again, as we have seen earlier, the

algebra {Ŝ+, Ŝ−, Ŝz} is defined by the commutation relations [Ŝ+, Ŝ−] = 2Ŝz, [Ŝz, Ŝ±] =
±Ŝ±.
Each group element can be uniquely parameterized in terms of the exponentiated algebra.

For example, in the Euler angle representation, the group is represented as

SU(2) =
4
g(φ, θ, ψ) = e−iφŜ3e−iθŜ2e−iψŜ3

∣∣∣φ, ψ ∈ [0, 2π], θ ∈ [0, π]
5
.

The Hilbert spaces HS of quantum spin are irreducible representation spaces of SU(2).

Within the spacesHS , SU(2) acts in terms of representation matrices (which will be denoted

by g) and the matrix representations of its generators Ŝi. The index S is the so-called weight

31 Within this formulation, the phase space is regarded as a differential manifold with a symplectic structure (cf.
Arnold’s text on classical mechanics: V. I. Arnold, Mathematical Methods of Classical Mechanics [Springer-
Verlag, 1978]). In the case of spin, this manifold is the 2-sphere S2.
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of the representation (physically: the total spin).32 Within each HS , there is a distinguished

state, a state of highest weight | ↑〉, which is defined as the (normalized) eigenstate of Ŝz

with maximum eigenvalue, S (physically: a spin state polarized in the 3-direction). Owing

to the irreducibility of the representation, each (normalized) state of the Hilbert space HS

can be obtained by applying the Euler-angle-parameterized elements of the representation

to the maximum weight state.

Being a compact group, SU(2) can be integrated over, i.e. it makes sense to define objects

like
∫
SU(2)

dg f(g), where f is some function of g and dg is a realization of a group measure.33

Among the variety of measures that can be defined in principle, the (unique)Haar measure

plays a distinguished role. It has the convenient property that it is invariant under left and

right multiplication of g by fixed group elements, i.e.

∀h ∈ SU(2) :

∫
dg f(gh) =

∫
dg f(hg) =

∫
dg f(g),

where, for notational simplicity, we have omitted the subscript in
∫
SU(2)

.

Construction of the path integral

With this background, we are now in a position to formulate the Feynman path integral.

To be specific, let us consider a particle of spin S subject to the Hamiltonian

Ĥ = B · Ŝ,

where B is a magnetic field and Ŝ ≡ (Ŝ1, Ŝ2, Ŝ3) is a vector of spin operators in the spin-

S representation. Our aim is to calculate the imaginary time path integral representation

of the partition function Z ≡ tr e−βĤ . In constructing the path integral we will follow

the general strategy outlined at the end of Section 3.2, i.e. the first step is to represent

Z as Z = tr (e−εĤ)N , where ε = β/N . Next, we have – the most important step in the

construction – to insert a suitably chosen resolution of identity between each of the factors

e−εĤ . A representation that will lead us directly to the final form of the path integral is

specified by

id = C

∫
dg |g〉〈g|, (3.47)

where “id” represents the unit operator in HS ,
∫
dg is a group integral over the Haar mea-

sure, C is some constant, and |g〉 ≡ g|↑〉 is the state obtained by letting the representation

matrix g act on the maximum weight state | ↑〉 (cf. the glossary of SU(2) representation

theory above).

Of course it remains to be verified that the integral (3.47) is indeed proportional to the

unit operator. That this is so follows from Schur’s lemma, which states that, if, and

only if, an operator Â commutes with all representation matrices of an irreducible group

32 The index S is defined in terms of the eigenvalues of the Casimir operator (physically: the total angular

momentum operator) Ŝ2 ≡ ∑
i Ŝ

2
i according to the relation ∀|s〉 ∈ HS : Ŝ2|s〉 = S(S + 1)|s〉.

33 To define group measures in a mathematically clean way, one makes use of the fact that (as a Lie group) SU(2)
is a three-dimensional differentiable manifold. Group measures can then be defined in terms of the associated
volume form (see the primer in differential geometry on page 537).
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representation (in our case the gs acting in the Hilbert space HS), Â is proportional to

the unit matrix. That the group above integral fulfills the global commutativity criterion

follows from the properties of the Haar measure: ∀h ∈ SU(2):

h

∫
dg |g〉〈g| =

∫
dg |hg〉〈g| Haar

=

∫
dg |hh−1g〉〈h−1g| =

∫
dg |g〉〈g|h.

Thus,
∫
dg |g〉〈g| is, indeed, proportional to the unit operator. The proportionality constant

appearing in Eq. (3.47) will not be of any concern to us – apart from the fact that it is

non-zero.34

Substituting the resolution of identity into the time-sliced partition function and making

use of the fact that

〈gi+1|e−εB·Ŝ|gi〉 � 〈gi+1|gi〉 − ε〈gi+1|B · Ŝ|gi〉
〈gi|gi〉=1

= 1− 〈gi|gi〉+ 〈gi+1|gi〉 − ε〈gi+1|B · Ŝ|gi〉

� exp
(
〈gi+1|gi〉 − 〈gi|gi〉 − ε〈gi+1|B · Ŝ|gi〉

)
,

one obtains

Z = lim
N→∞

∫
gN=g0

N∏
i=0

dgi exp

[
−ε

N−1∑
i=0

(
−〈gi+1|gi〉 − 〈gi|gi〉

ε
+ 〈gi+1|B · Ŝ|gi〉

)]
.

By taking the limit N → ∞, this can be cast in path integral form,

Z =

∫
Dg exp

[
−

∫ β

0

dτ
(
−〈∂τg|g〉+ 〈g|B · Ŝ|g〉

)]
, (3.48)

where the HS-valued function |g(τ)〉 is the continuum limit of |gi〉. Equation (3.48) is our

final, albeit somewhat over-compact, representation of the path integral. In order to give

this expression physical interpretation, we need to examine more thoroughly the meaning

of the states |g〉.
In the literature, the states |g〉 expressed in the Euler-angle representation

|g̃(φ, θ, ψ)〉 ≡ e−iφŜ3e−iθŜ2e−iψŜ3 | ↑〉 ,

are referred to as spin coherent states. Before discussing the origin of this terminology, it

is useful to explore the algebraic structure of these states. Firstly, note that the maximum

weight state | ↑〉 is, by definition, an eigenstate of Ŝ3 with maximum eigenvalue S. Thus,

|g̃(φ, θ, ψ)〉 ≡ e−iφŜ3e−iθŜ2 | ↑〉e−iψS and the angle ψ enters the coherent state merely as a

phase or gauge factor. By contrast, the two remaining angles θ and φ act through true rota-

tions. Now, the angular variables φ ∈ [0, 2π) and θ ∈ [0, π) define a standard representation

of the 2-sphere. In view of the fact that the states |g̃(φ, θ, ψ)〉 cover the entire Hilbert space

34 Actually, the constant C can be straightforwardly computed by taking the trace of Eq. (3.47), which leads to
C = (dimension of the representation space)/(volume of the group).
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HS , we are led to suspect that the latter bears similarity with a sphere.35 To substantiate

this view, let us compute the expectation values

ni ≡ 〈g̃(φ, θ, ψ)|Ŝi|g̃(φ, θ, ψ)〉, i = 1, 2, 3. (3.49)

To this end, we first derive an auxiliary identity which will spare us much of the trouble

that will arise in expanding the exponentials appearing in the definition of |g̃〉. By making

use of the identity (i �= j)

e−iφŜi Ŝje
iφŜi = e−iφ[Ŝi, ] Ŝj = Ŝj cosφ+ εijkŜk sinφ, (3.50)

where the last equality follows from the fact that cos x (sinx) contain x in even (odd) orders

and [Ŝj , ]
2Ŝi = Ŝi, it is straightforward to obtain (exercise) n = S(sin θ cosφ, sin θ sinφ, cos θ),

i.e. n is the product of S and a unit vector parameterized in terms of spherical coordinates.

ψ

φ

θ

This is the key to understanding the terminology

“spin coherent states.” The vectors |g̃(φ, θ, ψ)〉 repre-
sent the closest approximation of a classical angular

momentum state one can formulate in Hilbert space

(see figure).

Let us now see what happens if we employ the

Euler angle representation in formulating the

path integral. A first and important observation

is that the path integral is gauge invariant – in the

sense that it does not depend on the U(1)-phase, ψ.

As to the B-dependent part of the action, the gauge

invariance is manifest: Eq. (3.49) implies that

SB [φ, θ] ≡
∫ β

0

dτ 〈g̃|B · Ŝ|g̃〉 =
∫ β

0

dτ 〈g|B · Ŝ|g〉 = S

∫ β

0

dτ n ·B = SB

∫ β

0

dτ cos θ.

Here, we have introduced the gauge-independent part |g〉 of the state vector by setting |g̃〉 ≡
|g〉 exp(−iSψ) or, equivalently, |g(φ, θ)〉 ≡ e−iφŜ3e−iθŜ2 | ↑〉. Substituting this representation

into the first term of the action of Eq. (3.48), one obtains

Stop[φ, θ] ≡ −
∫ β

0

dτ 〈∂τ g̃|g̃〉 = −
∫ β

0

dτ 〈∂τe−iSψg|ge−iSψ〉

= −
∫ β

0

dτ (〈∂τg|g〉 − iS∂τψ〈g|g〉) = −
∫ β

0

dτ 〈∂τg|g〉, (3.51)

where the last equality holds because 〈g|g〉 = 1 is constant and ψ is periodic in β. We

thus conclude that the path integral does not depend on the gauge phase, i.e. it effectively

extends over paths living on the 2-sphere (rather than the entire group manifold SU(2)).

This finding is reassuring in the sense that a degree of freedom living on a sphere comes

35 There is a group theoretical identity behind this observation, namely the isomorphism SU(2) ∼= S2 × U(1),
where U(1) is the “gauge” subgroup contained in SU(2).
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close to what one might intuitively expect to be the classical counterpart of a quantum

particle of definite angular momentum.

Let us now proceed by exploring the action of the path integral. By using the auxiliary

identity (3.50) it is a straightforward matter to show that

Stop[φ, θ] = −
∫ β

0

dτ 〈∂τg|g〉 = −iS

∫ β

0

dτ ∂τφ cos θ = iS

∫ β

0

dτ ∂τφ(1− cos θ). (3.52)

Combining this with the B-dependent term discussed above, one obtains

S[θ, φ] = SB [φ, θ] + Stop[φ, θ] = S

∫ β

0

dτ [B cos θ + i(1− cos θ)∂τφ] , (3.53)

for the action of the path integral for spin.

EXERCISE Derive the Euler–Lagrange equations associated with this action. Show that they

are equivalent to the Bloch equations i∂τn = B×n of a spin with expectation value 〈S〉 = Sn

subject to a magnetic field. Here, n(φ, θ) ∈ S2 is the unit vector defined by the two angles φ, θ.

Analysis of the action

To formulate the second term in the action (3.53) in a more illuminating way, we note that

the velocity of the point n moving on the unit sphere is given by ṅ = θ̇êθ+ φ̇ sin θ êφ, where

(êr, êθ, êφ) form a spherical orthonormal system. We can thus rewrite Eq. (3.52) as

Stop[φ, θ] = iS

∫ β

0

dτ ṅ ·A = iS

∮
γ

dn ·A, (3.54)

where

A =
1− cos θ

sin θ
êφ. (3.55)

Notice that, in spite of its compact appearance, Eq. (3.54) does not represent a coordinate

invariant formulation of the action Stop. (The field A(φ, θ) explicitly depends on the coor-

dinates (φ, θ).) In fact, we will see in Chapter 9 that the action Stop cannot be expressed in

a coordinate invariant manner, for reasons deeply rooted in the topology of the 2-sphere.

A second observation is that Eq. (3.54) can be read as the (Euclidean time) action of a

particle of charge S moving under the influence of a vector potential A.36 Using standard

formulae of vector calculus37 one finds Bm ≡ ∇×A = er, i.e. our particle moves in a radial

magnetic field of constant strength unity. Put differently, the particle experiences the field

of a magnetic “charge” of strength 4π centered at the origin of the sphere.

INFO If you find this statement difficult to reconcile with the Maxwell equation ∇ · B = 0 ↔∫
S
B · dS = 0 for any closed surface S, notice that ∇ · B = ∇ · (∇ × A) = 0 holds only if A

is non-singular. However, the vector potential Eq. (3.55) is manifestly singular along the line

36 See, e.g., H. Goldstein, Classical Mechanics (Addison-Wesley, 1981).
37 See, e.g., J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
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(r, θ = π) through the south pole of the sphere. The physical picture behind this singularity

is as follows: imagine an infinitely thin solenoid running from r = ∞ through the south pole

of the sphere to its center. Assuming that the solenoid contains a magnetic flux 4π, the center

of the sphere becomes a source of magnetic flux, the so-called Dirac monopole. This picture

is consistent with the presence of a field B = er. It also explains the singularity of A along

the string. (Of course, the solenoidal construction does not lead to the prediction of a genuine

monopole potential: somewhere, at r = ∞, our auxiliary magnetic coil has to end, and this is

where the flux lines emanating from the point r = 0 terminate.) The postulate of a flux line at

the singularity of A merely helps to reconcile the presence of a radial magnetic field with the

principles of electrodynamics. However, as far as our present discussion goes, this extra structure

is not essential, i.e. we may simply interpret r = 0 as the position of a magnetic “charge.”

To explore the consequences of this phenomenon, we apply Stokes’ theorem to write

Stop[n] = iS

∮
γ

dn ·A = iS

∫
Aγ,n

dS · (∇×A) = iS

∫
Aγ,n

dS · er = iSAγ,n. (3.56)

Here, Aγ,n is the domain on the 2-sphere which (a) has the curve γ as its boundary, and

Sir George Gabriel Stokes
1819–1903
As Lucasian Professor of Math-
ematics at Cambridge, Stokes
etablished the science of hydro-
dynamics with his law of viscosity
(1851), describing the velocity of
a small sphere through a viscous
fluid. Furthermore, he investigated the wave theory
of light, named and explained the phenomenon
of fluorescence, and theorized an explanation
of the Fraunhofer lines in the solar spectrum.
(Figure reproduced from Sir George Gabriel Stokes
Memoirs presented to the Cambridge Philosophical
Society on the occasion of the Jubilee of Stokes
volume XVIII of the Transactions of the Cambridge
Philosophical Society, Cambridge University Press,
1900.)

(b) contains the north pole (see

figure on next page). The integral

produces the area of this surface

which we again denote by Aγ,n.

Curiously, the action Stop is but a

measure of the area bounded by the

curve γ : τ �→ n(τ). However, simple

as it is, this result should raise some

suspicion: by assigning a designated

role to the northern hemisphere of

the sphere some symmetry breaking,

not present in the original prob-

lem, has been introduced. Indeed,

we might have defined our action

by Stop[φ, θ] = iS
∮
γ
dn · A′ where

A′ = − 1+cos θ
sin θ êφ = A − 2∇φ differs

fromA only by a gauge transformation.38 The newly defined vector potential is non-singular

in the southern hemisphere, so that application of Stokes’ theorem leads to the conclusion

Stop[n] = −iS
∫
Aγ,s

dS · Bm = −iSAγ,s. Here, Aγ,s is the area of a surface bounded by γ

but covering the south pole of the sphere. The absolute minus sign is due to the outward

orientation of the surface Aγ,s.

38 You may, with some justification, feel uneasy about the fact that φ is not a true “function” on the sphere (or,
alternatively, about the fact that

∫
dn · ∇φ = φ(β) − φ(0) may be a non-vanishing multiple of 2π). We will

return to the discussion of this ambiguity shortly. (Notice that a similarly hazardous manipulation is performed
in the last equality of Eq. (3.52).)
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One has to concede that the result obtained for the action Stop depends on the cho-

sen gauge of the monopole vector potential! The difference between the northern and the

southern variant of our analysis is given by

iS

∫
Aγ,n

dS ·Bm + iS

∫
Aγ,s

dS ·Bm = iS

∫
S2

dS · er = 4πiS,

where we have made use of the fact that Aγ,n ∪Aγ,s = S2 is the full sphere. At first sight,

Aγ,n

γ

it looks as if our analysis has led us to a gauge-dependent,

and therefore pathological, result. Let us recall, however,

that physical quantities are determined by the exponenti-

ated action exp(−S[n]) and not by the action itself. Now,

S is either integer or half integer, which implies the factor

exp(4πiS) = 1 is irrelevant. In the operator representation

of the theory, spin quantization follows from the repre-

sentation theory of the algebra su(2). It is a “non-local”

feature, in the sense that the action of the spin operators on

all eigenstates has to be considered to fix the dimensionality

2S + 1 of HS . In hindsight, it is thus not too surprising that the same information is

encapsulated in a “global” condition (gauge invariance) imposed on the action of the path

integral.

Summarizing, we have found that the classical dynamics of a spin is that of a massless

point particle on a sphere coupled to a monopole field Bm. We have seen that the vector

potential of the field cannot be globally continuous on the full sphere. More generally, the

phase space S2 cannot be represented in terms of a global system of “coordinates and

momenta” which places it outside the scope of traditional treatments of classical mechanics.

This probably explains the failure of early attempts to describe the spin in terms of a path

integral or, equivalently, in terms of a Hamiltonian action.

In Chapter 9 we will use the path action (3.53) as a building block for our construction

of the field theory of higher-dimensional spin systems. However, before concluding this sec-

tion, let us make some more remarks on the curious properties of the monopole action Stop.

Unlike all other Euclidean actions encountered thus far, the action (3.54) is imaginary. In

fact, it will stay imaginary upon Wick rotation τ → it back to real times. More generally,

Stop is invariant under the rescaling τ → cτ , and invariant even under arbitrary reparam-

eterizations τ → g(τ) ≡ τ ′. This invariance is a hallmark of a topological term. Loosely

speaking (see Chapter 9 for a deeper discussion), a topological term is a contribution to

the action of a field theory that depends on the global geometry of a field configuration

rather than on its local structure. In contrast, “conventional” operators in field theoretical

actions measure the energy cost of dynamical or spatial field fluctuations. In doing so they

must relate to a specific spatio-temporal reference frame, i.e. they cannot be invariant under

reparameterization.

Summarizing our results, we have found that:



142 Feynman path integral

1. The classical action of a spin is one of a massless particle (there is no standard kinetic

energy term in Eq. (3.48)) moving on a unit sphere. The particle carries a magnetic

moment of magnitude S. It is coupled (a) to a conventional magnetic field via its magnetic

moment, and (b) to a monopole field via its orbital motion. Note that we have come,

finally, to a position which hints at the difficulties plaguing attempts to formulate a

classical mechanics of spin. The vector potential of a monopole, A, cannot be globally

defined on the entire sphere. The underlying physical reason is that, by the very nature of

the monopole (flux going radially outwards everywhere), the associated vector potential

must be singular at one point of the surface.39 As a consequence, the classical phase

space of the system, the sphere, cannot be covered by a global choice of coordinate

system. (Unlike most standard problems of classical mechanics there is no system of

globally defined “p”s and “q”s.) This fact largely spoils a description within the standard –

coordinate-oriented – formulation of Hamiltonian mechanics (cf. the discussion in the

article by Stone40).

2. Terms akin to the monopole contribution to the spin action appear quite frequently

within path integral formulations of systems with non-trivial topology (like the two-

sphere above). Depending on the particular context under consideration, one distinguishes

between Wess–Zumino–Witten (WZW) terms, θ-terms, Chern–Simons terms

and a few other terms of topological origin. What makes these contributions generally

important is that the value taken by these terms depends only on the topology of a field

configuration but not on structural details. For further discussion of phenomena driven

by non-trivial topological structures we refer to Chapter 9 below.

Trace formulae and quantum chaos

As a final application of the path integral, we turn now to the consideration of problems

in which the dynamics of the classical system is, itself, non-trivial. Introductory courses

on classical mechanics usually convey the impression that dynamical systems behave in

a regular and, at least in principle, mathematically predictable way. However, experience

shows that the majority of dynamical processes in nature do not conform to this picture.

Partly, or even fully, chaotic motion (i.e. motion that depends in a singular and, thereby, in

an essentially unpredictable way on initial conditions) is the rule rather than the exception.

In view of the drastic differences in the observable behavior of classically integrable and

chaotic systems, an obvious question arises: in what way does the quantum phenomenology

of chaotic systems differ from that associated with integrable dynamics? This question

defines the field of quantum chaos.

39 To better understand this point, consider the integral of A along an infinitesimal closed curve γ on the sphere. If
A were globally continuous, we would have two choices to transform the integral into a surface integral over B:
an integral over the “large” or the “small” surface area bounded by γ. The monopole nature of B would demand
that both integrals are proportional to the respective areas of the integration domain which, by assumption,
are different, ⇒ contradiction. The resolution of this paradox is that A must be discontinuous at one point on
the sphere, i.e. we cannot globally set B = ∇ × A, and the choice of the integration area is prescribed by the
condition that it must not encompass the singular point.

40 M. Stone, Supersymmetry and the quantum mechanics of spin, Nucl. Phys. B 314 (1986), 557–86.
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Understanding signatures of classically chaotic motion in quantum mechanics is an issue

not only of conceptual, but also of great practical relevance, impinging on areas such as

quantum electron transport in condensed matter systems. The inevitable presence of impuri-

ties and imperfections in any macroscopic solid renders the long-time dynamics of electronic

charge carriers chaotic. Relying on a loose interpretation of the Heisenberg principle, Δt ∼
�/ΔE, i.e. the relation between long-time dynamical behavior and small-scale structures in

energy, one would expect that signatures of chaotic quantum dynamics are especially impor-

tant in the low-energy response in which one is usually interested. This expectation has

been confirmed for innumerable observables related to low-temperature electronic transport

in solid state systems.

Disordered conducting media represent but one example of a wide class of dynamical

systems with long-time chaotic dynamics. Indeed, recent experimental advances have made

it possible to realize a plethora of effectively non-disordered chaotic dynamical systems in

condensed matter devices. For example, by employing modern semiconductor device tech-

nology, it has become possible to manufacture small two-dimensional conducting systems,

of a size O(< 1μm) and of almost any geometric shape. Here, the number of imperfections

can be reduced to a negligible minimum, i.e. electrons propagate ballistically along straight

trajectories, as with a billiard system. The smallness of the devices further implies that the

ratio between Fermi wavelength and system size is of O(10−1–10−3), so, while semiclassical

concepts will surely be applicable, the wave aspects of quantum propagation remain visi-

ble. In recent years, the experimental and theoretical study of electron transport in such

quantum billiards has emerged as a field in its own right.

How then can signatures of chaotic dynamics in quantum systems be sought? The most

fundamental characteristic of a quantum system is its spectrum. Although not a direct

observable, it determines the majority of properties accessible to measurement. On the other

hand, it is clear that the manifestations of chaos we are looking for must relate back to the

classical dynamical properties of the system. The question then is, how can a link between

classical mechanics and quantum spectra be drawn? This problem is tailor-made for analysis

by path integral techniques.

Semiclassical approximation to the density of states

The close connection between the path integral and classical mechanics should be evident

from the previous sections. However, to address the problem raised above, we still need to

understand how the path integral can be employed to analyze the spectrum of a quantum

system. The latter is described by the (single-particle) density of states

ρ(ε) = tr δ(ε− Ĥ) =
∑
a

δ(ε− εa), (3.57)

where {εa} represents the complete set of energy levels. To compute the sum, one commonly

employs a trick based on the Dirac identity,

lim
δ↘0

1

x+ iδ
= −iπδ(x) + P 1

x
, (3.58)
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where P(1/x) denotes the principal part of 1/x. By taking the imaginary part of Eq. (3.58),

Eq. (3.57) can be represented as ρ(ε) = − 1
π Im

∑
a

1
ε+−εa

= − 1
π Im tr ( 1

ε+−Ĥ
), where ε+ ≡

ε + iδ and the limit limδ↘0 is implicit. Using the identity 1/x+ = −i
∫∞
0

dt eix
+t, and

representing the trace tr Â =
∫
dq 〈q|Â|q〉 as a real space integral,

ρ(ε) =
1

π�

∫ ∞

0

dt Re tr(ei(ε
+−Ĥ)t/�) =

1

π�
Re

∫ ∞

0

dt eiε
+t/�

∫
dq〈q|e−iĤt/�|q〉, (3.59)

we have made the connection between the density of states and the quantum propagation

amplitude explicit.

Without going into full mathematical detail (see, for example, the work by Haake,41 for a

modern discourse) we now outline how this integral is evaluated by path integral techniques

within the semiclassical approximation. Although, for brevity, some of the more tricky steps

of the calculation are swept under the carpet, the sketch will be accurate enough to make

manifest some aesthetic connections between the spectral theory of chaotic quantum systems

and classically chaotic dynamics. (For a more formal and thorough discussion, we refer to

Haake
41

and Gutzwiller.42)

Making use of the semiclassical approximation (3.28) established earlier, and substituting

into Eq. (3.59), one obtains ρ(ε) � 1
π� Re

∫∞
0

dt eiε
+t/�

∫
dq A[qcl]e

i
�
S[qcl], where, following

our discussion in Section 3.2, we have defined A[qcl] ≡ det
(

i
2π�

∂2S[qcl]
∂q(0) ∂q(t)

)1/2

and qcl repre-

sents a closed classical path that begins at q at time zero and ends at the same coordinate

at time t. Again relying on the semiclassical condition S[qcl] � �, the integrals over q and

t can be performed in a stationary phase approximation. Beginning with the time integral,

and noticing that ∂tS[qcl] = −εqcl is the (conserved) energy of the path qcl, we obtain the

saddle-point condition ε
!
= εqcl and

ρ(ε) � 1

π�
Re

∫
dq A[qcl,ε]e

i
�
S[qcl,�],

where the symbol qcl,ε indicates that only paths q → q of energy ε are taken into account,

and the contribution coming from the quadratic integration around the saddle-point has

been absorbed into a redefinition of A[qcl,ε].

Turning to the q-integration, making use of the fact that

∂qiS[qcl] = −pi, ∂qfS[qcl] = pf , where qi,f are the initial and

final coordinates of a path qcl, and pi,f are the initial and final

momentum, the stationary phase condition assumes the form

0
!
= dqS[qcl,ε] = (∂qi + ∂qf )S[qcl,ε]|qi=qf=q = pf −pi, i.e. the sta-

tionarity of the integrand under the q-integration requires that

the initial and final momentum of the path qcl,ε be identical.

We thus find that the paths contributing to the integrated transition amplitude are peri-

odic not only in coordinate space but even in phase space. Such paths are called periodic

41 F. Haake, Quantum Signatures of Chaos (Springer-Verlag, 2001).
42 M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-NY, 1991), and Haake, Quantum

Signatures of Chaos.
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orbits –“periodic” because the path comes back to its initial phase space coordinate after

a certain revolution time. As such, the orbit will be traversed repeatedly as time goes by

(see the figure, where a periodic orbit α with initial coordinates x = (p, q) is shown).

According to our analysis above, each coordinate point q lying on a periodic orbit is a

stationary phase point of the q-integral. The stationary phase approximation of the integral

can thus be formulated as

ρ(ε) � 1

π�
Re

∞∑
n=1

∑
α

∫
α

dq Aαe
i
�
nSα ,

where
∑

α stands for a sum over all periodic orbits (of energy ε) and Sα is the action

corresponding to one traversal of the orbit (all at fixed energy ε). The index n accounts

for the fact that, owing to its periodicity, the orbit can be traversed repeatedly, with total

action nSα. Furthermore,
∫
α
dq is an integral over all coordinates lying on the orbit and

we have again absorbed a contribution coming from the quadratic integration around the

stationary phase points in the pre-exponential amplitude Aα.

Finally, noting that
∫
α
dq ∝ Tα, where Tα is the period of one traversal of the orbit α (at

energy ε), we arrive at the result

ρ(ε) � 1

π�
Re

∞∑
n=1

∑
α

TαAαe
i
�
nSα . (3.60)

This is a (simplified, see info block below) representation of the famous Gutzwiller trace

formula. The result is actually quite remarkable: the density of states, an observable of

quantum mechanical significance, has been expressed entirely in terms of classical quantities.

EXERCISE Making use of the Feynman path integral, show that the propagator for a particle

of mass m confined by a square well potential of infinite strength is given by

G(qf , qi; t) =

�
m

2πi�t

∞∑
n=−∞

$
exp

[
im(qf − qi + 2na)2

2�t

]
− exp

[
im(qf + qi + 2na)2

2�t

]%
.

INFO Had we carefully kept track of all determinants arising from the stationary phase integrals,

the prefactor Aα would have read

Aα =
1

�

ei
π
2
να

|detMr
α − 1| 12

,

where να is known as the Maslov index (an integer-valued factor associated with the singular

points on the orbit, i.e. the classical turning points). The meaning of this object can be under-

stood, e.g., by applying the path integral to the problem of a quantum particle in a box. To

correctly reproduce the spectrum, the contribution of each path must be weighted by (−)n =

exp(iπn), where n is the number of its turning points in the box potential), and Mα represents

the monodromy matrix. To understand the meaning of this object, notice that a phase space

point x̄ on a periodic orbit can be interpreted as a fixed point of the classical time evolution
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operator U(Tα): U(Tα, x̄) = x̄, which is just to say that the orbit is periodic. As with any other

smooth mapping, U can be linearized in the vicinity of its fixed points, U(Tα, x̄+ y) = x̄+Mαy,

where the linear operator Mα is the monodromy matrix. Evidently, Mα determines the stability

of the orbit under small distortions, which makes it plausible that it appears as a controlling

prefactor of the stationary phase approximation to the density of states.

3.4 Summary and outlook

In this chapter we have introduced the path integral formulation of quantum mechanics,

an approach independent of, yet (modulo certain mathematical imponderabilities related to

continuum functional integration) equivalent to, the standard route of canonical operator

quantization. While a few precious exactly solvable quantum problems (e.g. the evolution

of a free particle, the harmonic oscillator, and, perhaps intriguingly, quantum mechanical

spin) are more efficiently formulated by the standard approach, a spectrum of unique fea-

tures makes the path integral an indispensable tool of modern quantum mechanics. The

path integral approach is highly intuitive, powerful in the treatment of non-perturbative

problems, and tailor-made to formulation of semiclassical limits. Perhaps most importantly,

we have seen that it provides a unifying link whereby quantum problems can be related

to classical statistical mechanics. Indeed, we have found that the path integral of a quan-

tum point particle is, in many respects, equivalent to the partition function of a classical

one-dimensional continuum system. We have hinted at a generalization of this principle, i.e.

an equivalence principle relating d-dimensional quantum field theory to (d+1)-dimensional

statistical mechanics. However, before exploring this bridge further, we first need to gener-

alize the concept of path integration to problems involving quantum fields. This will be the

subject of the next chapter.

3.5 Problems

Quantum harmonic oscillator

As emphasized in the main text, the quantum harmonic oscillator provides a valuable environment in

which to explore the Feynman path integral and methods of functional integration. In this, along with a

small number of other precious examples, the path integral may be computed exactly, and the Feynman

propagator explored rigorously.

(a) Starting with the Feynman path integral, show that the propagator for the one-

dimensional quantum harmonic oscillator, Ĥ = p̂2/2m+mω2q̂2/2, takes the form

〈qf |e−iĤt/�|qi〉 =
( mω

2πi� sinωt

)1/2

exp

[
i

2�
mω

([
q2i + q2f

]
cotωt− 2qiqf

sinωt

)]
.

Suggest why the propagator varies periodically on the time interval t, and explain the

origin of the singularities at t = nπ/ω, n = 1, 2, . . . Taking the frequency ω → 0, show

that the propagator for the free particle is recovered.
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(b) Show that the wavepacket ψ(q, t = 0) = (2πa)−1/4 exp[−q2/4a] remains Gaussian at all

subsequent times. Obtain the width a(t) as a function of time.

(c) Semiclassical limit: Taking the initial wavepacket to be of the form

ψ(q, t = 0) = (2πa)−1/4 exp

[
i

�
mvq − 1

4a
q2

]
,

(which corresponds to a wavepacket centered at an initial position q = 0 with a velocity

v), find the wavepacket at times t > 0, and determine the mean position, mean velocity,

and mean width as functions of time.

Answer:

(a) Making use of the Feynman path integral, the propagator can be expressed as the

functional integral,

〈qf |e−iĤt/�|qi〉 =
∫ q(t)=qf

q(0)=qi

Dq eiS[q]/�, S[q] =

∫ t

0

dt′
m

2

(
q̇2 − ω2q2

)
.

The evaluation of the functional integral over field configurations q(t′) is facilitated by

parameterizing the path in terms of fluctuations around the classical trajectory. Setting

q(t′) = qcl(t
′) + r(t′) where qcl(t

′) satisfies the classical equation of motion mq̈cl =

−mω2qcl, and applying the boundary conditions, one obtains the solution qcl(t
′) =

A sin(ωt′) + B cos(ωt′), with the coefficients B = qi and A = qf/ sin(ωt) − qi cot(ωt).

Being Gaussian in q, the action separates as S[q] = S[qcl] + S[r], where

S[qcl] =
mω2

2

[
(A2 −B2)

sin(2ωt)

2ω
+ 2AB

cos(2ωt)− 1

2ω

]
=

mω

2

[
(q2i + q2f ) cot(ωt)−

2qiqf
sin(ωt)

]
.

Finally, integrating over the fluctuations and applying the identity

z/ sin z =
∞∏

n=1

(1− z2/π2n2)−1,

one obtains the required result, periodic in t with frequency ω, and singular at t = nπ/ω.

In particular, a careful regularization of the expression for the path integral shows that

〈qf |e−iĤt/�|qi〉 �→
{
δ(qf − qi), t = 2πn/ω,

δ(qf + qi), t = π(2n+ 1)/ω.

Physically, the origin of the singularity is clear. The harmonic oscillator is peculiar in

having a spectrum with energies uniformly spaced in units of �ω. Noting the eigenfunc-

tion expansion 〈qf |e−iĤt/�|qi〉 =
∑

n〈qf |n〉〈n|qi〉e−iωnt, this means that when �ω× t/� =

2π× integer there is a coherent superposition of the states and the initial state is recov-

ered. Furthermore, since the ground state and its even integer descendants are symmetric
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while the odd states are antisymmetric, it is straightforward to prove the identity for

the odd periods (exercise).

(b) Given the initial condition ψ(q, t = 0), the time evolution of the wavepacket can be

determined from the propagator as ψ(q, t) =
∫∞
−∞ dq′ 〈q|e−iĤt/�|q′〉ψ(q′, 0), from which

one obtains

ψ(q, t) = J(t)

∫ ∞

−∞
dq′

1

(2πa)1/4
e−q′2/4ae

i
�

mω
2

(
[q2+q′2] cot(ωt)− 2qq′

sin(ωt)

)
,

where J(t) represents the time-dependent contribution arising from the fluctuations

around the classical trajectory. Being Gaussian in q′, the integral can be performed

explicitly. Setting α = 1/2a− imω cot(ωt)/�, β = imωq/(� sin(ωt)), and performing the

Gaussian integral over q′, one obtains

ψ(q, t) = J(t)
1

(2πa)1/4

√
2π

α
eβ

2/2α exp

[
i

2�
mωq2 cot(ωt)

]
,

where β2/2α = −(1 + iκ cot(ωt))q2/4a(t). Rearranging terms, it is straightforward

to show that ψ(q, t) = (2πa(t))−1/4 exp
[
− q2

4a(t)

]
eiϕ(q,t), where a(t) = a[cos2(ωt) +

κ−2 sin2(ωt)], κ = 2amω/�, and ϕ(q, t) represents a pure phase.43 As required, under the

action of the propagator the normalization of the wavepacket is preserved. (A graphical

representation of the time evolution is shown in Fig. 3.9(a).) Note that, if a = �/2mω

(i.e. κ = 1), a(t) = a for all times – i.e. it is a pure eigenstate.

(c) Still of a Gaussian form, the integration can again be performed explicitly for the new

initial condition. In this case, we obtain an expression of the form above but with

β = i
�

mω
sin(ωt) × (q − v

ω sin(ωt)). Reading off the coefficients, we find that the position

and velocity of the wavepacket have the forms q0(t) = (v/ω) sin(ωt), v(t) = v cos(ωt),

coinciding with those of classical dynamics. Note that, as above, the width a(t) of the

wavepacket oscillates at frequency ω. (A graphical representation of the time evolution

is shown in Fig. 3.9(b).)

|ψ |
2

|ψ |
2

t t
q q

π/ω

(a) (b)

Figure 3.9 (a) Variation of a “stationary” Gaussian wavepacket in the harmonic oscillator taken
from the solution, and (b) variation of the moving wavepacket.

43 For completeness, we note that ϕ(q, t) = − 1
2 tan−1( 1

κ cot(ωt)) − κq2

4a cot(ωt)( a
a(t)

− 1).
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Density matrix

Using the results derived in the previous section as an example, we explore how real-time dynamical

information can be converted into quantum statistical information.

Using the results of the previous question, obtain the density matrix ρ(q, q′) = 〈q|e−βĤ |q′〉
for the harmonic oscillator at finite temperature, β = 1/T (kB = 1). Obtain and comment

on the asymptotics: (i) T � �ω and (ii) T � �ω. (Hint: In the high-temperature case, be

sure to carry out the expansion in �ω/T to second order.)

Answer:
The density matrix can be deduced from the general solution of the previous question.

Turning to the Euclidean time formulation,

ρ(q, q′) = 〈q|e−βH |q′〉 = 〈q|e−(i/�)H(�β/i)|q′〉

=

(
mω

2π� sinh(β�ω)

)1/2

exp

[
−mω

2�

(
(q2 + q′2) coth(β�ω)− 2qq′

sinh(β�ω)

)]
.

(i) In the low-temperature limit T � �ω (β�ω � 1), coth(β�ω) → 1, sinh(β�ω) → eβ�ω/2,

and

ρ(q, q′) �
( mω

π�eβ�ω

)1/2

exp
[
−mω

2�
(q2 + q′2)

]
= 〈q|n = 0〉 e−βE0 〈n = 0|q′〉 .

(ii) Using the relations coth(x)
x�1
= 1/x+x/3+ · · · and 1/ sinh(x)

x�1
= 1/x−x/6+ · · · , the

high-temperature expansion (T � �ω) of the density operator gives

ρ(q, q′) �
(

m

2πβ�2

)1/2

e−m(q−q′)2/2β�2

exp

[
−�βmω2

6�
(q2 + q′2 + qq′)

]
� δ(q − q′)e−

βmω2q2

2 ,

i.e. one recovers the classical Maxwell–Boltzmann distribution!

Depinning transition and bubble nucleation

In Section 3.3 we explored the capacity for a quantum field to tunnel from the metastable minimum of

a potential, the “false vacuum.” Yet, prior to the early work of Coleman on the quantum mechanical

problem, similar ideas had been developed by Langer in the context of classical bubble nucleation.

The following problem is an attempt to draw the connections between the classical and the quantum

problem. As posed, the quantum formulation describes the depinning of a flux line in a superconductor

from a columnar defect.
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u

z
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f

Consider a quantum elastic string embedded in a three-dimensional

space and “pinned” by a columnar defect potential V oriented parallel

to the z-axis. The corresponding Euclidean time action is given by

S[u] =

∫
dτ

∫
dz

(
1

2
ρu̇2 +

1

2
σ(∂zu)

2 + V (|u|)
)
,

where the two-dimensional vector field u(z, τ) denotes the string dis-

placement within the xy-plane, ρ represents the density per unit length,

and σ defines the tension in the string. On this system (See figure), let us

suppose that an external in-plane field f is imposed along the x-direction,

Sext = −f
∫
dτ

∫
dz u·ex. Following the steps below, determine the prob-

ability (per unit time and per unit length) for the string to detach from

the defect:

(a) Derive a saddle-point equation in the two-dimensional zτ -space. Rescaling the coordi-

nates, transform the equation of motion to a problem with circular symmetry.

(b) If the field is weak, one can invoke a “thin-wall” or “bubble” approximation to describe

the saddle-point solution u(z, t) by specifying two regions of space-time, where the string

is free, or is completely locked to the defect, respectively. In this approximation, find

u(z, t). (Hint: Use the fact that, in either case, complete locking or complete freedom,

the potential does not exert a net force on the string.)

(c) With exponential accuracy, determine the detaching probability. You may assume that,

for all values of ux obtained in (b), V (|u|) � V0 = const.

(Exercise: Think how the quantum model can be related to the classical system.)

Answer:

(a) Varying the action with respect to ux, the saddle-point equation assumes the form ρüx+

σ∂2ux = −f + V ′(u)(ux/u), where u = |u|. Applying the rescaling τ = (ρ/σ)1/4τ̃ and

z = (σ/ρ)1/4z̃, the equation takes the symmetrized form
√
σρ∂2ux = −f+V ′(u)(ux/u),

where ∂2 = ∂2
τ + ∂2

z and boundary conditions

ux(r) =

{
0, r > R,

g(r), r < R,

on the radial coordinate (τ̃ , z̃) �→ (r, φ) are imposed.

(b) In the thin-wall approximation, the potential gradient can be neglected. In this case

the saddle-point equation assumes the form ∇2g = −f/
√
σρ, with the solution g =

(R2 − r2)f/
√
4σρ.

(c) With the result, the tunneling rate can be estimated from the saddle-point action

Sbubble =

∫ R

dr

(√
σρ

2
(∂̃g)2 + V0 − fg

)
= −πR2

(
3f2R2

16(σρ)1/2
− V0

)
.
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Minimizing over R, one obtains the optimal radius R2
∗ =

8V0
√
σρ

3f2 . As a result, we obtain

the estimate for the tunneling rate W ∝ e−S(R∗) = exp
[
− 4πV 2

0

√
σρ

3f2

]
.

Tunneling in a dissipative environment

In Section 3.3 we considered the impact of dissipation on the action of a point-particle in a quantum

well. There a model was chosen in which the degrees of freedom of the environment were represented

phenomenologically by a bath of harmonic oscillators. In the following we will explore a model in which

the particle is coupled to the fluctuations of a quantum mechanical “string.” Later, in Section 8.2, we

will see that this model provides a description of tunneling through a single impurity in a Luttinger

liquid.

(a) A quantum particle of mass m is confined by a sinusoidal potential U(q) =

2g sin2(πq/q0). Employing the Euclidean (imaginary time) Feynman path integral

(� = 1),

Z =

∫
Dq(τ) e−Spart[q(τ)], Spart[q(τ)] =

∫ ∞

−∞
dτ

[m
2
q̇2 + U(q)

]
,

confirm by direct substitution that the extremal contribution to the propagator connect-

ing two neighboring degenerate minima (q(τ = −∞) = 0 and q(τ = ∞) = q0) is given by

the instanton trajectory qcl(τ) = (2q0/π) arctan (exp [ω0τ ]), where ω0 = (2π/q0)
√

g/m.

Show that S[qcl] = (2/π2)mq20ω0. (Note: Although the equation of motion associated

with the minimum of the Euclidean path integral is nonlinear, the solution above is

exact. It is known in the literature as a soliton configuration.)

(b) If the quantum particle is coupled at one point to an infinite “string,” the path integral

is given by

Z =

∫
Du(x, τ)

∫
Dq(τ) δ (q(τ)− u(τ, x = 0)) e−Sstring[u(x,τ)]−Spart[q(τ)],

where the classical action of the string is given by (cf. the action functional for phonons

discussed in Section 1.1)

Sstring[u(x, τ)] =

∫ ∞

−∞
dτ

∫ ∞

−∞
dx

[
ρ

2
u̇2 +

σ

2

(
∂u

∂x

)2
]
.

Here δ(q(τ) − u(τ, x = 0)) represents a functional δ-function which enforces the condi-

tion q(τ) = u(τ, x = 0) for all times τ . Operationally, it can be understood from the

discretized form
∏

n δ(q(τn) − u(τn, x = 0)). By representing the functional δ-function

as the functional integral

δ(q(τ)− u(τ, 0)) =

∫
Df(τ) exp

[
i

∫ ∞

−∞
dτ f(τ)(q(τ)− u(τ, 0))

]
,

and integrating over the fluctuations of the string, show that the dynamics of the par-

ticle is governed by the effective action Seff [q] = Spart[q] + (η/2)
∫
(dω/2π)|ω�q(ω)|2,
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where η =
√
ρσ. How does this result compare with the dissipative action discussed in

Section 3.3?

(c) Treating the correction to the particle action as a perturbation, use your result from

(a) to show that the effective action for an instanton–anti-instanton pair q(τ) = qcl(τ +

τ̄ /2)− qcl(τ − τ̄ /2), where ω0τ̄ � 1, is given approximately by

Seff [q] = 2Spart[qcl]−
ηq20
π

ln (ω0τ̄) .

(Hint: Note that, in finding the Fourier decomposition of qcl(τ), a crude estimate is

sufficient.)

(d) Using this result, estimate the typical separation of the pair (i.e. interpret the over-

all action as an effective probability distribution function for τ̄ , and evaluate 〈τ̄〉 =∫
dτ̄ τ̄e−Seff ). Comment on the implications of your result for the nature of the tunneling

probability.

Answer:

(a) Varying the Euclidean time path integral with respect to q(τ) one finds that the extremal

field configuration obeys the classical sine–Gordon equation

mq̈ − 2πg

q0
sin

(
2πq

q0

)
= 0.

Applying the trial solution, one finds that the equation of motion is satisfied if ω0 =

(2π/q0)
√
g/m. From this result one obtains the classical action

S[qcl] =

∫ ∞

0

dτ
[m
2
q̇2cl + U(qcl)

]
=

∫ ∞

0

dτ mq̇2cl = m

∫ q0

0

dq q̇cl = 2
mq20
π2

ω0.

(b) In Fourier space, the action of the classical string takes the form

Sstring =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

ρω2 + σk2

2
|u(ω, k)|2.

Representing the functional δ-function as the functional integral∫
Df exp

[
i

∫ ∞

−∞

dω

2π
f(ω)

(
q(−ω)−

∫ ∞

−∞

dk

2π
u(−ω,−k)

)]
,

and performing the integral over the degrees of freedom of the string, one obtains∫
Du e−Sstring−i

∫
dτ f(τ)u(τ,0) ∝ exp

[
−

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

1

2

1

(ρω2 + σk2)
|f(ω)|2

]
.

Integrating over k, and performing the Gaussian functional integral over the Lagrange

multiplier field f(ω), one obtains the effective action as required.
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(c) Approximating the instanton/anti-instanton pair q(τ) = qcl(τ+ τ̄)−qcl(τ− τ̄) by a “top-

hat” function, one finds that q(ω) =
∫ τ̄/2

−τ̄/2
dτ q0e

iωτ = q0τ̄ sin(ωτ̄/2)/(ωτ̄/2). Treating

the dissipative term as a perturbation, the action then takes the form

Seff − 2Spart =
η

2

∫ ω0

0

dω

2π
|ω|(q0τ̄)2

sin2(ωτ̄/2)

(ωτ̄/2)2
� q20

π
η ln(ω0τ̄),

where ω0 serves as a high-frequency cut-off.

(d) Interpreted as a probability distribution for the instanton separation, one finds

〈τ̄〉 =
∫

dτ̄ τ̄ exp

[
−q20

π
η ln(ω0τ̄)

]
∼

∫ ∞
dτ̄ τ̄1−q20η/π.

The divergence of the integral shows that, for η > 2π/q20 , instanton–anti-instanton pairs

are confined and particle tunneling is deactivated. Later, in Chapter 8 we revisit the

dissipative phase transition from the standpoint of the renormalization group.

Winding numbers

In the main text, we considered the application of the Feynman path integral to model systems where

trajectories could be parameterized in terms of their harmonic (Fourier) expansion. However, very often,

one is interested in applications of the path integral to spaces that are not simply connected. In this

case, one must include classes of trajectories which cannot be simply continued. Rather, trajectories are

classified by their “winding number” on the space. To illustrate the point, let us consider the application

of the path integral to a particle on a ring.

(a) Starting with the Hamiltonian Ĥ = −(1/2I)(∂2/∂θ2), where θ denotes an angle variable,

show from first principles that the quantum partition function Z = tre−βĤ is given by

Z =

∞∑
n=−∞

exp

[
−β

n2

2I

]
. (3.61)

(b) Formulated as a Feynman path integral, show that the quantum partition function can

be cast in the form

Z =

∫ 2π

0

dθ

∞∑
m=−∞

∫
θ(0) = θ

θ(β) = θ(0) + 2πm

Dθ(τ) exp

[
−I

2

∫ β

0

dτ θ̇2

]
.

(c) Varying the Euclidean action with respect to θ, show that the path integral is minimized

by the classical trajectories θ̄(τ) = θ + 2πmτ/β. Parameterizing a general path as

θ(τ) = θ̄(τ) + η(τ), where η(τ) is a path with no net winding, show that

Z = Z0

∞∑
m=−∞

exp

[
−I

2

(2πm)2

β

]
, (3.62)

where Z0 represents the quantum partition function for a free particle with open bound-

ary conditions. Making use of the free particle propagator, show that Z0 =
√
I/2πβ.
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(d) Finally, making use of Poisson’s summation formula,
∑

m h(m) =
∑

n

∫∞
−∞ dφ h(φ)e2πinφ,

show that Eq. (3.62) coincides with Eq. (3.61).

Answer:

(a) Solving the Schrödinger equation, the wavefunctions obeying periodic boundary condi-

tions take the form ψn = einθ/
√
2π, n integer, and the eigenvalues are given by En =

n2/2I. Cast in the eigenbasis representation, the partition function assumes the form

Eq. (3.61).

(b) Interpreted as a Feynman path integral, the quantum partition function takes the form

of a propagator with

Z =

∫ 2π

0

dθ 〈θ|e−βĤ |θ〉 =
∫ 2π

0

dθ

∫
θ(β)= θ(0)= θ

Dθ(τ) exp

[
−

∫ β

0

dτ
I

2
θ̇2

]
.

The trace implies that paths θ(τ) must start and finish at the same point. However,

to accommodate the invariance of the field configuration θ under translation by 2π we

must impose the boundary conditions shown in the question.

(c) Varying the action with respect to θ we obtain the classical equation Iθ̈ = 0. Solving

this equation subject to the boundary conditions, we obtain the solution given in the

question. Evaluating the Euclidean action, we find that∫ β

0

(∂τθ)
2dτ =

∫ β

0

dτ

[
2πm

β
+ ∂τη

]2
= β

(
2πm

β

)2

+

∫ β

0

dτ(∂τη)
2.

Thus, we obtain the partition function (3.62), where

Z0 =

∫
Dη(τ) exp

[
−I

2

∫ β

0

dτ(∂τη)
2

]
=

√
I

2πβ
,

denotes the free particle partition function. This can be obtained from direct evaluation

of the free particle propagator.

(d) Applying the Poisson summation formula with h(x) = exp[− (2π)2I
2β x2], one finds that

∞∑
m=−∞

e−
(2π)2Im2

2β =
∞∑

n=−∞

∫ ∞

−∞
dφ e−

(2π)2I
2β φ2+2πinφ =

√
β

2πI

∞∑
n=−∞

e−
β
2I n

2

.

Multiplication by Z0 obtains the result.

Particle in a periodic potential

In Section 3.3 it was shown that the quantum probability amplitude for quantum mechanical tunneling

can be expressed as a sum over instanton field configurations of the Euclidean action. By generalizing

this approach, the aim of the present problem is to explore quantum mechanical tunneling in a periodic

potential. Such an analysis allows us to draw a connection to the problem of the Bloch spectrum.
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(a) A quantum mechanical particle moves in a periodic lattice potential V with period a.

Taking the Euclidean action for the instanton connecting two neighboring minima to be

Sinst, express the Euclidean time propagator G(ma, na; τ), with m and n integer, as a

sum over instanton and anti-instanton field configurations.

(b) Making use of the identity δqq′ =
∫ 2π

0
dθ ei(q−q′)θ/(2π) show that

G(ma, na; τ) ∼ e−ωτ/2

∫ 2π

0

dθ

2π
e−i(n−m)θ exp

[
Δετ

�
2 cos θ

]
,

where our notation is taken from Section 3.3.

(c) Keeping in mind that, in the periodic system, the eigenfunctions are Bloch states

ψpα(q) = eipqupα(q) where upα(q+ma) ≡ upα(q) denotes the periodic part of the Bloch

function, show that the propagator is compatible with a spectrum of the lowest band

α = 0, εp = �ω/2− 2Δε cos(pa).

Answer:

(a) In the double-well potential, the extremal field configurations of the Euclidean action

involve consecutive sequences of instanton–anti-instanton pairs. However, in the periodic

potential, the q instantons and q′ anti-instantons can appear in any sequence provided

only that q − q′ = m− n. In this case, the Feynman amplitude takes the form

G(ma, na; τ) ∼
∞∑
q=0

∞∑
q′=0

δq−q′,n−m

q! q′!
(τKe−Sinst/�)q+q′e−ωτ/2.

(b) To evaluate the instanton summation, we can make use of the identity δq−q′,n−m =∫ 2π

0
dθ ei(q−q′−n+m)θ/(2π). As a result, we obtain

G(ma, na; τ) ∼ e−ωτ/2

∫ 2π

0

dθ

2π
e−i(n−m)θ

∞∑
q=0

(τKeiθe−Sinst/�)q

q!

∞∑
q′=0

(τKe−iθe−Sinst/�)q
′

q′!

∼ e−ωτ/2

∫ 2π

0

dθ

2π
e−i(n−m)θ exp

[
Δετ

�
eiθ

]
exp

[
Δετ

�
e−iθ

]
,

from which can be obtained the required result.

(c) Expanded in terms of the Bloch states of the lowest band of the periodic potential α = 0,

one obtains

G(ma, na; τ) =
∑
p

ψ∗
p(ma)ψp(na)e

−εpτ/� =
∑
p

|up(0)|2eip(n−m)ae−εpτ/�.

Interpreting θ = pa, and taking |up(0)|2 = const. independent of p, we can draw the

correspondence εp = �ω/2− 2Δε cos(pa).



4

Functional field integral

In this chapter, the concept of path integration is generalized to integration over quantum fields.

Specifically we will develop an approach to quantum field theory that takes as its starting point an

integration over all configurations of a given field, weighted by an appropriate action. To emphasize the

importance of the formulation that, methodologically, represents the backbone of the remainder of the

text, we have pruned the discussion to focus only on the essential elements. This being so, conceptual

aspects stand in the foreground and the discussion of applications is postponed to the following chapters.

In this chapter, the concept of path integration is extended from quantum mechanics to

quantum field theory. Our starting point is a situation very much analogous to that out-

lined at the beginning of the previous chapter. Just as there are two different approaches

to quantum mechanics, quantum field theory can also be formulated in two different ways:

the formalism of canonically quantized field operators, and functional integration. As to the

former, although much of the technology needed to efficiently implement this framework –

essentially Feynman diagrams – originated in high-energy physics, it was with the develop-

ment of condensed matter physics through the 1950s, 1960s, and 1970s that this approach

was driven to unprecedented sophistication. The reason is that, almost as a rule, problems

in condensed matter investigated at that time necessitated perturbative summations to infi-

nite order in the non-trivial content of the theory (typically interactions). This requirement

led to the development of advanced techniques to sum perturbation series in many-body

interaction operators to infinite order.

In the 1970s, however, essentially non-perturbative problems began to attract more and

more attention – a still prevailing trend – and it turned out that the formalism of canonically

quantized operators was not tailored to this type of physics. By contrast, the alternative

approach to many-body problems, functional integration, is ideally suited! The situation

is similar to the one described in the last chapter, where we saw that the Feynman path

integral provided a spectrum of novel routes to approaching quantum mechanical problems

(controlled semiclassical limits, analogies to classical mechanics, statistical mechanics, con-

cepts of topology and geometry, etc.). Similarly, the introduction of field integration into

many-body physics spawned new theoretical developments, many of which went beyond

perturbation theory. In fact, the advantage of the path integral approach in many-body

physics is more pronounced than in single-particle quantum mechanics: higher dimension-

ality introduces more complex fields, and the concept of field integration is ideally suited

to explore the ensuing structures. Also, the connections to classical statistical mechanics

156
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play a more important role than in single-particle quantum mechanics. All of these concepts

will begin to play a role in subsequent chapters when applications of the field integral are

discussed.

q

q

t

t

xx

Degrees of freedom Path integral

φ φ

QM

QFT

Figure 4.1 The concept of field integration. Upper panels: path integral of quantum mechanics –
integration over all time-dependent configurations of a point particle degree of freedom leads to
integrals over curves. Lower panels: field integral – integration over time-dependent configurations
of d-dimensional continuum mappings (fields) leads to integrals over generalized (d+1)-dimensional
surfaces.

Before embarking on the quantitative construction of the field integral – the subject of

the following sections – let us anticipate the kind of structures that one should expect.

In quantum mechanics, we were starting from a single point particle degree of freedom,

characterized by some coordinate q (or some other quantum numbers for that matter).

Path integration then meant integration over all time-dependent configurations q(t), i.e.

a set of curves t �→ q(t) (see Fig. 4.1, upper panel). By contrast, the degrees of freedom

of field theory are continuous objects φ(x) by themselves, where x parameterizes some d-

dimensional base manifold and φ takes values in some target manifold (Fig. 4.1, lower panel).

The natural generalization of a “path” integral then implies integration over a single copy of

these objects at each instant of time, i.e. we shall have to integrate over generalized surfaces,

mappings from (d+1)-dimensional space-time into the field manifold, (x, t) �→ φ(x, t). While

this notion may sound worrying, it is important to realize that, conceptually, nothing much

changes in comparison with the path integral: instead of a one-dimensional manifold – a

curve – our object of integration will be a (d+ 1)-dimensional manifold.

We now proceed to formulate these ideas in quantitative terms.

EXERCISE If necessary, recapitulate the general construction scheme of path integrals (Sec-

tion 3.2) and the connection between quantum fields and second quantized operators.
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4.1 Construction of the many-body path integral

The construction of a path integral for field operators follows the general scheme outlined

at the end of Section 3.2. The basic idea is to segment the time evolution of a quantum

(many-body) Hamiltonian into infinitesimal time slices and to absorb as much as possible

of the quantum dynamical phase accumulated during the short-time propagation into a set

of suitably chosen eigenstates. But how should these eigenstates be chosen? In the context

of single-particle quantum mechanics, the structure of the Hamiltonian suggested a repre-

sentation in terms of coordinate and momentum eigenstates. Now, given that many-particle

Hamiltonians are conveniently expressed in terms of creation/annihilation operators, an

obvious idea would be to search for eigenstates of these operators. Such states indeed exist

and are called coherent states.

Coherent states (bosons)

Our goal is, therefore, to find eigenstates of the (non-Hermitian) Fock space operators a†

and a. Although the general form of these states will turn out to be the same for bosons and

fermions, there are major differences regarding their algebraic structure. The point is that

the anti-commutation relations of fermions require that the eigenvalues of an annihilation

operator themselves anti-commute, i.e. they cannot be ordinary numbers. Postponing the

introduction of the unfamiliar concept of anti-commuting “numbers” to the next section,

we first concentrate on the bosonic case where problems of this kind do not arise.

So what form do the eigenstates |φ〉 of the bosonic Fock space operators a and a† take?

Being a state of the Fock space, an eigenstate |φ〉 can be expanded as

|φ〉 =
∑

n1,n2,...

Cn1,n2,...|n1, n2, . . .〉, |n1, n2, . . .〉 =
(a†1)

n1

√
n1!

(a†2)
n2

√
n2!

. . . |0〉,

where a†i creates a boson in state i, Cn1,n2,... represents a set of expansion coefficients,

and |0〉 represents the vacuum. Here, for reasons of clarity, it is convenient to adopt this

convention for the vacuum as opposed to the notation |Ω〉 used previously. Furthermore,

the many-body state |n1, n2, . . .〉 is indexed by a set of occupation numbers: n1 in state |1〉,
n2 in state |2〉, and so on. Importantly, the state |φ〉 can, in principle (and will in practice)

contain a superposition of basis states which have different numbers of particles. Now, if

the minimum number of particles in state |φ〉 is n0, the minimum of a†i |φ〉 must be n0 + 1.

Clearly the creation operators a†i themselves cannot possess eigenstates.

However, with annihilation operators this problem does not arise. Indeed, the annihilation

operators do possess eigenstates, known as boson coherent states,

|φ〉 ≡ exp
(∑

i

φia
†
i

)
|0〉, (4.1)
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where the elements of φ = {φi} represent a set of complex numbers. The states |φ〉 are

eigenstates in the sense that, for all i,

ai|φ〉 = φi|φ〉, (4.2)

i.e. they simultaneously diagonalize all annihilation operators. Noting that ai and a†j , with
j �= i, commute, Eq. (4.2) can be verified by showing that a exp(φa†)|0〉 = φ exp(φa†)|0〉.1
Although not crucial to the practice of field integration, in the construction of the path

integral it will be useful to assimilate some further properties of coherent states:

� By taking the Hermitian conjugate of Eq. (4.2), we find that the “bra” associated with

the “ket” |φ〉 is a left eigenstate of the set of creation operators, i.e. for all i,

〈φ|a†i = 〈φ|φ̄i, (4.3)

where φ̄i is the complex conjugate of φi, and 〈φ| = 〈0|exp[
∑

i φ̄iai].

� It is a straightforward matter – e.g. by a Taylor expansion of Eq. (4.1) – to show that the

action of a creation operator on a coherent state yields the identity

a†i |φ〉 = ∂φi |φ〉. (4.4)

Reassuringly, it may be confirmed that Eq. (4.4) and (4.2) are consistent with the com-

mutation relations [ai, a
†
j ] = δij : [ai, a

†
j ]|φ〉 = (∂φjφi − φi∂φj )|φ〉 = δij |φ〉.

� Making use of the relation 〈θ|φ〉 = 〈0|e
∑

i θ̄iai |φ〉 = e
∑

i θ̄iφi〈0|φ〉, one finds that the

overlap between two coherent states is given by

〈θ|φ〉 = exp
(∑

i

θ̄iφi

)
. (4.5)

� From this result, one can infer that the norm of a coherent state is given by

〈φ|φ〉 = exp
(∑

i

φ̄iφi

)
. (4.6)

� Most importantly, the coherent states form a complete – in fact an overcomplete – set of

states in Fock space: ∫ ∏
i

dφ̄idφi

π
e−

∑
i φ̄iφi |φ〉〈φ| = 1F , (4.7)

where dφ̄idφi = dReφi d Imφi, and 1F represents the unit operator or identity in the

Fock space.

1 Using the result [a, (a†)n] = n(a†)n−1 (cf. Eq. (2.38)) a Taylor expansion shows a exp(φa†)|0〉 =

[a, exp(φa†)]|0〉 =
∑∞

n=0
φn

n! [a, (a
†)n]|0〉 =

∑∞
n=1

nφn

n! (a†)n−1|0〉 = φ
∑∞

n=1
φn−1

(n−1)!
(a†)n−1|0〉 =

φ exp(φa†)|0〉.
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INFO The proof of Eq. (4.7) proceeds by application of Schur’s lemma (cf. our discussion of

the completeness of the spin coherent states in the previous chapter). The operator family {ai},
{a†

i} acts irreducibly in Fock space. According to Schur’s lemma, the proportionality of the left-

hand side of Eq. (4.7) to the unit operator is, therefore, equivalent to its commutativity with all

creation and annihilation operators. Indeed, this property is easily confirmed:

ai

∫
d(φ̄, φ) e−

∑
i φ̄iφi |φ〉〈φ| =

∫
d(φ̄, φ) e−

∑
i φ̄iφiφi|φ〉〈φ|

= −
∫

d(φ̄, φ)
&
∂φ̄i

e−
∑

i φ̄iφi

'
|φ〉〈φ|

by parts
=

∫
d(φ̄, φ) e−

∑
i φ̄iφi |φ〉

 
∂φ̄i

〈φ|
!

=

∫
d(φ̄, φ) e−

∑
i φ̄iφi |φ〉〈φ|ai, (4.8)

where, for brevity, we have set d(φ̄, φ) ≡
�

i dφ̄i dφi/π. Taking the adjoint of Eq. (4.8), one may

further check that the left-hand side of Eq. (4.7) commutes with the set of creation operators,

i.e. it must be proportional to the unit operator. To fix the constant of proportionality, one may

simply take the overlap with the vacuum:∫
d(φ̄, φ) e−

∑
i φ̄iφi〈0|φ〉〈φ|0〉 =

∫
d(φ̄, φ) e−

∑
i φ̄iφi = 1. (4.9)

Taken together, Eq. (4.8) and (4.9) prove (4.7). Note that the coherent states are overcom-

plete in the sense that they are not pairwise orthogonal (see Eq. (4.5)). The exponential weight

e−
∑

i φ̄iφi appearing in the resolution of the identity compensates for the overcounting achieved

by integrating over the whole set of coherent states.

With these definitions we have all that we need to construct the path integral for the

bosonic system. However, before doing so, we will first introduce the fermionic version of

the coherent state. This will allow us to construct the path integrals for bosons and fermions

simultaneously, thereby emphasizing the similarity of their structure.

Coherent states (fermions)

Much of the formalism above generalizes to the fermionic case: as before, it is evident that

creation operators cannot possess eigenstates. Following the bosonic system, let us suppose

that the annihilation operators are characterized by a set of coherent states such that, for

all i,

ai|η〉 = ηi|η〉, (4.10)

where ηi is the eigenvalue. Although the structure of this equation appears to be equivalent

to its bosonic counterpart Eq. (4.2) it has one frustrating feature: anti-commutativity of

the fermionic operators, [ai, aj ]+ = 0, where i �= j, implies that the eigenvalues ηi also have

to anti-commute,

ηiηj = −ηjηi. (4.11)
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Clearly, these objects cannot be ordinary numbers. In order to define a fermionic version

of coherent states, we now have two choices: we may (a) accept Eq. (4.11) as a working

definition and pragmatically explore its consequences, or (b) first try to remove any mystery

Hermann Gnther Grassmann
1809–77
Credited with inventing what
is now called exterior alge-
bra.(Figure reproduced from Her-
mann Grassmann, Gesamnelte
Mathematische and Physikalische
Werke (Druck and Verlag von B. G. Teubner,
1894).)

from the definitions (4.10) and

(4.11). This latter task is tackled in

the Info block below where objects

{ηi} with the desired properties are

defined in a mathematically clean

way. Readers wishing to proceed in

a maximally streamlined manner

may skip this exposition and directly

turn to the more praxis-oriented

discussion below.

INFO There is a mathematical structure ideally suited to generalize the concept of ordinary

number (fields), namely algebras. An algebra A is a vector space endowed with a multiplication

rule A × A → A. So let us construct an algebra A by starting out from a set of elements, or

generators, ηi ∈ A, i = 1, . . . , N , and imposing the rules:

(i) The elements ηi can be added and multiplied by complex numbers, i.e.

c0 + ciηi + cjηj ∈ A, c0, ci, cj ∈ C, (4.12)

i.e. A is a complex vector space.

(ii) The product, A×A → A, (ηi, ηj) �→ ηiηj , is associative and anti-commutative, i.e. it obeys

the anti-commutation relation (4.11). Because of the associativity of this operation, there is

no ambiguity when it comes to forming products of higher order, i.e. (ηiηj)ηk = ηi(ηjηk) ≡
ηiηjηk. The definition requires that products of odd order in the number of generators anti-

commute, while (even, even) and (even, odd) combinations commute (exercise).

By virtue of (i) and (ii), the set A of all linear combinations

c0 +

∞∑
n=1

N∑
i1,...in=1

ci1,...,inηi1 . . . ηin , c0, ci1,...,in ∈ C,

spans a finite-dimensional associative algebra A,2 known as the Grassmann algebra (and

sometimes also the exterior algebra). For completeness we mention that Grassmann algebras

find a number of realizations in mathematics, the most basic being exterior multiplication in

linear algebra. Given an N -dimensional vector space V , let V ∗ be the dual space, i.e. the space

of all linear mappings, or “forms” Λ : V → C, v �→ Λ(v), where v ∈ V . (Like V , V ∗ is a vector

space of dimension N .) Next, define exterior multiplication through (Λ,Λ′) → Λ ∧ Λ′, where
Λ ∧ Λ′ is the mapping

Λ ∧ Λ′ : V × V → C

(v, v′) �→ Λ(v)Λ′(v′)− Λ(v′)Λ′(v).

2 Whose dimension can be shown to be 2N (exercise).



162 Functional field integral

This operation is manifestly anti-commutative: Λ∧Λ′ = −Λ′ ∧Λ. Identifying the N linear basis

forms Λi ↔ ηi with generators and ∧ with the product, we see that the space of exterior forms

defines a Grassmann algebra.

Apart from their anomalous commutation properties, the generators {ηi}, and their product

generalizations {ηiηj , ηiηjηk, . . .}, resemble ordinary, albeit anti-commutative, numbers. (In

practice, the algebraic structure underlying their definition can safely be ignored. All we will

need to work with these objects is the basic rule Eq. (4.11) and the property Eq. (4.12).) We

emphasize that A contains not only anti-commuting but also commuting elements, i.e. linear

combinations of an even number of Grassmann numbers ηi are overall commutative. (This

mimics the behavior of the Fock space algebra: products of an even number of annihilation

operators aiaj . . . commute with all other linear combinations of operators ai. In spite of

this similarity, the “numbers” ηi must not be confused with the Fock space operators; there

is nothing on which they act.)

To make practical use of the new concept, we need to go beyond the level of pure arith-

metic. Specifically, we need to introduce functions of anti-commuting numbers, and elements

of calculus. Remarkably, not only do most of the concepts of calculus – differentiation, inte-

gration, etc. – naturally generalize to anti-commuting number fields, but, contrary to what

one might expect, they turn out to be simpler than in ordinary calculus.

� Functions of Grassmann numbers are defined via their Taylor expansion:

f(ξ1, . . . , ξk) =
∞∑

n=0

k∑
i1,...,in=1

1

n!

∂nf

∂ξi1 · · · ∂ξin

∣∣∣∣
ξ=0

ξin · · · ξi1 , ξ1, . . . , ξk ∈ A, (4.13)

where f is an analytic function. Note that the anti-commutation properties of the algebra

imply that the series terminates after a finite number of terms. For example, in the simple

case where η is first-order in the generators of the algebra,N = 1, and f(η) = f(0)+f ′(0)η
(since η2 = 0) – functions of Grassmann variables are fully characterized by a finite

number of Taylor coefficients!

� Differentiation with respect to Grassmann numbers is defined by

∂ηiηj = δij . (4.14)

Note that, in order to be consistent with the commutation relations, the differential

operator ∂ηi must itself be anti-commutative. In particular, ∂ηiηjηi
i�=j
= −ηj .

� Integration over Grassmann variables is defined by∫
dηi = 0,

∫
dηi ηi = 1. (4.15)

Note that the definitions (4.13), (4.14), and (4.15) imply that the actions of Grassmann

differentiation and integration are effectively identical, that is∫
dη f(η) =

∫
dη (f(0) + f ′(0)η) = f ′(0) = ∂ηf(η).
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With this background, let us now proceed to apply the Grassmann algebra to the con-

struction of fermion coherent states. To this end we need to enlarge the algebra so as to

allow for a multiplication of Grassmann numbers by fermion operators. In order to be con-

sistent with the anti-commutation relations, we need to require that fermion operators and

Grassmann generators anti-commute,

[ηi, aj ]+ = 0. (4.16)

It then becomes a straightforward matter to demonstrate that fermionic coherent states

are defined by

|η〉 = exp
(
−

∑
i

ηia
†
i

)
|0〉, (4.17)

i.e. by a structure perfectly analogous to the bosonic states (4.1).3 It is a straightforward

matter – and also a good exercise – to demonstrate that the properties (4.3), (4.4), (4.5),

(4.6), and, most importantly, (4.7) carry over to the fermionic case. One merely has to

identify ai with a fermionic operator and replace the complex variables φi by ηi ∈ A. Apart

from a few sign changes and the A-valued arguments, the fermionic coherent states differ

only in two respects from their bosonic counterpart: firstly, the Grassmann variables η̄i
appearing in the adjoint of a fermion coherent state,

〈η| = 〈0|exp
(
−

∑
i

aiη̄i

)
= 〈0|exp

(∑
i

η̄iai

)
,

are not related to the ηis of the state |η〉 via some kind of complex conjugation. Rather ηi
and η̄i are strictly independent variables.4 Secondly, the Grassmann version of a Gaussian

integral (exercise),
∫
dη̄ dη e−η̄η = 1 does not contain the factors of π characteristic of

standard Gaussian integrals. Thus, the measure of the fermionic analog of Eq. (4.7) does

not contain a π in the denominator.

For the sake of future reference, the most important properties of Fock space coherent

states are summarized in Table 4.1.

3 To prove that the states (4.17) indeed fulfill the defining relation (4.10), we note that aiexp(−ηia
†
i )|0〉

(4.13)
=

ai(1 − ηia
†
i )|0〉

(4.16)
= ηiaia

†
i |0〉 = ηi|0〉 = ηi(1 − ηia

†
i )|0〉 = ηiexp(−ηia

†
i )|0〉. This, in combination with the

fact that ai and ηja
†
j (i �= j) commute, proves Eq. (4.10). Note that the proof has actually been simpler

than in the bosonic case. The fermionic Taylor series terminates after the first contribution. This observation
is representative of a general rule: Grassmann calculus is simpler than standard calculus – all series are finite,
integrals always converge, etc.

4 In the literature, complex conjugation of Grassmann variables is sometimes defined. Although appealing from an
aesthetic point of view – symmetry between bosons and fermions – this concept is problematic. The difficulties
become apparent when supersymmetric theories are considered, i.e. theories where operator algebras contain
both bosons and fermions (the so-called super-algebras). It is not possible to introduce a complex conjugation
that leads to compatibility with the commutation relations of a super-algebra. It therefore seems to be better
to abandon the concept of Grassmann complex conjugation altogether. (Unlike with the bosonic case where
complex conjugation is inevitable in order to define convergent Gaussian integrals, no such need arises in the
fermionic case.)
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Table 4.1 Basic properties of coherent states for bosons

(ζ = 1, ψi ∈ C) and fermions (ζ = −1, ψi ∈ A). In the last

line, the integration measure is defined as

d(ψ̄, ψ) ≡
∏

i
dψ̄i dψi

π(1+ζ)/2 .

Definition |ψ〉 = exp
&
ζ
∑
i

ψia
†
i

'
|0〉

Action of ai ai|ψ〉 = ψi|ψ〉, 〈ψ|ai = ∂ψ̄i
〈ψ|

Action of a†
i a†

i |ψ〉 = ζ∂ψi |ψ〉, 〈ψ|a†
i = 〈ψ|ψ̄i

Overlap 〈ψ′|ψ〉 = exp
&∑

i

ψ̄′
iψi

'
Completeness

∫
d(ψ̄, ψ) e−

∑
i ψ̄iψi |ψ〉〈ψ| = 1F

INFO Grassmann Gaussian integration: Finally, before turning to the development of the

field integral, it is useful to digress on the generalization of Gaussian integrals for Grassmann

variables. The prototype of all Grassmann Gaussian integration formulae is the identity

∫
dη̄ dη e−η̄aη = a, (4.18)

where a ∈ C takes arbitrary values. Equation (4.18) is derived by a first-order Taylor expansion of

the exponential and application of Eq. (4.15). The multi-dimensional generalization of Eq. (4.18)

is given by ∫
d(φ̄, φ) e−φ̄TAφ = detA, (4.19)

where φ̄ and φ are N -component vectors of Grassmann variables, the measure d(φ̄, φ) ≡�N
i=1 dφ̄i dφi, and A may be an arbitrary complex matrix. For matrices that are unitarily

diagonalizable, A = U†DU, with U unitary, and D diagonal, Eq. (4.19) is proven in the

same way as its complex counterpart (3.17): one changes variables φ → U†φ, φ̄ → UT φ̄.

Since detU = 1, the transform leaves the measure invariant (see below) and leaves us with N

decoupled integrals of the type Eq. (4.18). The resulting product of N eigenvalues is just the

determinant of A (cf. the later discussion of the partition function of the non-interacting gas).

For general (non-diagonalizable) A, the identity is established by a straightforward expansion of

the exponent. The expansion terminates at Nth order and, by commuting through integration

variables, it may be shown that the resulting Nth-order polynomial of matrix elements of A is

the determinant.5

5 As with ordinary integrals, Grassmann integrals can also be subjected to variable transforms. Suppose we are
given an integral

∫
d(φ̄, φ) f(φ̄, φ) and wish to change variables according to

ν̄ = Mφ̄, ν = M
′
φ, (4.20)

where, for simplicity, M and M′ are complex matrices (i.e. we here restrict ourselves to linear transforms). One
can show that

ν̄1 · · · ν̄N = (detM)φ̄1 · · · φ̄N , ν1 · · · νN = (detM
′
)φ1 · · ·φN . (4.21)

(There are different ways to prove this identity. The most straightforward is by explicitly expanding Eq. (4.20)
in components and commuting all Grassmann variables to the right. A more elegant way is to argue that the
coefficient relating the right- and left-hand sides of Eq. (4.21) must be an Nth-order polynomial of matrix
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Keeping the analogy with ordinary commuting variables, the Grassmann version of Eq. (3.18)

reads ∫
d(φ̄, φ) e−φ̄TAφ+ν̄T ·φ+φ̄T ·ν = detA eν̄

TA−1ν . (4.22)

To prove the latter, we note that
∫
dη f(η) =

∫
dη f(η+ν), i.e. in Grassmann integration one can

shift variables as in the ordinary case. The proof of the Gaussian relation above thus proceeds

in complete analogy to the complex case. As with Eq. (3.18), Eq. (4.22) can also be employed

to generate further integration formulae. Defining 〈· · · 〉 ≡ detA−1
∫
d(φ̄, φ) e−φ̄TAφ(· · · ), and

expanding both the left-and the right-hand side of Eq. (4.22) to leading order in the “monomial”

ν̄jνi, one obtains 〈φj φ̄i〉 = A−1
ji . The N -fold iteration of this procedure gives

〈φj1φj2 · · ·φjn φ̄in · · · φ̄i2 φ̄i1〉 =
∑
P

(sgnP )A−1
j1iP1

· · ·A−1
jniPn,

where the sign of the permutation accounts for the sign changes accompanying the interchange of

Grassmann variables. Finally, as with Gaussian integration over commuting variables, by taking

N → ∞ the Grassmann integration can be translated to a Gaussian functional integral.

4.2 Field integral for the quantum partition function

Having introduced the coherent states, the construction of path integrals for many-body

systems no longer presents substantial difficulties. However, before proceeding, we should

Josiah Willard Gibbs 1839–1903
Credited with the development
of chemical thermodynamics,
he introduced concepts of free
energy and chemical potential.
(Figure reproduced from The
Collected Works of J. Willard
Gibbs, vol. I (Longmans, Green and Co., 1928).)

address the question: what does

the phrase “path integral for many-

body systems” actually mean? In

the next chapter we will see that

much of the information on quantum

many-particle systems is encoded

in expectation values of products of

creation and annihilation operators,

i.e. expressions of the structure 〈a†a · · · 〉. By an analogy to be explained then, objects

of this type are generally called correlation functions. More important for our present

discussion, at any finite temperature, the average 〈· · · 〉 entering the definition of the

elements of M. In order to be consistent with the anti-commutation behavior of Grassmann variables, the
polynomial must obey commutation relations which uniquely characterize a determinant. Exercise: Check the
relation for N = 2.) On the other hand, the integral of the new variables must obey the defining relation,∫
dν̄ ν̄1 · · · ν̄N =

∫
dνν1 · · · νN = (−)N(N−1)/2, where dν̄ =

�N
i=1 dν̄i and the sign on the right-hand side is

attributed to ordering of the integrand, i.e.
∫
dν1 dν2 ν1ν2 = − ∫

dν1 ν1

∫
dν2 ν2 = −1. Together Eq. (4.21) and

(4.20) enforce the identities dν̄ = (detM)−1dφ̄, dν = (detM′)−1dφ, which combine to give


d(φ̄, φ) f(φ̄, φ) = det(MM

′
)


d(ν̄, ν) f(φ̄(ν̄), φ(ν)).
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correlation function runs over the quantum Gibbs distribution ρ̂ ≡ e−β(Ĥ−μN̂)/Z, where,

as usual,

Z = tr e−β(Ĥ−μN̂) =
∑
n

〈n|e−β(Ĥ−μN̂)|n〉, (4.23)

is the quantum partition function, β ≡ 1/T , μ denotes the chemical potential, and the sum

extends over a complete set of Fock space states {|n〉}. (For the time being we specify neither

the statistics of the system – bosonic or fermionic – nor the structure of the Hamiltonian.)

Ultimately, we will want to construct the path integral representations of correlation

functions. Later we will see that all of these representations can be derived by a few straight-

forward manipulations from a prototypical path integral, namely that for Z. Further, the

(path integral of the) partition function is of importance in its own right, as it contains

much of the information needed to characterize the thermodynamic properties of a many-

body quantum system.6 We thus begin our journey into many-body field theory with a

construction of the path integral for Z.

To prepare the representation of the partition function (4.23) in terms of coherent states,

one must insert the resolution of identity

Z =

∫
d(ψ̄, ψ) e−

∑
i ψ̄iψi

∑
n

〈n|ψ〉〈ψ|e−β(Ĥ−μN̂)|n〉. (4.24)

We now wish to get rid of the – now redundant – Fock space summation over |n〉 (another
resolution of identity). To bring the summation to the form

∑
n |n〉〈n| = 1F , one must

commute the factor 〈n|ψ〉 to the right-hand side. However, in performing this operation, we

must be careful not to miss a sign change whose presence will have important consequences

for the structure of the fermionic path integral. Indeed, it may be checked that, whilst for

bosons 〈n|ψ〉〈ψ|n〉 = 〈ψ|n〉〈n|ψ〉, the fermionic coherent states change sign upon permuta-

tion, 〈n|ψ〉〈ψ|n〉 = 〈−ψ|n〉〈n|ψ〉 (i.e. 〈−ψ| ≡ 〈0|exp
(
−

∑
i ψ̄iai

)
). The presence of the sign

is a direct consequence of the anti-commutation relations between Grassmann variables and

Fock space operators (exercise). Note that, as both Ĥ and N̂ contain elements even in the

creation/annihilation operators, the sign is insensitive to the presence of the Boltzmann

factor in Eq. (4.24). Making use of the sign factor ζ, the result of the interchange can be

formulated as the general expression

Z =

∫
d(ψ̄, ψ) e−

∑
i ψ̄iψi

∑
n

〈ζψ|e−β(Ĥ−μN̂)|n〉〈n|ψ〉

=

∫
d(ψ̄, ψ) e−

∑
i ψ̄iψi〈ζψ|e−β(Ĥ−μN̂)|ψ〉. (4.25)

6 In fact, the statement above is not entirely correct. Strictly speaking, thermodynamic properties involve the
thermodynamic potential Ω = −T lnZ rather than the partition function itself. At first sight it seems that
the difference between the two is artificial – one might first calculate Z and then take the logarithm. However,
typically, one is unable to determine Z in closed form, but rather one has to perform a perturbative expansion,
i.e. the result of a calculation of Z will take the form of a series in some small parameter ε. Now a problem
arises when the logarithm of the series is taken. In particular, the Taylor series expansion of Z to a given order
in ε does not automatically determine the expansion of Ω to the same order. Fortunately, the situation is not all
that bad. As we will see in the next chapter, the logarithm essentially rearranges the perturbation series in an
order known as a cumulant expansion.
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Equation (4.25) can now be directly subjected to the general construction scheme of the

path integral. To be concrete, let us assume that the Hamiltonian is limited to a maximum

of two-body interactions (see Eq. (2.11) and (2.16)),

Ĥ(a†, a) =
∑
ij

hija
†
iaj +

∑
ijkl

Vijkla
†
ia

†
jakal. (4.26)

Note that we have arranged for all of the annihilation operators to stand to the right

of the creation operators. Fock space operators of this structure are said to be normal

ordered.7 The reason for emphasizing normal ordering is that such an operator can be

readily diagonalized by means of coherent states. Dividing the “time interval” β into N

segments and inserting coherent state resolutions of identity (steps 1, 2, and 3 of the general

scheme), Eq. (4.25) assumes the form

Z =

∫
ψ̄0=ζψ̄N

ψ0=ζψN

N∏
n=1

d(ψ̄n, ψn) e−δ
∑N−1

n=0 [δ
−1(ψ̄n−ψ̄n+1)·ψn+H(ψ̄n+1,ψn)−μN(ψ̄n+1,ψn)], (4.27)

where δ = β/N and 〈ψ|Ĥ(a†,a)|ψ′〉
〈ψ|ψ′〉 =

∑
ij hijψ̄iψ

′
j +

∑
ijkl Vijklψ̄iψ̄jψ

′
kψ

′
l ≡ H(ψ̄, ψ′) (simi-

larlyN(ψ̄, ψ′)) and we have adopted the shorthand ψn = {ψn
i }, etc. Finally, sendingN → ∞

and taking limits analogous to those leading from Eq. (3.5) to (3.6) we obtain the continuum

version of the path integral,8

Z =

∫
D(ψ̄, ψ) e−S[ψ̄,ψ], S[ψ̄, ψ] =

∫ β

0

dτ
[
ψ̄∂τψ +H(ψ̄, ψ)− μN(ψ̄, ψ)

]
, (4.28)

where D(ψ̄, ψ) = limN→∞
∏N

n=1 d(ψ̄
n, ψn), and the fields satisfy the boundary condition

ψ̄(0) = ζψ̄(β), ψ(0) = ζψ(β). (4.29)

Written in a more explicit form, the action associated with the general pair-interaction

Hamiltonian (4.26) can be cast in the form

S =

∫ β

0

dτ

⎡⎣∑
ij

ψ̄i(τ) [(∂τ − μ)δij + hij ]ψj(τ) +
∑
ijkl

Vijklψ̄i(τ)ψ̄j(τ)ψk(τ)ψl(τ)

⎤⎦ . (4.30)

Notice that the structure of the action fits nicely into the general scheme discussed in

the previous chapter. By analogy, one would expect that the exponent of the many-body

7 More generally, an operator is defined to be “normal ordered” with respect to a given vacuum state |0〉 if, and
only if, it annihilates |0〉. Note that the vacuum need not necessarily be defined as a zero-particle state. If the
vacuum contains particles, normal ordering need not lead to a representation where all annihilators stand to the
right. If, for whatever reason, one is given a Hamiltonian whose structure differs from Eq. (4.26), one can always
effect a normal ordered form at the expense of introducing commutator terms. For example, normal ordering the
quartic term leads to the appearance of a quadratic contribution that can be absorbed into hαβ .

8 Whereas the bosonic continuum limit is indeed perfectly equivalent to the one taken in constructing the quantum
mechanical path integral (limδ→0 δ−1(ψ̄n+1 − ψ̄n) = ∂τ |τ=nδψ̄(τ) gives an ordinary derivative, etc.), a novelty
arises in the fermionic case. The notion of replacing differences by derivatives is purely symbolic for Grassmann
variables. There is no sense in which ψ̄n+1 − ψ̄n is small. The symbol ∂τ ψ̄ rather denotes the formal (and

well-defined expression) limδ→0 δ−1(ψ̄n+1 − ψ̄n).
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path integral carries the significance of the Hamiltonian action, S ∼
∫
d(pq̇ − H), where

(q, p) symbolically stands for a set of generalized coordinates and momenta. In the present

case, the natural pair of canonically conjugate operators is (a, a†). One would then interpret

the eigenvalues (ψ, ψ̄) as “coordinates” (much as (q, p) are the eigenvalues of the operators

(q̂, p̂)). Adopting this interpretation, we see that the exponent of the path integral indeed

has the canonical form of a Hamiltonian action and, therefore, is easy to memorize.

Equations (4.28) and (4.30) define the functional integral in the time representation

(in the sense that the fields are functions of a time variable). In practice we shall mostly

find it useful to represent the action in an alternative, Fourier conjugate representation.

To this end, note that, due to the boundary conditions (4.29), the functions ψ(τ) can be

interpreted as functions on the entire Euclidean time axis that are periodic/antiperiodic on

the interval [0, β]. As such, they can be represented in terms of a Fourier series,

ψ(τ) =
1√
β

∑
ωn

ψne
−iωnτ , ψn =

1√
β

∫ β

0

dτ ψ(τ)eiωnτ ,

where

ωn =

)
2nπT, bosons,

(2n+ 1)πT, fermions,

*
n ∈ Z, (4.31)

are known as Matsubara frequencies. Substituting this representation into Eq. (4.28)

and (4.30), we obtain Z =
∫
D(ψ̄, ψ) e−S[ψ̄,ψ], where D(ψ̄, ψ) =

∏
n d(ψ̄n, ψn) defines the

measure (for each Matsubara index n we have an integration over a coherent state basis

{|ψn〉}),9 and the action takes the form

S[ψ̄, ψ] =
∑
ij,n

ψ̄in [(−iωn − μ) δij + hij ]ψjn +
1

β

∑
ijkl,ni

Vijklψ̄in1 ψ̄jn2ψkn3ψln4δn1+n2,n3+n4 .

(4.32)

Here we have used the identity
∫ β

0
dτ e−iωnτ = βδωn0. Equation (4.32) defines the fre-

quency representation of the action.10

INFO In performing calculations in the Matsubara representation, one sometimes runs into

convergence problems (which will manifest themselves in the form of ill-convergent Matsubara

frequency summations). In such cases it will be important to remember that Eq. (4.32) does not

actually represent the precise form of the action. What is missing is a convergence generating

factor whose presence follows from the way in which the integral was constructed, and which

will save us in cases of non-convergent sums (except, of course, in cases where divergences have

a physical origin). More precisely, since the fields ψ̄ are evaluated infinitesimally later than the

fields ψ (cf. Eq. (4.27)), the h- and μ-dependent contributions to the action acquire a factor

9 Notice, however, that the fields ψn carry dimension [energy]−1/2, i.e. the frequency coherent state integral is

normalized as
∫
d(ψ̄n, ψn) e−ψ̄n�ψn = (βε)−ζ .

10 As to the signs of the Matsubara indices appearing in Eq. (4.32), note that the Fourier representation of ψ̄ is

defined as ψ̄(τ) = 1√
β

∑
n ψ̄ne

+iωnτ , ψ̄n = 1√
β

∫ β
0

dτ ψ̄(τ)e−iωnτ . In the bosonic case, this sign convention is

motivated by ψ̄ being the complex conjugate of ψ. For reasons of notational symmetry, this convention is also
adopted in the fermionic case.
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exp(−iωnδ), δ infinitesimal. Similarly, the V contribution acquires a factor exp(−i(ωn1 +ωn2)δ).

In cases where the convergence is not critical, we will omit these contributions. However, once

in a while it is necessary to remember their presence.

Partition function of non-interacting gas

As a first exercise, let us consider the quantum partition function of the non-interacting gas.

(Later, this object will prove to be a “reference” in the development of weakly interacting

theories.) In some sense, the field integral formulation of the non-interacting partition func-

tion has a status similar to that of the path integral for the quantum harmonic oscillator:

the direct quantum mechanical solution of the problem is straightforward and application

of the full artillery of the field integral seems somewhat ludicrous. From a pedagogical point

of view, however, the free partition function is a good problem; it provides us with the

welcome opportunity to introduce a number of practical concepts of field integration within

a comparatively simple setting. Also, the field integral representation of the free partition

function will be an important operational building block for our subsequent analysis of

interacting problems.

Consider, then, the partition function (4.28) with H0(ψ̄, ψ) =
∑

ij ψ̄iH0,ijψj . Diagonaliz-

ing H0 by a unitary transformation U , H0 = UDU†, and transforming integration variables,

U†ψ ≡ φ, the action assumes the form S =
∑

a

∑
ωn

φ̄an(−iωn + ξa)φan, where ξa ≡ εa − μ

and εa are the single-particle eigenvalues. Remembering that the fields φa(τ) are indepen-

dent integration variables (Exercise: Why does the transformation ψ → φ have a Jacobian

of unity?), we find that the partition function decouples, Z =
∏

a Za, where

Za =

∫
D(φ̄a, φa) e

−∑
n φ̄an(−iωn+ξa)φan =

∏
n

[β(−iωn + ξa)]
−ζ , (4.33)

and the last equality follows from the fact that the integrals over φan are one-dimensional

complex or Grassmann Gaussian integrals. Here, let us recall our convention defining ζ =

1 (−1) for bosonic (fermionic) fields. At this stage, we have left all aspects of field integration

behind us and reduced the problem to one of computing an infinite product over factors

iωn − ξa. Since products are usually more difficult to get under control than sums, we take

the logarithm of Z to obtain the free energy

F = −T lnZ = Tζ
∑
an

ln[β(−iωn + ξa)]. (4.34)
INFO Before proceeding with this expression, let us take a second look at the intermediate

identity (4.33). Our calculation showed the partition function to be the product over all eigen-

values of the operator −iω̂ + Ĥ − μN̂ defining the action of the non-interacting system (here,

ω̂ = {ωnδnn′}). As such, it can be written compactly as:

Z = det
[
β(−iω̂ + Ĥ − μN̂)

]−ζ

. (4.35)

This result was derived by first converting to an eigenvalue integration and then performing

the one-dimensional integrals over “eigencomponents” φan. While technically straightforward,

that – explicitly representation-dependent – procedure is not well suited to generalization to
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more complex problems. (Keep in mind that later on we will want to embed the free action of

the non-interacting problem into the more general framework of an interacting theory.)

Indeed, it is not necessary to refer to an eigenbasis at all. In the bosonic case, Eq. (3.17)

tells us that Gaussian integration over a bilinear ∼ φ̄X̂φ generates the inverse determinant of

X̂. Similarly, as we have seen, Gaussian integration extends to the Grassmann case with the

determinants appearing in the numerator rather than in the denominator (as exemplified by

Eq. (4.35)). (As a matter of fact, Eq. (4.33) is already a proof of this relation.)

We now have to face up to a technical problem: how do we compute Matsubara sums

of the form
∑

n ln(iωn − x)? Indeed, it takes little imagination to foresee that sums of

the type
∑

n1,n2,...
X(ωn1 , ωn2 , . . .), where X symbolically stands for some function, will

be a recurrent structure in the analysis of functional integrals. A good ansatz would be

to argue that, for sufficiently low temperatures (i.e. temperatures smaller than any other

characteristic energy scale in the problem), the sum can be traded for an integral, specifically

T
∑

n →
∫
dω/(2π). However, this approximation is too crude to capture much of the

characteristic temperature dependence in which one is usually interested. Yet there exists an

alternative, and much more accurate, way of computing sums over Matsubara frequencies

(see Info below).

INFO Consider a single Matsubara frequency summation,

S ≡
∑
n

h(ωn), (4.36)

where h is some function and ωn may be either bosonic or fermionic (cf. Eq. (4.31)). The basic

idea behind the standard scheme of evaluating sums of this type is to introduce a complex

auxiliary function g(z) that has simple poles at z = iωn. The sum S then emerges as the sum

of residues obtained by integrating the product gh along a suitably chosen path in the complex

plane. Typical choices of g include

g(z) =

{
β

exp(βz)−1
, bosons,

β
exp(βz)+1

, fermions,

+
or g(z) =

$
β
2
coth(βz/2), bosons,

β
2
tanh(βz/2), fermions,

%
(4.37)

where, in much of this section, we will employ the functions of the first column. (Notice the

similarity between these functions and the familiar Fermi and Bose distribution functions.) In

practice, the choice of the counting function is mostly a matter of taste, save for some cases

where one of the two options is dictated by convergence criteria.

Integration over the path shown in the left part of Fig. 4.2 then produces

ζ

2πi

∮
dz g(z)h(−iz) = ζ

∑
n

Res(g(z)h(−iz))|z=iωn =
∑
n

h(ωn) = S,

where, in the third identity, we have used the fact that the “counting functions” g are chosen

so as to have residue ζ and it is assumed that the integration contour closes at z → ±i∞.

(The difference between using the first and the second column of Eq. (4.37) lies in the value

of the residue. In the latter case, it is equal to unity rather than ζ.) Now, the integral along a

contour in the immediate vicinity of the poles of g is usually intractable. However, as long as

we are careful not to cross any singularities of g or the function h(−iz) (symbolically indicated
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ω ω
γ1 γ2

(a) (b)

Figure 4.2 (a) The integration contour employed in calculating the sum (4.36). (b) The deformed
integration contour.

by isolated crosses in Fig. 4.211) we are free to distort the integration path, ideally to a contour

along which the integral can be done. Finding a suitable contour is not always straightforward.

If the product hg decays sufficiently fast as |z| → ∞ (i.e. faster than z−1), one will usually try

to “inflate” the original contour to an infinitely large circle (Fig. 4.2(b)).12 The integral along

the outer perimeter of the contour then vanishes and one is left with the integral around the

singularities of the function h. In the simple case where h(−iz) possesses a number of isolated

singularities at {zk} (i.e. the situation indicated in the figure) we thus obtain

S =
ζ

2πi

∮
dz h(−iz)g(z) = −ζ

∑
k

Res h(−iz)g(z)
∣∣
z=zk

, (4.38)

where the contour integral encircles the singularities of h(−iz) in clockwise direction. The com-

putation of the infinite sum S has been now been reduced to the evaluation of a finite number

of residues – a task that is always possible!

To illustrate the procedure on a simple example, let us consider the function

h(ωn) = − ζT

iωne−iωnδ − ξ
,

where δ is a positive infinitesimal.13 To evaluate the sum S =
∑

n h(ωn), we first observe that

the product h(−iz)g(z) has benign convergence properties. Further, the function h(−iz) has a

11 Remember that a function that is bounded and analytic in the entire complex plane is constant, i.e. every
“interesting” function will have singularities.

12 Notice that the condition lim|z|→∞ |hg| < z−1 is not as restrictive as it may seem. The reason is that the
function h will be mostly related to physical observables that approach some limit (or vanish) for large excitation
energies. This implies vanishing in at least portions of the complex plane. The convergence properties of g
depend on the concrete choice of the counting function. (Exercise: Explore the convergence properties of the
functions shown in Eq. (4.37).)

13 In fact, this choice of h is actually not as artificial as it may seem. The expectation value of the number of
particles in the grand canonical ensemble is defined through the identity N ≡ −∂F/∂μ where F is the free
energy. In the non-interacting case, F is given by Eq. (4.34) and, remembering that ξa = εa − μ, one obtains
N ≈ ζT

∑
an

1
−iωn+ξa

. Now, why did we write “≈” instead of “=”? The reason is that the right-hand side,

obtained by naive differentiation of Eq. (4.34), is ill-convergent. (The sum
∑∞

n=−∞
1

n+x , x arbitrary, does

not exist!) At this point we have to remember the remark made on page 168, i.e., had we carefully treated
the discretization of the field integral, both the logarithm of the free energy and ∂μF would have acquired
infinitesimal phases exp(−iωnδ). As an exercise, try to keep track of the discretization of the field integral from
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simple pole that, in the limit δ → 0, lies on the real axis at z = ξ. This leads to the result∑
n

h(ωn) = −ζ Res g(z)h(−iz)|z=ξ =
1

eβξ − ζ
.

We have thus arrived at the important identity

−ζT
∑
n

1

iωn − ξa
=

{
nB(εa), bosons,

nF(εa), fermions,
(4.39)

where

nF(ε) =
1

exp(ε− μ) + 1
, nB(ε) =

1

exp(ε− μ)− 1
, (4.40)

are the Fermi/Bose distribution functions. As a corollary we note that the expectation value

for the number of particles in a non-interacting quantum gas assumes the familiar form N =∑
a nF/B(εa).

Before returning to our discussion of the partition function, let us note that life is not always

as simple as the example above. More often than not, the function h contains not only isolated

singularities but also cuts or worse singularities. In such circumstances, finding a good choice of

the integration contour can be far from straightforward!

Returning to the problem of computing the sum (4.34), consider for a moment a fixed

ω

ξ

eigenvalue ξa ≡ εa −μ. In this case, we need to evaluate

the sum S ≡
∑

n h(ωn), where h(ωn) ≡ ζT ln[β(−iωn +

ξ)] = ζT ln[β(iωn − ξ)] +C and C is an inessential con-

stant. As discussed before, the sum can be represented

as S = ζ
2πi

∮
dz g(z)h(−iz), where g(z) = β(eβz − ζ)−1

is (β times) the distribution function and the contour

encircles the poles of g as in Fig. 4.2(a). Now, there is

an essential difference from the example discussed pre-

viously, i.e. the function h(−iz) = ζT ln(z − ξ) + C has

a branch cut along the real axis, z ∈ (−∞, ξ) (see the

figure). To avoid contact with this singularity one must

distort the integration contour as shown in the figure.

Noticing that the (suitably regularized, cf. our previous discussion of the particle number

N) integral along the perimeter vanishes, we conclude that

S =
T

2πi

∫ ∞

−∞
dε g(ε)

(
ln(ε+ − ξ)− ln(ε− − ξ)

)
,

its definition to Eq. (4.34) to show that the accurate expression for N reads

N = ζT
∑
an

1

−iωne−iωnδ + ξa
=

∑
a

∑
n

h(ωn)|ξ=ξa
,

where h is the function introduced above. (Note that the necessity to keep track of the lifebuoy e−iδωn does

not arise too often. Most Matsubara sums of physical interest relate to functions f that decay faster than z−1.)
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where ε± = ε± iη, η is a positive infinitesimal, and we have used the fact that g(ε±) � g(ε)

is continuous across the cut. (Also, without changing the value of the integral (exercise:

why?), we have enlarged the integration interval from (−∞, ξ] to (−∞,∞).) To evaluate

the integral, we observe that g(ε) = ζ∂ε ln
(
1− ζe−βε

)
and integrate by parts:

S = − ζT

2πi

∫
dε ln

(
1− ζe−βε

)( 1

ε+ − ξ
− 1

ε− − ξ

)
(3.58)
= ζT ln

(
1− ζe−βξ

)
.

Insertion of this result into Eq. (4.34) finally gives the familiar expression

F = ζT
∑
a

ln
(
1− ζe−β(εa−μ)

)
, (4.41)

for the free energy of the non-interacting Fermi/Bose gas. While this result could have been

obtained much more straightforwardly by the methods of quantum statistical mechanics,

we will shortly see how powerful a tool the methods discussed in this section are when it

comes to the analysis of less elementary problems!

4.3 Field theoretical bosonization: a case study

The field integral (4.28) provides an exact representation of the quantum partition function;

it contains the full information on the microscopic Hamiltonian operator. However, what

we are actually interested in is the universal large-scale behavior of a quantum system. To

extract this information from the field integral we will need to identify the relevant long-

range degrees of freedom and to dispense with the abundance of microscopic data controlling

the short-range behavior. In other words, we will have to pass from the microscopic field

theory to some effective long-range theory.

In Chapter 1 we saw that there are usually two principal strategies to obtain effective

long range theories of microscopic systems: explicit construction – the subject of the next

two chapters – and more phenomenological approaches based on consistency considerations

and symmetry arguments. Besides a certain lack of rigor, the principal disadvantage of the

second route is the lack of quantitative control of the results (which implies susceptibility

to mistakes). On the other hand, the phenomenological approach is far less laborious and

involves a minimal amount of technical preparation. Often, the phenomenological deduction

of a low-energy field theory precedes its rigorous construction (sometimes by years). In fact,

there are cases where phenomenology is the only viable route.

Below we will illustrate the power of the phenomenological approach on the example of

the interacting one-dimensional electron gas. We will map the microscopic partition function

of the system onto a free (and thus exactly solvable) bosonic theory.14 In this section the

emphasis is placed on purely methodological aspects, i.e. we will derive an effective theory,

but will not do anything with it. (Nonetheless, the derivation is instructive and helps us to

understand the essential physics of the system!) In later chapters, the field theory derived

14 A preliminary account of the ideas underlying this mapping has already been given in Section 2.2.
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below will then serve as the starting point for the discussion of a number of interesting

applications.

One-dimensional electron gas (fermionic theory)

Non-interacting system

Let us begin by considering the action of a non-interacting one-dimensional electron gas

S0[ψ
†, ψ] =

∑
s=±1

∫
dxdτ ψ†

s (−isvF∂x + ∂τ )ψs,

where ψ+/− are the right-/left-moving fermions and we have denoted the Grassmann field

conjugate to ψ by ψ†.15 For later reference we recall that the left-/right-moving fermion

operators are projections of the global momentum-dependent fermion operator to the vicin-

ity of the left/right Fermi point, i.e. ψ†
+(q) = ψ†

kF+q, ψ
†
−(q) = ψ†

−kF+q, where |q| � kF.

Fourier transforming this expression we obtain the approximate decomposition

ψ(x) = eikFxψ+(x) + e−ikFxψ−(x). (4.42)

Before proceeding, let us rewrite the action in a form that emphasizes the symmetries of

the problem:

S0[ψ
†, ψ] =

∫
d2xψ† (σ0∂x0 + iσ3∂x1)ψ =

∫
d2xψ̄ (σ1∂x0 + σ2∂x1)ψ, (4.43)

where we have set vF = 1 for notational simplicity. Here, ψ = (ψ+, ψ−)T is a two-component

field comprising left- and right-moving fermions, x = (x0, x1) = (τ, x) parameterizes (1+1)-

dimensional space-time, and ψ̄ ≡ ψ†σ1. The second equality identifies the action of the free

one-dimensional fermion with that of a (1 + 1)-dimensional Dirac particle.16

We next turn to the discussion of the symmetries of the problem. For one thing,

the action is clearly invariant under the transformation, ψ → eiφvψ, where φv = const.

What is the resulting conserved current? The infinitesimal variant of this transformation is

described by ψ → ψ + (iδφv)ψ or, in a notation adapted to Eq. (1.42), ψ ↔ φi, ωa ↔ iφv,

F i
a = 1. Equation (1.43) then gives the conserved current jν,μ = ∂L

∂(∂μψ)ψ = ψ̄γμψ. For later

reference, we mention that, under a rotation of space-time, xμ → (R · x)μ, the components

of jv transform like a vector, jμ → (R · j)μ. In relativistic field theory, jv is therefore usually

called a vector current.

Notice that the two components of the vector, j0 = ψ†ψ = ψ†
+ψ+ + ψ†

−ψ− ≡ ρ and j1 =

iψ†σ3ψ = i
(
ψ†
+ψ+ − ψ†

−ψ−
)
≡ ij, are the charge density, ρ, of the system and (i times)

15 Following the remarks earlier, this represents an abuse of notation; there is no Grassmann complex conjugation!
However, within the context of relativistic fermions our standard symbol ψ̄ is reserved for another object (see
below).

16 For a review of the theory of the standard four-dimensional massless Dirac equation γμ∂μψ = 0, see, e.g., L.
H. Ryder, Quantum Field Theory (Cambridge University Press, 1996). The Dirac equation affords a natural
generalization to any even-dimensional space. Specifically, for d = 2, the algebra of Dirac γ-matrices, {γμ, γν} =
2δμν , μ, ν = 0, 1, 5, is satisfied by γ0 ≡ σ1, γ1 ≡ σ2, γ5 ≡ −iγ0γ1 = σ3.
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the current density, j, respectively.17 Thus, the equation −i∂μjμ = −i∂τρ+ ∂xj = 0 simply

expresses the conservation of particle current.

INFO A particular example of the general fact that the U(1)-symmetry of quantum mechanics

(the freedom to multiply wave functions or operators of a second quantized approach by a

constant phase eiφ) implies the conservation of particle current.

EXERCISE Subject the action of the general field integral (4.28) to the transformation ψ →
eiφψ, ψ̄ → ψ̄e−iφ and compute the resulting Noether current. Convince yourself that the com-

ponents of the current are the coherent state representation of the standard density/current

operator of quantum mechanics.

Now, the action (4.43) possesses a somewhat less obvious second symmetry: it remains

invariant under the transformation ψ → eiφaσ3ψ, ψ̄ → ψ̄eiφaσ3 . (Notice that this is not a

unitary symmetry, i.e. the matrices transforming ψ and ψ̄ are not inverse to each other.)

Indeed, one may note that (ψ̄eiφaσ3)σμ∂μ(e
iφaσ3ψ)

[σ3,σμ]+=0
= ψ̄σμ∂μψ. A straightforward

application of Noether’s theorem based on the infinitesimal variant ψ → ψ+(iφa)σ3ψ gives

the conserved current ja,μ = iψ̄σμσ3ψ = εμνψ̄σνψ. Introducing a unit vector e2 pointing

into a fictitious third dimension perpendicular to the space-time plane, the current can be

written as ja = e2 × jv. This representation shows that, under rotations, ja transforms like

an axial vector (similar to, say, a magnetic field). For this reason, ja is commonly called an

axial current.

INFO The axial symmetry of the relativistic electron gas is a prominent example of symmetry

that does not pervade to the quantum level. I.e. the conservation of the axial current breaks

down once quantum fluctuations are taken into account, a phenomenon known as the chiral

or axial anomaly.18 Although we will meet with various manifestations of the chiral anomaly,

a thorough discussion of all its implications is beyond the scope of this text. (However, most

textbooks on particle physics contain an extensive coverage of anomalies.)

Finally, notice that the existence of two distinct symmetries, vectorial and axial, affords

a simple interpretation in the original representation of the theory (the first equality in

Eq. (4.43)). All it means is that the left- and right-moving fermion states do not couple,

i.e. that the left- and the right-moving fermion particle currents are separately conserved.

(Compute the corresponding Noether currents!)

Given that we are dealing with but the simplest one-dimensional theory one can imagine,

the formal discussion of symmetries may seem to be a bit of an overkill. However, we shall

see in a moment that the effort was well invested: as soon as we switch on interactions, the

fermionic theory ceases to be exactly solvable. It turns out, however, that our symmetry

discussion above provides the key to a bosonic reformulation of the problem which does enjoy

exact solvability. Yet, before turning to the bosonic approach, let us briefly recapitulate how

interactions couple to the model.

17 Notice that, for a one-dimensional Fermi system with uniform Fermi velocity vF = 1, the current density is
equal to the density of right movers minus that of the left movers.

18 In field theory, the quantum violation of a classical conservation law is generally called an anomaly.
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Interacting case

As in Section 2.2 we assume a short-range interaction between the left- and right-moving

densities. Quantitatively, this is described by the coherent state representation of the second

quantized Hamiltonian (2.36), i.e.

Sint[ψ
†, ψ] =

1

2

∑
s

∫
dxdτ (g2ρ̂sρ̂s̄ + g4ρ̂sρ̂s), (4.44)

where ρ̂s ≡ ψ†
sψs. Notice that the interaction term leaves the vectorial/axial symmetry of

the system intact (why?). But what else can we say about the interacting system? In fact,

we have seen in Section 2.2 that it is difficult to understand the physics of the system in the

microscopic language of interacting fermion states. Rather, one should turn to a formulation

in terms of the effective long-range degrees of freedom of the model – non-dispersive charge

density fluctuations. In the next section, we will formulate the dynamics of these excitations

in a field theoretical language. Remarkably, it will turn out that all we need to extract this

formulation from the microscopic model is a minimal investment of phenomenological input

plus symmetry considerations.

One-dimensional electron gas (bosonic theory)

We have seen in Section 2.2 that the one-dimensional fermion system supports collective

bosonic excitations. In this section, we apply phenomenological and symmetry arguments

to construct a field theory of these excitations.19 Consider the electron operators c†(x) of a
one-dimensional system. As seen in Chapter 2, the operators c† afford a representation in

terms of bosons – the Jordan–Wigner transformation. As we are after an effective bosonic

theory, it is certainly a good idea to switch to this Bose representation right from the

outset. Expressed in terms of Jordan–Wigner bosons, c†(x) = eiπ
∫
x′<x

dx′ b†(x′)b(x′)b†(x),
where b†(x) creates a (bosonic) unit-charge excitation at x and the “Jordan–Wigner string”

∼
∫
x′<x

dx′ b†(x′)b(x′) implements the fermionic exchange statistics of the cs in terms of

Bose operators. Now, we have seen in Section 2.2 that the dominant excitations of the

(spinless) system are charge-density fluctuations. Thus, our next step is to switch to a

representation that separately treats density and phase degrees of freedom. To this end, we

define charge and phase operators through

b(x) ≡
(
kF
π

+ ρ̂(x)

)1/2

eiφ̂(x), b†(x) ≡ e−iφ̂(x)

(
kF
π

+ ρ̂(x)

)1/2

, (4.45)

where kF/π is the average background density of the system, ρ̂ describes density fluctuations,

and φ̂ describes the phase of the Bose excitations.

INFO Charge-density representations of this type are frequently employed in bosonic theo-

ries. Importantly, the transformation (b, b†) → (ρ̂, φ̂) is canonical, i.e. the density and the phase

19 For a detailed account of the rigorous construction (elements of which have been used in Section 2.2) we refer
to H. Schöller and J. von Delft, Bosonization for beginners – refermionization for experts, Ann. Phys. 7 (1998),
225–305.
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of a bosonic excitation form a canonically conjugate pair, [ρ̂(x), φ̂(x′)] = iδ(x − x′).20 To check

this assertion, let us temporarily shift the density operator ρ̂ → ρ̂+kF /π, so that ρ̂ now describes

the total density of the system. (Of course, the shift by a number does not alter the commutation

relations.) We thus write b = ρ̂1/2exp(iφ̂) and b† = exp(−iφ̂)ρ̂1/2, where the position index has

been dropped for notational transparency, and check that [b, b†] = 1 indeed requires [ρ̂, φ̂] = i:

[b, b†] =
[
ρ̂1/2eiφ̂, e−iφ̂ρ̂1/2

]
= ρ̂− e−iφ̂ρ̂eiφ̂

= ρ̂− e−i[φ̂, ]ρ̂ = ρ̂− ρ̂+ i[φ̂, ρ̂]− 1

2
[φ̂, [φ̂, ρ̂]] + · · · [ρ̂,φ̂]=i

= 1,

as required. (In the last line we have used the general operator identity eÂB̂e−Â = e[Â,.]B̂.)

To represent the fermions in terms of bosonic degrees of freedom we might now substitute the

charge/phase decomposition directly into our expression for the Jordan–Wigner transformed

fermion. It turns out, however, that the resulting representation – though perfectly valid – is

not quite what we want. To obtain a representation better adjusted to the present problem,

let us, rather, construct a fermion “from scratch.” To this end, let us think of the fermion as

a structureless charge endowed with fermionic exchange statistics. The charge is created by

application of eiφ̂,21 while the fermionic exchange statistics are then generated in a second

step through multiplication by a Jordan–Wigner string. In fact, there is a certain ambiguity

in the definition of the string variable: defining θ̂(x) ≡ π
∫ x

−∞ dx′ ρ̂(x′), it is straightforward
to show that for m,m′ odd integers[

eimθ̂(x)eiφ̂(x), eim
′θ̂(x′)eiφ̂(x

′)
]
+
∝ eiπm

′Θ(x′−x) + eiπmΘ(x−x′) = 0,

which implies that the most general representation of the fermion operator reads as,22

c†(x) = Γ
∑

m=±1 e
im(kFx+θ̂(x)/π)eiφ̂(x). Here we have introduced a scalar prefactor Γ whose

presence is needed to regularize the right-hand side of the equation in the limit of vanishing

lattice spacing (the short distance cutoff of the theory, see the problem set). We have also

reinstalled the constant shift, ρ̂ → ρ̂+ kF/π ⇒ θ̂ → θ̂ + kFx.

EXERCISE Verify the commutator identity above. (Hint: Use the general identities eÂB̂e−Â =

e[Â,]B̂ and eÂeB̂e−Â = ee
ÂB̂e−Â

.)

For most purposes, it is sufficient to keep the lowest two contributions to the harmonic

expansion of the fermion operator: c†(x) = Γ
∑

s=±1 e
is(kFx+θ̂(x)/π)eiφ̂(x). Comparison with

Eq. (4.42) then leads to the tentative identification

c†s(x) = Γeisθ̂(x)eiφ̂(x). (4.46)

20 This implies, in particular, that the corresponding field integral transformation (ψ, ψ̄) → (ρ, φ) from complex
integration variables to the two real variables (ρ, φ) has a unit Jacobian (check this!).

21 Notice that φ̂ is the “momentum” conjugate to ρ̂, i.e. the “translation operator” eiφ̂(x) increases the charge at
x by unity.

22 To obtain the correct normalization of the anti-commutator at coinciding arguments x = x′, all expansion
coefficients have to be equal to each other.
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Finally, one may notice that the two fields θ̂ and φ̂ – our principal degrees of freedom

throughout – are characterized by the commutation relations

[φ̂(x), θ̂(x′)] = iπΘ(x′ − x). (4.47)

At first sight, the results derived above may look strange: we have traded our simple fermion

operator for a nonlinear representation in terms of bosonic degrees of freedom – but why?

The point is that we are usually interested not in expressions linear in the fermion oper-

ators but in fermion bilinears (currents, densities, etc.). In contrast to the case of a single

fermion, fermion bilinears have very simple expressions in terms of bosons. In particular,

the Hamiltonian operator of the interacting system becomes quadratic (manifestly solvable)

when expressed in terms of bosons. This aspect of the theory – undoubtedly the prime

motivation behind the method of bosonization – will be explored next.

Non-interacting system

We now apply a combination of symmetry and dynamical arguments to identify the Hamil-

tonian of the non-interacting system. The fermionic prototype action is invariant under

global rotations of space-time, x → x′ = R·x, ψ′(x′) = ψ(x). This symmetry must pertain to

the bosonic description of the theory. Turning to the system’s “intrinsic” symmetries, we

notice that the vectorial and axial symmetry operations considered in the previous section

act on the left-/right-moving fermion states as ψs → eiφvψs and ψs → eisφaψs, respectively.

Of course, these transformations must continue to be symmetries no matter which repre-

sentation of the theory (bosonic, fermionic, or whatever) is chosen. A glance at Eq. (4.46)

shows that the symmetry transformation acts on the bosonic variables by a simple shift

operation, vectorial: (φ, θ) → (φ+φv, θ), axial: (φ, θ) → (φ, θ+φa). For φa,v = const., these

transformations must not change the action, which excludes the presence of non-derivative

terms. (For example, a contribution such as ∼
∫
θ2 would not be invariant under a uniform

axial transformation, etc.)

Of course, symmetries alone do not suffice to fix the action of the system. What we need, in

addition, is a minimal amount of dynamical input. More specifically, what we shall build

on is the fact that the creation of a density distortion ρ = ∂xθ/π in the system costs a certain

amount of energy U . Assuming that U ∼ ρ2 (i.e. that screening has rendered the Coulomb

interaction effectively short-range), the Lagrangian action of the charge displacement field

θ will contain a term ∼ (∂xθ)
2. However, this expression lacks rotational invariance. Its

canonical rotationally invariant extension reads (∂xθ)
2 + (∂τθ)

2. Thus, up to second order

in derivatives, the Lagrangian action is given by S0[θ] =
c
2

∫
dx dτ [(∂xθ)

2 + (∂τθ)
2], where

the coupling constant c needs to be specified. This expression tells us that the field θ has

a linear dispersion and propagates at constant velocity (recall our discussion of, e.g., the

phonon action in Chapter 1). Recalling that ∂xθ ∼ ρ, this confirms our results regarding the

behavior of density distortions in one-dimensional electron systems derived in Section 2.2.
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To fix the value of the coupling constant c, we must compute the “correlation function”23

C(x, τ) ≡ 〈(ψ†
+ψ−)(x, τ)(ψ

†
−ψ+)(0, 0)〉ψ, (4.48)

first in the fermionic, then in the bosonic, language, and require coinciding answers. Refer-

ring for a detailed discussion to the problem set, we here merely note that the result obtained

for the free fermion action Eq. (4.43) reads C(x, τ) = (4π2(x2+τ2))−1. The bosonic variant

C(x, τ) = Γ4
〈
e2iθ(x,τ)e−2iθ(0,0)

〉
θ
leads to the same expression provided that we set c = 1/π

and Γ = 1/(2πa)1/2.

Thus, our final result for the Lagrangian of the non-interacting system reads

S[θ] =
1

2π

∫
dx dτ [(∂xθ)

2 + (∂τθ)
2].

Before proceeding to include interactions, let us turn from the Lagrangian to the Hamil-

tonian formulation. Using the fact that the canonical momentum corresponding to θ is

πθ = ∂∂τθL = ∂τθ/π, we obtain the Hamiltonian density 1
2π

[
(∂xθ)

2 + π2π2
θ

]
and the action

S[θ, πθ] =
1

2

∫
dx dτ

(
1

π
(∂xθ)

2 + ππ2
θ + 2i∂τθπθ

)
.

At the same time, the relation (4.47) identifies the canonical momentum as πθ = ∂xφ/π.

Expressed in terms of the two fundamental degrees of freedom of the theory, the Hamiltonian

action thus reads

S[θ, φ] =
1

2π

∫
dx dτ

(
(∂xθ)

2 + (∂xφ)
2 + 2i∂τθ∂xφ

)
. (4.49)

It is instructive to inspect the Noether current corresponding to the vectorial symmetry in

the bosonic language. A straightforward application of Noether’s theorem to the transfor-

mation φ → φ + φv obtains ∂μjv,μ = 0, where jv,0
p. 174
= ρ = ∂xθ/π and jv,1

p. 174
= ij =

−i∂xφ/π.
24 While the first of these relations merely reiterates the definition of the dis-

placement field, the second contains new information. Remembering that ρ = ρ+ + ρ− and

j = ρ+ − ρ−, we obtain the important identification

ρ± =
1

2π
[∂xθ ∓ ∂xφ] , (4.50)

of the left- and right-moving densities in terms of the Bose field.

EXERCISE Compute the bosonic representation of the axial Noether current.

23 The function C describes the correlation of the bilinear ψ̄+ψ− with itself measured at different values of space
and time. We have more to say on the subject of correlation functions in the next chapter.

24 The (arbitrary) normalization constant π−1 has been chosen to obtain consistency with previous definitions,
see below.
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Interacting system

We are now in a position to turn to the interacting case. In fact, all the hard work necessary

to get the interacting problem under control has already been done! We simply substitute

the bosonic representation Eq. (4.50) into the Coulomb action Eq. (4.44) and obtain

Sint =
1

8π2

∑
s

∫
dx dτ [g2∂x(θ − sφ)∂x(θ + sφ) + g4∂x(θ − sφ)∂x(θ − sφ)]

=
1

4π2

∫
dx dτ

[
(g2 + g4)(∂xθ)

2 + (g4 − g2)(∂xφ)
2
]
,

i.e. an action that is still quadratic and, thus, exactly solvable.

INFO In the field theoretical literature (especially the literature on conformal field theory),

interactions of this type are commonly referred to as current–current interactions. This

is because Sint can be expressed as a bilinear form in the Noether currents generated by the

symmetries of the system.

Adding Sint to the action of the non-interacting action Eq. (4.49), we arrive at the final

expression

S[θ, φ] =
1

2π

∫
dx dτ

(
g−1v(∂xθ)

2 + gv(∂xφ)
2 + 2i∂τθ∂xφ

)
, (4.51)

where we have introduced the parameters

v ≡
[(

vF +
g4
2π

)2

−
( g2
2π

)] 1
2

, g ≡
[
vF + g4−g2

2π

vF + g4+g2
2π

] 1
2

, (4.52)

and have reinstated vF. Comparison with the results of Section 2.2 identifies v as the

effective velocity of the charge-density wave excitations of the system.25 Equation (4.51)

represents the main result of our analysis. We have succeeded in mapping a non-linear (i.e.

interacting) problem onto a linear bosonic field theory. Critical readers may justly object

that this result does not contain much new information. After all, a (second quantized)

representation of the theory in terms of free bosons has been derived previously in Section

2.2. Nonetheless, the analysis of this section is very valuable from both a methodologi-

cal and a conceptual point of view. Methodologically, it turns out that the field integral

formulation
∫
D(θ, φ) exp(−S[θ, φ]) is very convenient for calculation. Many intriguing phe-

nomena displayed by one-dimensional electron systems (we will meet some examples) can

straightforwardly be addressed in this language. From a conceptual point of view, it is

quite remarkable that no “microscopic” calculations had to be performed to determine the

effective field theory above. “All” we had to invest was symmetry arguments, a minimal

amount of phenomenological input, and a number of consistency checks. In Chapter 9 we

will meet a related problem – the low-energy field theory of quantum spin chains – where

25 Of course, we do not need to resort to the results of Section 2.2 to draw this conclusion: the structure of
Eq. (4.51) by itself determines the interpretation of v as an effective velocity. To see this, one may integrate
over φ to arrive at an effective wave-type Lagrangian for θ whose characteristic velocity is set by v (exercise).
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a microscopic construction scheme for the effective field theory is not known at all. In this

case a (suitably generalized) version of the symmetry analysis above will represent the only

viable route towards the solution of the problem.

4.4 Summary and outlook

This concludes our preliminary introduction to the field integral. We have learned how to

represent the partition function of a quantum many-body system in terms of a generalized

path integral. The field integral representation of the partition function will be the basic

platform on which all our further developments will be based. In fact, we are now in a

position to face up to the main problem addressed in this text: practically none of the

“non-trivial” field integrals in which one might be interested can be executed in closed

form. This reflects the fact that, save for a few exceptions (such as the one considered in

Section 4.3 above), interacting many-body problems do not admit closed solutions. Before

employing the field integral to solve serious problems, we need to develop a spectrum of

approximation strategies – perturbation theory, linear response theory, mean-field methods,

instanton techniques and the like. The construction and application of such methods will

be the subject of the following chapters.

4.5 Problems

Exercises on fermion coherent states

To practice the coherent state method, we begin with a few simple exercises on the fermionic coherent

state which complement the structures discussed in the main text.

Considering a fermionic coherent state |η〉, verify the following identities: (a) 〈η|a†i =

〈η|η̄i, (b) a†i |η〉 = −∂ηi |η〉 and 〈η|ai = ∂η̄i〈η|, (c) 〈η|ν〉 = exp
(∑

i η̄iνi
)
, and (d)∫

d(η̄, η) dηi e−
∑

i η̄iηi |η〉〈η| = 1F , where d(η̄, η) ≡
∏

i dη̄i dηi. Finally, (e) show that

〈n|ψ〉〈ψ|n〉 = 〈ζψ|n〉〈n|ψ〉, where |n〉 is an n-particle state in Fock space while |ψ〉 is a

coherent state.

Answer:
Making use of the rules of Grassmann algebra,

(a) 〈η|a†i = 〈0|exp
(
−

∑
j

aj η̄j

)
a†i = 〈0|

∏
j

(1− aj η̄j)a
†
i = 〈0|(1− aiη̄i)a

†
i

∏
j �=i

(1− aj η̄j)

= 〈0|aia†i︸ ︷︷ ︸
=〈0|[ai,a

†
i ]+=〈0|

η̄i
∏
j �=i

(1− aj η̄j) = 〈0|
∏
j

(1− aj η̄j)η̄i = 〈η|η̄i.

(b) a†i |η〉 = a†i (1− ηia
†
i )︸ ︷︷ ︸

=a†
i=∂ηi

ηia
†
i=−∂ηi

(1−ηia
†
i )

∏
j �=i

(1− ηja
†
j)|0〉 = −∂ηi

∏
j

(1− ηja
†
j)|0〉 = −∂ηi |η〉,

〈η|ai = 〈0|
∏
j �=i

(1− aj η̄j) (1− aiη̄i)ai︸ ︷︷ ︸
=ai=−∂η̄i

aiη̄i=∂η̄i
(1−aiη̄i)

= ∂η̄i
〈0|

∏
j

(1− aj η̄j) = ∂η̄i
〈η|.
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(c) 〈η|ν〉 = 〈η|
∏
i

(1− νia
†
i )︸ ︷︷ ︸

(1+a†
iνi)

|0〉 = 〈η|
∏
i

(1 + η̄iνi)︸ ︷︷ ︸
exp[

∑
i η̄iνi]

|0〉 = exp
(∑

i

η̄iνi

)
.

(d) To prove the completeness of fermion coherent states, we apply Schur’s lemma, i.e. we

need to show that [a
(†)
j ,

∫
d(η̄, η)e−

∑
i η̄iηi |η〉〈η|] = 0.

a†j

∫
d(η̄, η) e−

∑
i η̄iηi |η〉〈η| = −

∫
d(η̄, η) e−

∑
i η̄iηi∂ηj |η〉〈η|

=

∫
d(η̄, η) ∂ηj

(
e−

∑
i η̄iηi

)
︸ ︷︷ ︸

=η̄je
−∑

i η̄iηi

|η〉〈η| =

∫
d(η̄, η) e−

∑
i η̄iηi |η〉〈η|a†j ,

aj

∫
d(η̄, η) e−

∑
i η̄iηi |η〉〈η| =

∫
d(η̄, η) e−

∑
i η̄iηiηj︸ ︷︷ ︸

=−∂η̄j (e
−∑

i η̄iηi)

|η〉〈η|

=

∫
d(η̄, η) e−

∑
i η̄iηi |η〉∂η̄j 〈η| =

∫
d(η̄, η) e−

∑
i η̄iηi |η〉〈η|aj .

The constant of proportionality is fixed by taking the expectation value with the vacuum.

〈0|
∫

d(η̄, η)e−
∑

i η̄iηi |η〉〈η|0〉 =
∫

d(η̄, η) e−
∑

i η̄iηi = 1.

(e) A general n-particle state is given as |n〉 = a†1 . . . a
†
n|0〉, 〈n| = 〈0|an . . . a1, where we

neglected a normalization factor. The matrix element 〈n|ψ〉, thus, reads

〈n|ψ〉 = 〈0|an . . . a1|ψ〉 = 〈0|ψn . . . ψ1|ψ〉 = ψn . . . ψ1.

Similarly, we obtain 〈ψ|n〉 = ψ̄1 . . . ψ̄n. Using these results,

〈n|ψ〉〈ψ|n〉 = ψn . . . ψ1ψ̄1 . . . ψ̄n = ψ1ψ̄1 . . . ψnψ̄n

= (ζψ̄1ψ1) . . . (ζψ̄nψn) = (ζψ̄1) . . . (ζψ̄n)ψn . . . ψ1 = 〈ζψ|n〉〈n|ψ〉.

Feynman path integral from the functional field integral

The abstraction of the coherent state representation betrays the close similarity between the Feynman

and coherent state path integrals. To help elucidate the connection, the goal of the present problem is

to confirm that the Feynman path integral of the quantum harmonic oscillator follows from the coherent

state path integral.

Consider the simplest bosonic many-body Hamiltonian, Ĥ = �ω(a†a+ 1
2 ), where a

† creates
“structureless” particles, i.e. states in a one-dimensional Hilbert space. Note that Ĥ can be

interpreted as the Hamiltonian of a single oscillator degree of freedom. Show that the field

integral for the partition function Z = tr[exp(−βĤ)] can be mapped onto the (imaginary-

time) path integral of a harmonic oscillator by a suitable variable transformation. (Hint: Let

yourself be guided by the fact that the conjugate operator pair (a, a†) is related to the

momentum and coordinate operators (p̂, q̂) through a canonical transformation.)
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Answer:
In the coherent state representation, the quantum partition function of the oscillator

Hamiltonian is expressed in terms of the path integral (� = 1):

Z =

∫
D(φ̄, φ) exp

[
−

∫ β

0

dτ
(
φ̄∂τφ+ ωφ̄φ

)]
, (4.53)

where φ(τ) denotes a complex scalar field, the constant factor e−βω/2 has been absorbed

into the measure of the functional integral D(φ̄, φ), and we have set the chemical

potential μ = 0. The connection between the coherent state and Feynman integral

is established by the change of field variables, φ(τ) = (mω/2)
1/2

(q(τ) + ip(τ)/mω),

where p(τ) and q(τ) represent real fields. Substituting this representation in Eq. (4.53),

and rearranging some terms by integrating by parts, the connection is established:

Z =
∫
D(p, q) exp

[
−

∫ β

0
dτ

(
−ipq̇ + p2

2m + mω2

2 q2
)]

. (Of course, the “absorption” of the

constant �ω/2 in the Hamiltonian into the measure has been a bit of cheating. In operator

quantum mechanics, the correspondence between the (q, p) and the (a, a†) representation

of the Hamiltonian includes that constant. Keeping in mind that the constant reflects

the non-commutativity of operators, think how it might be recovered within the path

integral formalism. Hint: it is best to consider the mapping between representations within

a time-slice discretized setting.)

Quantum partition function of the harmonic oscillator

The following involves a practice exercise on elementary field integral manipulations, and infinite prod-

ucts.

Compute the partition function of the harmonic oscillator Hamiltonian in the field integral

formulation. To evaluate the resulting infinite product over Matsubara frequencies apply

the formula x/ sinx =
∏∞

n=1

(
1 − x2/(πn)2

)−1
. (Hint: The normalization of the result can

be fixed by requiring that, in the zero-temperature limit, the oscillator occupy its ground

state.) Finally, compute the partition function by elementary means and check your result.

As an additional exercise, repeat the same steps for the “fermionic oscillator,” i.e. with a, a†

fermion operators. Here you will need the auxiliary identity cosx =
∏∞

n=1

(
1− x2

(π(n+1/2))2

)
.

Answer:
Making use of the Gaussian functional integral for complex fields, one obtains from

Eq. (4.53) (� = 1)

ZB ∼ det(∂τ + ω)−1 ∼
∏
ωn

(−iωn + ω)
−1 ∼

∞∏
n=1

[(
2nπ

β

)2

+ ω2

]−1

∼
∞∏

n=1

[
1 +

(
βω

2πn

)2
]−1

∼ 1

sinh(βω/2)
.
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Now, in the limit of small temperatures, the partition function is dominated by the ground

state, limβ→∞ ZB = exp[−βω/2], which fixes the constant of proportionality. Thus, ZB =

[2 sinh(β�ω/2)]
−1

.

In the fermionic case, the Gaussian integration gives a product over eigenvalues in the

numerator and we have to use fermionic Matsubara frequencies, ωn = (2n+ 1)π/β:

ZF ∼ det(∂τ + ω) ∼
∏
ωn

(−iωn + ω) ∼
∞∏

n=1

[(
(2n+ 1)π

β

)2

+ ω2

]

∼
∞∏

n=1

[
1 +

(
βω

(2n+ 1)π

)2
]
∼ cosh(βω/2).

Fixing the normalization, one obtains ZF = 2e−βω cosh(βω/2). Taken together, these results

are easily confirmed by direct computation, viz.

ZB = e−βω/2
∞∑

n=0

e−nβω =
e−βω/2

1− e−βω
=

1

2 sinh(βω/2)
,

ZF = e−βω/2
1∑

n=0

e−nβω = e−βω/2(1 + e−βω) = 2e−βω cosh(βω/2).

Boson–fermion duality

The equivalence of the bosonic and the fermionic representation of the one-dimensional electron gas is

exemplified by computation of the correlation function Eq. (4.48) considered in the main text.

(a) Employ the free fermion field integral with action (4.43) to compute the zero-

temperature limit of the correlation function (4.48) considered in the text (assume

x > 0).

(b) Considering a free scalar bosonic field θ with action S[θ] = 1
2c

∫
dx dτ [(∂τθ)

2 + (∂xθ)
2],

compute the correlation function K(x, τ) ≡ 〈θ(x, τ)θ(0, 0)− θ(0, 0)θ(0, 0)〉 for x > 0.

(c) Compute the correlation function C(x, τ) = γ2 〈exp[2iθ(x, τ)] exp[−2iθ(0, 0)]〉.

Answer:

(a) Setting vF = 1 and defining Z± ≡
∫
D(ψ̄, ψ) exp

(
−S±[ψ̄, ψ]

)
, where S±[ψ̄, ψ] =∫

dx dτ ψ̄(∂τ ∓ i∂x)ψ, we obtain

G±(x, τ) = Z−1
±

∫
D(ψ̄, ψ) ψ̄(x, τ) ψ(0, 0)e−S±[ψ̄,ψ] = −(∂τ ′ ∓ i∂x′)−1

(x,τ ;0,0)

= −T

L

∑
p,ωn

1

−iωn ∓ p
e−ipx−iωnτ .
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Assuming for definiteness that x > 0 and integrating over momenta, we arrive at

G±(x, τ) = ∓iT
∑
n

Θ(±n)eωn(∓x−iτ) � 1

2π

1

±ix− τ
,

where in the last equality we have approximated the frequency sum by an integral. Thus,

the correlation function (4.48) is given by C(x, τ) = G+(x, τ)G−(−x, τ) = 1
(2π)2

1
x2+τ2 .

(b) Expressed in a frequency/momentum Fourier representation, S[θ] = L
2cT

∑
q,n |θq,n|2(q2+

ω2
n). Performing the Gaussian integral over θ, we obtain

K(x, τ) =
cT

L

∑
q,n

eiqx+iωnτ

q2 + ω2
n

− 1 � cT

2

∑
n

e−|ωn|x+iωnτ − 1

|ωn|

� c

4π

∫ a−1

0

dω
e−ω(x−iτ) − 1

ω
+ c.c.

x,τ�a� − c

4π
ln((x2 + τ2)/a2),

where we have approximated the momentum sum by an integral and the frequency sum

by an integral, cut off at large frequencies by EF � vFa
−1 vF=1

= a−1.

(c) Using the results derived in (b),

C(x, τ) = γ2
>
e2i(θ(x,τ)−θ(0,0))

?
= γ2e−2〈(θ(x,τ)−θ(0,0))2〉

= γ2exp

(
− c

π
ln

(
x2 + τ2

a2

))
= γ2

[
a2

x2 + τ2

] c
π

.

Setting c = π and Γ = 1/2πa, we obtain equivalence to the fermionic representation of

the correlation function considered in (a).

Frequency summations

Using the frequency summation techniques developed in the text, this problem involves the computation

of two basic correlation functions central to the theory of the interacting Fermi gas.

(a) The pair correlation function χc
n,q is an important building block entering the cal-

culation of the Cooper pair propagator in superconductors (see Section 6.4). It is given

by

χc
n,q ≡ − T

Ld

∑
m,p

G0(p, iωm)G0(−p+q,−iωm+iωn) =
1

Ld

∑
p

1− nF(ξp)− nF(ξ−p+q)

iωn − ξp − ξ−p+q
,

where G0(p, iωm) = 1/(iωm − ξp). Verify the second equality. (Note that ωm = (2m+

1)πβ are fermionic Matsubara frequencies, while ωn = 2πnT is a bosonic Matsubara

frequency.)

(b) Another correlation function central to the theory of the interacting Fermi gas (see

Section 5.2), the so-called density–density response function, is given by

χd
q,ωn

≡ − T

Ld

∑
p,ωm

G0(p, iωm)G0(p+ q, iωm + iωn) = − 1

Ld

∑
p

nF(ξp)− nF(ξp+q)

iωn + ξp − ξp+q
.

Again verify the second equality.
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Answer:

(a) To evaluate a sum over fermionic frequencies ωm, we employ the Fermi function

βnF(z) = β(eβz + 1)−1 defined in the left column of Eq. (4.37). Noting that the

function G0(p1, z)G0(p2, z + iωn) has simple poles at z = ξp1 and z = iωn − ξp2 ,

and applying Eq. (4.38) (with the identification S =
∑

h and h = G0G0), we

obtain S =
−nF(ξp1 )+nF(ξ−p2+iωn)

iωn−ξp1
−ξp2

. Using the fact that nF(x + iωn) = nF(x) and

nF(−x) = 1− nF(x) we arrive at the result.

(b) One may proceed as in part (a).

Pauli paramagnetism

There are several mechanisms whereby a Fermi gas subject to an external magnetic field responds to

the perturbation. One of these, the phenomenon of Pauli paramagnetism, is purely quantum mechanical

in nature. Its origin lies in the energy balance of spinful fermions rearranging at the Fermi surface in

response to the field. We explore the resulting contribution to the magnetic susceptibility of the electron

gas.

Fermions couple to a magnetic field by their orbital momentum as well as by their spin.

Concentrating on the latter mechanism, consider the Hamiltonian

Ĥz = −μ0B · Ŝ, Ŝ =
1

2
a†ασσσσ′ aασ′ ,

where σ = (σx, σy, σz)
T is a vector of Pauli matrices, α an orbital quantum number, and

p

μ

ε

ε

p

μ

B = 0

B > 0

μ0 = e/(2m) the Bohr magneton. It turns out that the presence of

Ĥz in the energy balance leads to the generation of a net paramag-

netic response of purely quantum mechanical origin. To understand

the origin of the effect, consider a two-fold (spin!) degenerate single-

particle band of free electrons states (see the figure). Both bands are

filled up to a certain chemical potential μ. Upon the switching on of

an external field, the degeneracy is lifted and the two bands shift in

opposite directions by an amount ∼ μ0B. While, deep in the bands,

the Pauli principle forbids a rearrangement of spin configurations, up

at the Fermi energy, ↓ states can turn to energetically more favorable

↑ states. More precisely, for bands shifted by an amount ∼ μ0B, a

number ∼ μ0Bρ(μ) of states may change their spin direction, which

leads to a total energy change of ΔE ∼ −μ2
0B

2ρ(μ). Differentiating

twice with respect to the magnetic field gives a positive contribution

χ ∼ −∂2
BΔE ∼ μ2

0ρ(μ) to the magnetic susceptibility of the system.

(a) To convert the qualitative estimate above into a quantitative result, write down the

coherent state action of the full Hamiltonian Ĥ = Ĥ0+Ĥz, where Ĥ0 =
∑

α,σ a
†
ασεαaασ
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is the non-magnetic part of the Hamiltonian. Integrate out the Grassmann fields to

obtain the free energy F as a sum over frequencies.

(b) Show that, at low temperatures, the spin contribution to the magnetic susceptibility

χ ≡ −∂2
B

∣∣
B=0

F is given by

χ
T→0−→ μ2

0

2
ρ(μ), (4.54)

where ρ(ε) =
∑

α δ(ε − εα) denotes the single-particle density of states. (Hint: It is

convenient to perform the field derivatives prior to the frequency summation.)

Answer:

(a) Choosing the quantization axis parallel to the magnetic field the Hamiltonian assumes

a diagonal form Ĥ =
∑

ασ a
†
ασ

[
εα − μ0B

2 (σz)σσ
]
aασ and the (frequency representation

of the) action reads S[ψ̄, ψ] =
∑

ασn ψ̄ασn(−iωn + ξα − μ0B
2 (σz)σσ)ψασn. Integrating

over ψ, we obtain the partition function Z =
∏

α;n β
2
(
(−iωn + ξα)

2 − 1
4 (μ0B)2

)
and

F = −T lnZ = −T
∑
α;n

ln

[
β2

(
(−iωn + ξα)

2 − 1

4
(μ0B)2

)]
.

(b) Differentiating the free energy twice with respect toB, we obtain χ = − 1
2μ

2
0T

∑
αωn

(−iωn+

ξα)
−2. Defining χ =

∑
nα hα(ωn), where hα(ωn) =

1
2μ

2
0T (−iωn + ξα)

−2, Eq. (4.38) can

be applied to perform the frequency sum. Noting that the function h(−iz) has poles of

second order at z = ξα, i.e. Res[h(−iz)g(z)]|z=ξα = g′(ξα), we obtain

χ = −μ2
0

2

∑
α

n′
F(ξα) = −μ2

0

2

∞∫
−∞

dε ρ(ε)n′
F(ε− μ).

At low temperatures, T → 0, the Fermi distribution function approaches a step function,

nF(ε) → θ(−ε), i.e. n′
F(ε) = −δ(ε) and our result reduces to Eq. (4.54).

Electron–phonon coupling

As follows from the structure of our prototypical condensed matter “master Hamiltonian” (1.1), mobile

electrons in solids are susceptible to the vibrations of the host ions, the phonons. This coupling mecha-

nism generates a net attractive interaction between the electrons. Referring for a qualitative discussion

of this interaction mechanism to page 266 below, it is the purpose of this problem to quantitatively

explore the profile of the phonon mediated electron–electron interaction. In Section 6.4 we will see that

this interaction lies at the root of conventional BCS superconductivity.

Consider the three-dimensional variant of the phonon Hamiltonian (1.34),

Ĥph =
∑
q,j

ωqa
†
q,jaq,j + const.,
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where ωq is the phonon dispersion (here assumed to depend only on the modulus of the

momentum, |q| = q) and the index j = 1, 2, 3 accounts for the fact that the lattice ions

can oscillate in three directions in space (i.e. there are three linearly independent oscil-

lator modes26). Electrons in the medium sense the induced charge ρind ∼ ∇ · P, where

P ∼ u is the polarization generated by the local distortion u of the lattice (u(r) is

the three-dimensional generalization of the displacement field φ(r) considered in Chap-

ter 1). Expressed in terms of phonon creation and annihilation operators (cf. Eq. (1.32)),

uq = ej(aq,j + a†−q,j)/(2mωq)
1/2, where ej is the unit vector in the j-direction,26 and we

conclude that the electron–phonon Hamiltonian reads

Ĥel−ph = γ

∫
ddrn̂ (r)∇ · u(r) = γ

∑
k,q,j

iqj
(2mωq)1/2

n̂q(aq,j + a†−q,j).

Here, n̂q ≡
∑

k c
†
k+qck denotes the electronic density expressed in terms of fermion creation

and annihilation operators, and the electron spin has been neglected for simplicity.

(a) Formulate the coherent state action of the electron–phonon system.

(b) Integrate out the phonon fields, and show that an attractive interaction between elec-

trons is generated.

Answer:

(a) Introducing a Grassmann field ψ (a complex field φ) to represent the electron (phonon)

operators, one obtains the coherent state field integral

Z =

∫
D[ψ̄, ψ]

∫
D[φ̄, φ] e−Sel[ψ̄,ψ]−Sph[φ̄,φ]−Sel−ph[ψ̄,ψ,φ̄,φ],

where

Sph[φ̄, φ] =
∑
q,j

φ̄qj(−iωn + ωq)φqj ,

Sel−ph[ψ̄, ψ, φ̄, φ] = γ
∑
q,j

iqj
(2mωq)1/2

ρq(φqj + φ̄−qj),

ρq =
∑

k ψ̄k+qψk, and the electron action need not be specified explicitly. Here we have

adopted a short-hand convention setting q = (ωn,q).
27

26 For more details see N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders International,
1983).

27 Do not confuse the 4-momentum q with the modulus |q| = q.
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(b) We next perform the Gaussian integration over the phonon fields to obtain the effective

electron action

Seff [ψ̄, ψ] = Sel[ψ̄, ψ]− ln

(∫
D[φ̄, φ] e−(Sph[φ̄,φ]+Sel−ph)[ψ̄,ψ,φ̄,φ]

)
= Sel[ψ̄, ψ]−

γ

2m

∑
q

q2

ω2
n + ω2

q

ρqρ−q.

Sloppily transforming from Matsubara to real frequencies, ωn → −iω, we notice that,

for every momentum mode q, the interaction is attractive at low frequencies, ω < ωq.

Disordered quantum wires

In this problem, we consider a one-dimensional interacting Fermi system – a “quantum wire” – in the

presence of impurities. Building on the results obtained in Section 4.3, we derive an effective low-energy

action of this system. (The actual analysis of the large-scale behavior of the disordered quantum wire

necessitates the application of renormalization group methods and is postponed to Chapter 8.)

In Sections 2.2 and 4.3 we discussed the physics of interacting fermions in one dimension.

We saw that, unlike in a Fermi liquid, the fundamental excitations of the system are charge

(and spin) density waves – collective excitations describing the wave-like propagation of

spin and charge degrees of freedom, respectively. Going beyond the level of an idealized

translationally invariant environment, the question we wish to address currently is to what

extent the propagation of these modes will be hampered by the presence of spatially localized

imperfections. This problem is of considerable practical relevance. All physical realizations of

one-dimensional conductive systems – semiconductor quantum wires, conducting polymers,

carbon nanotubes, quantum Hall edges, etc. – generally contain imperfections. Further, and

unlike systems of higher dimensionality, a spin/charge degree of freedom propagating down

a one-dimensional channel will inevitably hit any impurity blocking its way. We thus expect

that impurity scattering has a stronger impact on the transport coefficients than in higher

dimensions.

However, there is a second and less obvious mechanism behind the strong impact of

x0

2kF r–1 disorder scattering on the conduction behavior

of one-dimensional quantum wires: imagine a

wavepacket of characteristic momentum kF col-

liding with an impurity at position x = 0 (see

figure). The total wave amplitude to the left of

the impurity, ψ(x) ∼ exp(ikFx)+ r exp(−ikFx)

will be a linear superposition of the incoming amplitude ∼ exp(ikFx) and the reflected out-

going amplitude ∼ r exp(−ikFx), where r is the reflection coefficient. Thus, the electronic

density profile is given by ρ(x) = |ψ(x)|2 ∼ 1 + |r|2 + 2Re
(
re−2ikFx

)
, which contains an

oscillatory contribution known as a Friedel oscillation. Moreover, a closer analysis (see

exercise below) shows that, in one dimension, the amplitude of these oscillations decays

rather slowly, varying as ∼ |x|−1. The key point is that, in the presence of electron–electron
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interactions, other particles approaching the impurity will notice, not only the impurity

itself, but also the charged density pattern of the Friedel oscillation. The additional scatter-

ing potential then creates a secondary Friedel oscillation, etc. We thus expect that even a

weak imperfection in a Luttinger liquid acts as a “catalyst” for the recursive accumulation

of a strong potential. In this problem, we will derive the effective low-energy action describ-

ing the interplay of interaction and impurity scattering. The actual catalytic amplification

mechanism outlined above is then explored in Chapter 8 by renormalization group methods.

EXERCISE To explore the Friedel oscillatory response of the one-dimensional electron

gas to a local perturbation, consider the connected density–density correlation function

Π(x, t) = 〈ρ̂(x, t)ρ̂(0, 0)〉 − 〈ρ̂(x, t)〉〈ρ̂(0, 0)〉,

where 〈· · · 〉 denotes the ground state expectation value, ρ̂ = a†a and a(x) = eikFxa+(x) +

e−ikFxa−(x) splits into a left- and a right-moving part as usual. Using the fact that Ĥ =∑
q,s vF(pF + sq)a†

sqasq and the von Neumann equation ȧsq = i[Ĥ, asq], show that the time-

dependence of the annihilation operators is given by asq(t) = e−ivF(pF+sq)tasq. Use this result,

the canonical operator commutation relations, and the ground state property a±,q|Ω〉 = 0 for

±q > 0 to show that

Π(x, t) =
1

4π2

(
1

(x− vFt)2
+

1

(x+ vFt)2
+

2 cos(2pFx)

x2 − (vFt)2

)
.

Use this result to argue why the static response to an impurity potential decays as ∼ |x|−1.

Consider the one-dimensional quantum wire, as described by the actions Eq. (4.43) and

(4.44). Further, assume that, at x = 0, the system contains an imperfection or impurity.

Within the effective action approach, this is described by

Simp[ψ
†, ψ] =

∫
dτ

[
v+ψ

†
+ψ+ + v−ψ

†
+ψ+ + vψ†

+ψ− + v̄ψ†
−ψ+

]
,

where all field amplitudes are evaluated at x = 0 and the constants v± ∈ R and v ∈ C

describe the amplitudes of forward and backward scattering, respectively.

(a) Show that the forward scattering contributions can be removed by a gauge transfor-

mation. This demonstrates that forward scattering is inessential as long as only gauge

invariant observables are considered. What is the reason for the insignificance of forward

scattering?

We next reformulate the problem in a bosonic language. While the clean system is

described by Eq. (4.51), substitution of (4.46) into the impurity action gives Simp[θ] =

γ
∫
dτ cos(2θ(τ)), where γ = 2vΓ2 and we have assumed the backward scattering amplitude

to be real. (Any phase carried by the scattering amplitude can be removed by a global

gauge transformation of the fields ψ±. How?) Notice the independence of Simp on the field

φ.
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(b) Integrate out the Gaussian field φ to obtain the Lagrangian formulation of the action,

S[θ] =
1

2πg

∫
dxdτ

[
v(∂xθ)

2 + v−1(∂τθ)
2
]
+ Simp[θ].

The formulation of the problem derived in (b) still contains redundancy. The point is that,

everywhere except for x = 0, the action is Gaussian. This observation suggests that one may

integrate out all field degrees of freedom θ(x �= 0), thus reducing the problem to one that is

local in space (though, as we shall see, non-local in time). To this end, we reformulate the

field integral as Z =
∫
Dθ̃ exp(−S[θ̃]), where

exp(−S[θ̃]) =

∫
Dθ

(∏
τ

δ(θ̃(τ)− θ(0, τ))

)
exp(−S[θ]),

is the action integrated over all field amplitudes save for θ(0, τ) and
∏

τ δ(θ̃(τ)−θ(0, τ)) is a

product of δ-functions (one for each time slice) imposing the constraints θ(0, τ) = θ̃(τ). We

next represent these δ- functions as δ(θ̃− θ(0, τ)) = 1
2π

∫
dk(τ) exp(ik(τ)(θ̃(τ)− θ(0, τ))) to

obtain

exp(−S[θ̃]) =

∫
Dθ Dk exp

[
−S[θ] + i

∫
dτ k(τ)(θ̃(τ)− θ(0, τ))

]
=

∫
DθDkexp

[
−

∫
dxdτ

(
1

2πg

[
v(∂xθ)

2 + v−1(∂τθ)
2
]
+ (c cos(2θ̃) + ik(θ̃ − θ))δ(x)

)]
.

The advantage gained by this representation is that it permits us to replace cos(2θ(0, τ)) →
cos(2θ̃(τ)), whereupon the θ-dependence of the action becomes purely quadratic.

(c) Integrate out the field θ(x, τ) to obtain the representation Z =
∫
Dθ e−S[θ],

Seff [θ] =
1

πTg

∑
n

θn|ωn|θ−n + γ

∫
dτ cos(2θ(τ)), (4.55)

entirely in terms of a single time-dependent degree of freedom θ(τ).

x0

Notice that the entire effect of the bulk of the

electron gas at x �= 0 went into the first, dissipa-

tive term. We have, thus, reduced the problem

to one involving a single time-dependent degree

of freedom subject to a dissipative damping

mechanism and a periodic potential (cf. our discussion of this problem in Problem 3.5

above).

INFO To understand the physical origin of the dissipative damping mechanism notice

that, in the absence of the impurity, the system is described by a set of harmonic oscillators. We

can thus think of the degree of freedom θ(0, τ) as the coordinate of a “bead” embedded into an

infinitely extended harmonic chain. From the point of view of this bead, the neighboring degrees

of freedom hamper its free kinematic motion, i.e., in order to move, the bead has to drag an
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entire “string” of oscillators behind. In other words, a local excitation of the x = 0 oscillator will

lead to the dissipation of kinetic energy into the continuum of neighboring oscillators. Clearly,

the rate of dissipation will increase with both the stiffness of the oscillator chain (g−1) and the

frequency of the excitation (ωn), as described by the first term in the last operator in Eq. (4.55).

Answer:

(a) Consider the gauge transformation ψ+(x, τ) → e−iv−1
F v+θ(x). While Sint and Simp are

gauge invariant and do not change, substitution of the transformed field into the non-

interacting action leads to

S0[ψ
†, ψ] → S0[ψ

†, ψ]− v+

∫
dτ ψ†

+ψ+.

The induced term cancels against the v+ contribution to Simp. A similar transformation

removes the v− contribution. The physical reason for the insignificance of the forward

scattering operators is that they describe the scattering of states | ± kF〉 into the same

states | ± kF〉. The optional phase shift picked up in these processes is removed by the

transformation above.

(b) This involves an elementary Gaussian integral.

(c) Expressed in momentum space, the effective action assumes the form

e−S[θ̃] =

∫
Dθ Dk exp

[
− T

L

∑
q,ωn

[
1

2πg

(
vq2 + v−1ω2

n

)
|θq,n|2 + iknθq,−n

]
−iknθ̃−n − Simp[θ̃]

]
=

∫
Dk exp

[
−πgT

2L

∑
q,ωn

kn(vq
2 + v−1ω2

n)
−1k−n − iknθ̃−n − Simp[θ̃]

]

= N
∫

Dk exp

[
−πTg

4

∑
ωn

kn|ωn|−1k−n − iknθ̃−n − Simp[θ̃]

]

= exp

[
− 1

πTg

∑
n

θ̃n|ωn|θ̃−n − Simp[θ̃]

]
.

Denoting θ̃(τ) by θ(τ), we obtain the effective action Eq. (4.55).
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Perturbation theory

In this chapter, we introduce the analytical machinery to investigate the properties of many-body systems

perturbatively. Specifically, employing the “φ4-theory” as an example, we learn how to describe systems

that are not too far from a known reference state by perturbative means. Diagrammatic methods are

introduced as a tool to efficiently implement perturbation theory at large orders. The new concepts are

then applied to the analysis of various properties of the weakly interacting electron gas.

In previous chapters we have emphasized repeatedly that the majority of many-particle

problems cannot be solved in closed form. Therefore, in general, one is compelled to

think about approximation strategies. One promising ansatz leans on the fact that, when

approaching the low-temperature physics of a many-particle system, we often have some

idea, however vague, of its preferred states and/or its low-energy excitations. One may

then set out to explore the system by using these prospective ground state configurations

as a working platform. For example, one might expand the Hamiltonian in the vicinity

of the reference state and check that, indeed, the residual “perturbations” acting in the

low-energy sector of the Hilbert space are weak and can be dealt with by some kind of

approximate expansion. Consider, for example, the quantum Heisenberg magnet. In dimen-

sions higher than one, an exact solution of this system is out of the question. However,

we know (or, more conservatively, “expect”) that, at zero temperature, the spins will be

frozen into configurations aligned along some (domain-wise) constant magnetisation axes.

Residual fluctuations around these configurations, described by the Holstein–Primakoff

boson excitations, or spin waves, discussed before can be described in terms of a controlled

expansion scheme. Similar programs work for countless other physical systems.

These considerations dictate much of our further strategy. We will need to construct

methods to identify and describe the lowest-energy configurations of many-particle systems –

often called “mean-fields” – and learn how to implement perturbation theory around them.

In essence, the first part of that program amounts to solving a variational problem, a

relatively straightforward task. However, the formulation of perturbation strategies requires

some preparation and, equally important, a good deal of critical caution (because many

systems notoriously defy perturbative assaults – a fact easily overlooked or misjudged!). We

thus turn the logical sequence of the two steps upside down and devote this chapter to an

introduction to many-body perturbation theory. This will include a number of applications,

i.e. problems where the mean-field is trivial and perturbation theory on its own suffices to

193
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produce meaningful results. Perturbation theory superimposed on non-trivial mean-fields

will then be the subject of the next chapter.

5.1 General structures and low-order expansions

As with any other perturbative approach, many-body perturbation theory amounts to an

expansion of observables in powers of some parameter – typically the coupling strength of

an interaction operator. However, before discussion of how this program is implemented in

practice, it is imperative to develop some understanding of the mathematical status of such

“series expansions.” (To motivate the point: it may, and often does, happen that the infinite-

order expansion in the “small parameter” of the problem does not exist in a mathematical

sense!) This can be achieved by considering the following.

An instructive integral

Consider the integral

I(g) =

∫ ∞

−∞

dx√
2π

exp

[
−1

2
x2 − gx4

]
. (5.1)

This can be regarded as a caricature of a particle subject to some harmonic potential

(x2) together with an “interaction” (x4). For small g � 1, it seems natural to treat the

interaction perturbatively, i.e. to develop the expansion I(g) ≈
∑

n g
nIn, where, applying

Stirling’s approximation, n!
n�1∼ nne−n,

gnIn =
(−g)n

n!

∫ ∞

−∞

dx√
2π

e−
1
2x

2

x4n = (−g)n
(4n− 1)!!

n!

n�1∼
(
−gn

e

)n

.

This estimate should alarm us: strictly speaking, it states that a series expansion in the

“small parameter” g does not exist. No matter how small g, at roughly the (1/g)th order

in the perturbative expansion the series begins to diverge. In fact, it is easy to predict

this breakdown on qualitative grounds: for g > 0 (g < 0), the integral (5.1) is convergent

(divergent). This implies that the series expansion of the function I(g) around g = 0 must

have zero radius of convergence.

However, there is also a more “physical” way of understanding the phenomenon. Consider

a one-dimensional version of Eq. (3.16), where the ‘Gaussian average’ is given by Eq. (3.15):∫ ∞

−∞

dx√
2π

e−
1
2x

2

x4n =
∑

all possible
pairings of 4n objects

1 = (4n− 1)!!.

The factor (4n− 1)!! measures the combinatorial freedom to pair up 4n objects. This sug-

gests an interpretation of the breakdown of the perturbative expansion as the result of a

competition between the smallness of the expansion parameter g and the combinatorial

proliferation of equivalent contributions, or “pairings,” to the Gaussian integral. Physically,

the combinatorial factor can be interpreted as the number of different “partial amplitudes”

contributing to the net result at any given order of perturbation theory. Eventually, the
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exponential growth of this figure overpowers the smallness of the expansion parameter,

which is when perturbation theory breaks down. (Oddly the existence of this rather gen-

eral mechanism is usually not mentioned in textbook treatments of quantum perturbation

theory!)

Does the ill-convergence of the series imply that perturbative approaches to problems

of the structure of Eq. (5.1) are doomed to fail? Fortunately, this is not the case. While

the infinite series
∑∞

n=0 g
nIn is divergent, a partial resummation

∑nmax

n=0 gnIn can yield

excellent approximations to the exact result I(g). To see this, let us use the fact that

|e−gx4 −
∑nmax

n=0
(−gx4)n

n! | ≤ (gx4)nmax+1

(nmax+1)! to estimate the error∣∣∣∣∣I(g)−
nmax∑
n=0

gnIn

∣∣∣∣∣ ≤ gnmax+1|Inmax+1|
nmax�1∼

(gnmax

e

)nmax

.

Variation with respect to nmax shows that the error reaches its minimum when nmax ∼ g−1

where it scales like e−1/g. (Notice the exponential dependence of the error on the coupling

g – e.g. for a small coupling g ≈ 0.01, the 100th order of the perturbation theory would

lead to an approximation of astronomic absolute precision e−100.) By contrast, for g ≈ 0.3,

perturbation theory becomes poor after the third order!

Summarizing, the moral to be taken from the analysis of the integral (5.1) (and its

generalizations to theories of a more complex structure) is that perturbative expansions

should not be confused with rigorous Taylor expansions. Rather they represent asymptotic

expansions, in the sense that, for weaker and weaker coupling, a partial resummation of

the perturbation series leads to an ever more precise approximation to the exact result. For

weak enough coupling the distinction between Taylor expansion and asymptotic expansion

becomes academic (at least for physicists). However, for intermediate or strong coupling

theories, the asymptotic character of perturbation theory must be kept in mind.

φ4-theory

While the ordinary integral discussed in the previous section conveyed something of the

general status of perturbation theory, we need to proceed to the level of functional integrals

to learn more about the practical implementation of perturbative methods. The simplest

interacting field theory displaying all relevant structures is defined through the field integral

Z ≡
∫

Dφe−S[φ], S[φ] ≡
∫

ddx

(
1

2
(∂φ)2 +

r

2
φ2 + gφ4

)
, (5.2)

where φ is a scalar bosonic field. Owing to the structure of the interaction, this model is

often referred to as the φ4-theory. The φ4-model not only provides a prototypical envi-

ronment in which features of interacting field theories can be explored, but also appears

in numerous applications. For example, close to its critical point, the d-dimensional Ising

model is described by the φ4-action (see Info below). More generally, it can be shown that

the long-range behavior of classical statistical systems with a single order parameter (e.g.
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the density of a fluid, uniaxial magnetization, etc.) is described by the φ4-action.1 Within

the context of statistical mechanics, S[φ] is known as the Ginzburg–Landau free energy

functional (and less frequently also as the Landau–Wilson model).

INFO The d-dimensional Ising model describes the classical magnetism of a lattice of magnetic

moments Si ∈ {1,−1} that can take only two values ±1. It is defined through the Hamiltonian

HIsing =
∑
ij

SiCijSj −H
∑
i

Si, (5.3)

where Cij = C(|i − j|) is a (translationally invariant) correlation matrix describing the mutual

interaction of the spins, H is an external magnetic field, and the sums run over the sites of a d-

dimensional lattice (assumed hypercubic for simplicity). The Ising model represents the simplest

Hamiltonian describing classical magnetism. In low dimensions d = 1, 2, it can be solved exactly,

i.e. the partition function and all observables depending on it can be computed rigorously (see

our discussion in Chapter 8). However, for higher dimensions, no closed solutions exist and one

has to resort to approximation strategies to analyze the properties of the partition function.

Below we will show that the long-range physics of the system is described by φ4-theory. Notice

that (save for the exceptional case d = 1 discussed in Section 8.1) the system is expected to

display a magnetic phase transition. As a corollary this implies that the φ4-model must exhibit

much more interesting behavior than its innocent appearance suggests!

Consider the classical partition function

Z =
∑
{Si}

e
∑

ij SiKijSj+
∑

i hiSi , (5.4)

where K ≡ −βC, and hi ≡ βHi, and we have generalized Eq. (??) to the case of a spatially

varying magnetic field, Hi. The feature that prevents us from rigorously computing the configu-

rational sum is, of course, the interaction between the spins. However, at a price, the interaction

can be removed: let us consider the “fat unity,” 1 = N
∫
Dψ e−

1
4

∑
ij ψi(K

−1)ijψj , where Dψ ≡�
i dψi, K

−1 is the inverse of the correlation matrix, and N = 1/
√

det(4πK) is a factor normal-

izing the integral to unity. A shift of the integration variables, ψi → ψi − 2
∑

j KijSj , brings the

integral into the form

1 = N
∫

Dψ e−
1
4

∑
ij ψi(K

−1)ijψj+
∑

i Siψi−
∑

ij SiKijSj .

Incorporating the fat unity under the spin sum in the partition function, one obtains

Z = N
∫

Dψ
∑
{Si}

e−
1
4

∑
ij ψi(K

−1)ijψj+
∑

i Si(ψi+hi). (5.5)

Thus, we have removed the interaction between the spin variables at the expense of introducing a

new continuous field {ψi}. Why should one do this? A multi-dimensional integral
∫
Dψ is usually

easier to work with than a multi-dimensional sum
∑

{Si} over discrete objects. Moreover, the

new representation may provide a more convenient platform for approximation strategies. The

1 Heuristically, this is explained by the fact that S[φ] is the simplest interacting (i.e. non-Gaussian) model action
invariant under inversion φ ←→ −φ. (The action of a uniaxial magnet should depend on the value of the
local magnetization, but not on its sign.) A purely Gaussian theory might describe wave-like fluctuations of
the magnetization, but not the “critical” phenomenon of a magnetic transition. One thus needs, at least, a
φ4-interaction term. Later on we will see that more complex monomials of φ, such as φ6 or (∂φ)4, are inessential
in the long-range limit.
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transformation leading from Eq. (5.4) to (5.5) is our first example of a Hubbard–Stratonovich

transformation. The interaction of one field is decoupled at the expense of the introduction of

another. Notice that, in spite of the somewhat high-minded designation, the transformation is

tantamount to a simple shift of a Gaussian integration variable, a feature shared by all Hubbard–

Stratonovich transformations!

The summation
∑

{Si} =
�

i

∑
Si

can now be trivially performed:

Z = N
∫

Dψ e−
1
4

∑
ij ψi(K

−1)ijψj
∏
i

(2 cosh(ψi + hi))

= N
∫

Dψ e−
1
4

∑
ij(ψi−hi)(K

−1)ij(ψj−hj)+
∑

i ln(coshψi),

where we have absorbed the inessential factor
�

i 2 into a redefinition of the normalization

N . Finally, changing integration variables from ψi to φi ≡ 1
2

∑
j [K

−1]ijψj , one arrives at the

intermediate result

Z = N
∫

Dφe−
∑

ij φiKijφj+
∑

i φihi+
∑

i ln cosh(2
∑

j Kijφj).

This representation of the problem still does not look very inviting. To bring it into a form

amenable to further analytical evaluation, we need to make the simplifying assumption that we

are working at low temperatures such that the exponential weight Kij = βC(|i − j|) inhibits

strong fluctuations of the field φ. More precisely, we assume that |φi| 	 1 and that the spatial

profile of the field is smooth. To make use of these conditions, we switch to a Fourier repre-

sentation, φi = 1√
N

∑
k e−ik·riφ(k), Kij = 1

N

∑
k e−ik·(ri−rj)K(k), and expand ln cosh(x) =

1
2
x2 − 1

12
x4 + · · · . Noting that (Kφ)(k) = K(k)φ(k) = K(0)φ(k) + 1

2
k2K′′(0)φ(k) +O(k4), we

conclude that the low-temperature expansion of the action has the general structure

S[φ] =
∑
k

[φk(c1 + c2k · k)φ−k + c3φkh−k]

+
c4
N

∑
k1,...,k4

φk1φk2φk3φk4δk1+k2+k3+k4,0 +O(k4, h2, φ6).

EXERCISE Show that the coefficients ci are given by c1 = K(0)(1−2K(0)), c2 = 1
2
K′′(0)(1−

4K(0)), c3 = 1, c4 = 4K(0)4

3
.

Switching back to a real space representation and taking a continuum limit, S[φ] assumes the

form of a prototypical φ4-action

S[φ] =

∫
ddx

 
c2(∂φ)

2 + c1φ
2 + c3φh+ c4φ

4! .
A rescaling of variables φ → 1√

2c2
φ finally brings the action into the form Eq. (5.2) with coeffi-

cients r = c1/c2 and g = c4/(2c2).
2

We have thus succeeded in describing the low-temperature phase of the Ising model in terms

of a φ4-model. While the structure of the action could have been guessed on symmetry grounds,

the “microscopic” derivation has the advantage that it yields explicit expressions for the coupling

constants. There is actually one interesting aspect of the dependence of these constants on the

2 The only difference is that the magnetic φ4-action contains a term linear in φ and h. The reason is that, in the
presence of a finite magnetic field, the action is no longer invariant under inversion φ → −φ.
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parameters of the microscopic model. Consider the constant c1 controlling the k-independent

contribution to the Gaussian action: c1 ∝ K(0)(1− 2K(0)) ∝ (1− 2βC(0)). Since C(0) must be

positive to ensure the overall stability of the model (exercise: why?) the constant c1 will change

sign at a certain “critical temperature” β∗. For temperatures lower than β∗, the Gaussian action

is unstable (i.e. fluctuations with low wavevector become unbound) and the anharmonic term

φ4 alone controls the stability of the model. Clearly, the behavior of the system will change

drastically at this point. Indeed, the critical temperature c1(β
∗) = 0 marks the position of the

magnetic phase transition, a point to be discussed in more detail below.

Let us begin our primer of perturbation theory by introducing some nomenclature.3 For

simplicity, let us first define the notation

〈 · · · 〉 ≡
∫
Dφe−S[φ]( · · · )∫

Dφe−S[φ]
, (5.6)

for the functional integral, weighted by the action S, of any expression ( · · · ). Due to the

structural similarity to thermal averages of statistical mechanics, 〈 · · · 〉 is sometimes called

a functional average or functional expectation value. Similarly, let us define

〈 · · · 〉0 ≡
∫
Dφe−S0[φ]( · · · )∫

Dφe−S0[φ]
, (5.7)

for the functional average over the Gaussian action S0 ≡ S|g=0. The average over a product

of field variables,

Cn(x1,x2, . . . ,xn) ≡ 〈φ(x1)φ(x2) · · ·φ(xn)〉, (5.8)

is known as an n-point correlation function or, for brevity, just the n-point function.4

George Green 1793–1841
His only schooling consisted of four terms in
1801/1802. He owned and worked a Nottingham
windmill. Green made major contributions to poten-
tial theory although where he learnt his mathemat-
ical skills is a mystery. The inventor of Green func-
tions, he used the method of sources and sinks in
potential flows. He published only ten mathemati-
cal works, the first and most important being pub-
lished at his own expense in 1828, “An essay on the
application of mathematical analysis to the theories
of electricity and magnetism.” He left his mill and
became an undergraduate at Cambridge in 1833 at
the age of 40, then a Fellow of Gonville and Caius
College in 1839.

The one-point function C1(x) =

〈φ(x)〉 simply measures the expec-

tation value of the field amplitude.

For the particular case of the φ4-

problem above the phase transition

and, more generally, the majority of

field theories with an action even in

the field amplitudes, C1 = 0 and the

first non-vanishing correlation func-

tion is the two-point function

G(x1 − x2) ≡ C2(x1,x2). (5.9)

(Why does C2 depend only on the

difference of its arguments?) The two-point function is sometimes also called the propa-

gator of the theory, the Green function or, especially in the more formal literature, the

resolvent operator.

3 Needless to say, the jargon introduced below is not restricted to the φ4 example!
4 Notice that, depending on the context and/or scientific community, the phrase “n-point function” sometimes
refers to C2n instead of Cn.
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The existence of different names suggests that we have met with an important object.

Indeed, we will shortly see that the Green function not only represents a central building

block of the theory but also carries profound physical significance.

INFO To develop some understanding of the physical meaning of the correlation function,

let us recall that the average of a linear field amplitude, 〈φ(0)〉, vanishes. (See the figure, where

a diagram of a few “typical” field configurations is sketched as functions of a coordinate.)

0 x

φHowever, the average of the squared

amplitude (φ(0))2 is certainly non-vanishing

simply because we are integrating over

a positive object. Now, what happens if

we split our single observation point into

two, 〈φ2(0)〉0 → 〈φ(0)φ(x)〉0 = G(x)? For

asymptotically large values of x, it is likely

that the two amplitudes fluctuate indepen-

dently of each other, i.e. G(x)
|x|→∞−→ 0. However, this decoupling will not happen locally. The

reason is that the field amplitudes are correlated over a certain range in space. For example,

if φ(0) > 0, the field amplitude will, on average, stay positive in an entire neighborhood of 0

since rapid fluctuations of the field are energetically costly (i.e. due to the gradient term in the

action!). The spatial correlation profile of the field is described by the function G(x).

How does the correlation behavior of the field relate to the basic parameters of the action?

A quick answer can be given by dimensional analysis. The action of the theory must be

dimensionless (because it appears as the argument of an exponential). Denoting the dimension of

any quantity X by [X], and using the fact that
[∫

ddx
]
= Ld, [∂] = L−1, inspection of Eq. (5.2)

obtains the set of relations

Ld−2[φ]2 = 1, Ld[r][φ]2 = 1, Ld[g][φ]4 = 1,

from which it follows that [φ] = L−(d−2)/2, [r] = L−2, [g] = Ld−4. In general, both system

parameters, g and r, carry a non-zero length-dimension. However, temporarily concentrating on

the non-interacting sector, g = 0, the only parameter of the theory, r, has dimensionality L−2.

Arguing in reverse, we conclude that any intrinsic length scale produced by the theory (e.g. the

range over which the fields are correlated), must scale as ∼ r−1/2.

A more quantitative description can be obtained by considering the free propagator of

the theory,

G0(x) ≡ 〈φ(0)φ(x)〉0. (5.10)

Since the momentum representation of the Gaussian action is simply given by S0[φ] =
1
2

∑
p φp(p

2 + r)φ−p, it is convenient to first compute G0 in reciprocal space: G0,p ≡∫
ddx eip·xG0(x) =

∑
p′〈φpφp′〉0. Using the Gaussian contraction rule Eq. (3.14), the free

functional average takes the form 〈φpφp′〉0 = δp+p′,0(p
2 + r)−1, i.e.5

G0,p = 〈φpφ−p〉0 =
1

p2 + r
. (5.11)

5 The result G0,p = (p2 + r)−1 clarifies why G is referred to as a “Green function.” Indeed, G0,p is (the Fourier

representation of the) Green function of the differential equation (−∂2
r + r)G(r, r′) = δ(r − r′).
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To obtain G(x), we need to compute the inverse transform

G0(x) =
1

Ld

∑
p

e−ip·xG0,p ≈
∫

ddp

(2π)d
e−ip·x

p2 + r
, (5.12)

where we have assumed that the system is large, i.e. the sum over momenta can be exchanged

for an integral.

For simplicity, let us compute the integral for a one-dimensional system. (For the two- and

three-dimensional cases see exercise below.) Setting p2 + r = (p+ ir1/2)(p− ir1/2), we note that

the (complex extension of the) p integral has simple poles at ±ir1/2. For x smaller (larger) than

zero, the integrand is analytic in the upper (lower) complex p-plane and closure of the integration

contour to a semicircle of infinite radius gives

G0(x) =

∫
dp

2π

e−ipx

(p+ ir1/2)(p− ir1/2)
=

e−r1/2|x|

2r1/2
. (5.13)

This result conveys an interesting observation: typically, correlations decay exponentially, at

a rate set by the correlation length ξ ≡ r−1/2. However, as r approaches 0, the system

becomes long-range correlated. The origin of this phenomenon can be understood by inspecting

the structure of the Gaussian contribution to the action (5.2). For r → 0 (and still neglecting the

φ4 contribution) nothing prevents the constant field mode φ(x) = φ0 = const. from becoming

infinitely large, i.e. the fluctuating contribution to the field becomes relatively less important

than the constant offset. The increasing “stiffness” of the field in turn manifests itself in a growth

of spatial correlations (cf. the figure on page 201). Notice that this dovetails with our previous

statement that r = 0 marks the position of a phase transition. Indeed, the build-up of infinitely

long-range spatial correlations is known to be a hallmark of second-order phase transitions (see

Chapter 8).

EXERCISE Referring to Eq. (5.12), show that, in dimensions d = 2 and d = 3,

G0(x)
d=2
=

∫
d2k

(2π)2
e−ik·x

k2 + r
=

1

2π
K0(

√
r|x|) =

{
− 1

2π
ln

√
r|x|
2

, |x| 	 1/
√
r,

1
2
(2π

√
r|x|)− 1

2 e−
√

r|x|, |x| � 1/
√
r,

G0(x)
d=3
=

∫
d3k

(2π)3
e−ik·x

k2 + r
=

e−
√

r|x|

4π|x| .

Notice that, in both cases, the Green function diverges in the limit |x| → 0 and decays exponen-

tially (at a rate ∼ r−1/2) for |x| � r−1/2.

Perturbation theory at low orders

Having discussed the general structure of the theory and of its free propagator, let us turn

our attention to the role of the interaction contribution to the action,

Sint[φ] ≡ g

∫
ddxφ4.

Within the jargon of field theory, an integrated monomial of a field variable (like φ4) is

commonly called an (interaction) operator or a vertex (operator). Keeping in mind the

words of caution given in Section 5.1, we wish to explore perturbatively how the interaction
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vertex affects the functional expectation value of any given field observable, i.e. we wish to

analyze expansions of the type

〈X[φ]〉 ≈

...∑
n=0

(−g)n

n! 〈X[φ](
∫
ddxφ4)n〉0

...∑
n=0

(−g)n

n! 〈(
∫
ddxφ4)n〉0

≈
nmax∑
n=0

X(n), (5.14)

where X may be any observable and X(n) denotes the contribution of nth order to the

expansion in g. The limits on the summation in the numerator and denominator are symbolic

because, as explained above, we will need to terminate the total perturbative expansion at

a certain finite order nmax.

EXERCISE To navigate the following section, it is helpful to recapitulate Section 3.2 on contin-

uum Gaussian integration.

To keep the discussion concrete, let us focus on the perturbative expansion of the propa-

gator in the coupling constant, g. (A physical application relating to this expansion will be

discussed below.) The zeroth-order contribution G(0) = G0 has been discussed before, so

the first non-trivial term we have to explore is G(1):

G(1)(x,x′) = −g

(@
φ(x)

∫
ddy φ(y)4φ(x′)

A
0

−
@
φ(x)φ(x′)

A
0

@∫
ddy φ(y)4

A
0

)
. (5.15)

Since the functional average is now over a Gaussian action, this expression can be evaluated

by Wick’s theorem, Eq. (3.21). For example, the functional average of the first of the two

terms leads to (integral signs and constants stripped off for clarity)〈
φ(x)φ(y)4φ(x′)

〉
0
= 3〈φ(x)φ(x′)〉0 [〈φ(y)φ(y)〉0]2

+12〈φ(x)φ(y)〉0〈φ(y)φ(y)〉0〈φ(y)φ(x′)〉0
= 3G0(x− x′)G0(0)

2 + 12G0(x− y)G0(0)G0(y − x′), (5.16)

where we have used the fact that the operator inverse of the Gaussian action is, by definition,

the free Green function (cf. Eq. (5.10)). Further, notice that the total number of terms

appearing on the right-hand side is equal to 15 = (6−1)!! which is just the number of distinct

pairings of six objects (cf. Eq. (3.21) and with our discussion of Section 5.1). Similarly, the

second contribution to G(1) leads to

〈φ(x)φ(x′)〉0〈φ(y)4〉0 = 3〈φ(x)φ(x′)〉0[〈φ(y)2〉0]2 = 3G0(x− x′)G0(0)
2.

Before analyzing these structures in more detail, let us make some general observations.

The first-order expansion of G contains a number of factors of G0(0), the free Green function

evaluated at coinciding points. This bears disturbing consequences. To see this, consider

G0(0) evaluated in momentum space:

G0(0) =

∫
ddp

(2π)d
1

p2 + r
. (5.17)

For dimensions d > 1, the integral is divergent at large momenta or short wavelengths; we

have met with an ultraviolet (UV) divergence. Physically, the divergence implies that,
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already at first order, our expansion runs into a difficulty that is obviously related to the

short-distance structure of the system. How can this problem be overcome? One way out

is to remember that field theories like the φ4-model represent effective low-temperature, or

long-wavelength, approximations to more microscopic models. The range of applicability of

the action must be limited to wavelengths in excess of some microscopic lattice cutoff a (e.g.

the lattice spacing), or momenta k < a−1. It seems that, once that cutoff has been built

in, the convergence problem is solved. However, there is something unsatisfactory in this

argument. All our perturbative corrections, and therefore the final result of the analysis,

exhibit sensitivity to the microscopic cutoff parameter. But this is not what we expect of a

sensible low-energy theory (cf. the discussion of Chapter 1)! The UV problem signals that

something more interesting is going on than a naive cutoff regularization has the capacity

to describe. We discuss this point extensively in Chapter 8.

However, even if we temporarily close our eyes to the UV-phenomenon, there is another

problem. For dimensions d ≤ 2, and in the limit r → 0, G0(0) also diverges at small

momenta, an infrared (IR) divergence. Being related to structures at large wavelengths,

this type of singularity should attract our attention even more than the UV-divergence men-

tioned above. Indeed, it is intimately related to the accumulation of long-range correlations

in the limit r → 0 (cf. the structure of the integral (5.12)). We come back to the discussion

of the IR singularities, and their connection to the UV phenomenon, in Chapter 8.

The considerations above show that the perturbative analysis of functional integrals will

be accompanied by all sorts of divergences. Moreover, there is another, less fundamental, but

also important, point: referring to Eq. (5.16), we have to concede that the expression does

not look particularly inviting. To emphasize the point, let us consider the core contribution

to the expansion at second order in g.

EXERCISE Show that the 10th-order contraction leads to the 945=(10-1)!! terms〈
φ(x)φ(y)4φ(y′)4φ(x′)

〉
0
= 9G0(x− x′)G0(0)

4 + 72G0(x− x′)G0(y − y′)2G0(0)
2

+24G0(x− x′)G0(y − y′)4 +
[
36G0(x− y)G0(x

′ − y)G0(0)
3

+144(G0(x− y)G0(x
′ − y)G0(y − y′)2G0(0) +G0(x− y)G0(x

′ − y′)G0(0)
2G0(y − y′))

+96G0(x− y)G0(x
′ − y′)G0(y

′ − y)3 + (y ↔ y′)
]
. (5.18)

Note: Our further discussion will not rely on this result. It only serves an illustrative purpose.

Clearly Eq. (5.18) is highly opaque. There are eight groups of different terms, but it is

not obvious how to attribute any meaning to these contributions. Further, should we con-

sider the full second-order Green function G(2), i.e. take account of the expansion of both

numerator and denominator in Eq. (5.14), we would find that some contributions cancel

(see Problem 5.5). Clearly, the situation will not improve at third and higher orders in g.
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x y x x
y

x′ x x′y
3 +12

Figure 5.1 Graphical representation of a first-order-in-g contraction contributing to the expansion
of the Green function.

x
φ  (x) φ  (y)

y

〈    〉0

x y
G0 (x, y)

To efficiently apply perturbative concepts beyond lowest orders,

a more efficient formulation of the expansion is needed. The key

to the construction of a better language lies in the observation

that our previous notation is full of redundancy, i.e. in the full

contraction of a perturbative contribution, we represent our fields

by φ(x). A more compact way of keeping track of the presence

of that field is shown in the upper portion of the figure to the

right. Draw a point (with an optional “x” labeling its position) and attach a little leg to

it. The leg indicates that the fields are sociable objects, i.e. they need to find a partner

with which to pair. After the contraction, a pair 〈φ(x)φ(y)〉 → G0(x − y) becomes a free

Green function. Graphically, this information can be represented by a pairwise connection

of the legs of the field symbols to lines, where each line is identified with a Green function

connecting the two terminating points. The full contraction of a free correlation function

〈φ(x1)φ(x2) · · ·φ(x2n)〉0 is represented by the set of all distinct diagrams formed by pairwise

connection of the field vertices.

Figure 5.1 shows the graphical representation of the contraction of Eq. (5.16). (The cross

appearing on the left-hand side represents four field operators sitting at the same point y.)

According to our rule formulated above, each of the two diagrams on the right-hand side

represents the product of three Green functions, taken between the specified coordinates.

Further, each contribution is weighted by a combinatorial factor, i.e. the number of identical

diagrams of that structure. Consider, for example, the second contribution on the right-

hand side. It is formed by connecting the “external” field vertex at x to any of the legs

of the internal vertex at y: four possibilities. Next, the vertex at x′ is connected with one

of the remaining three unsaturated vertices at y: three possibilities. The last contraction

y ↔ y is fixed, i.e. we obtain altogether 3 × 4 = 12 equivalent diagrams – “equivalent” in

that each of these represents the same configuration of Green functions.

EXERCISE Verify that the graphical representation of the second-order contraction Eq. (5.18)

is as shown in Fig. 5.2.6 Associate the diagrams with individual contributions appearing in

Eq. (5.18) and try to reproduce the combinatorial factors. (For more details, see Problem 5.5.)

The graphical representation of the contractions shown in Fig. 5.1 and 5.2 provides us with

sufficient background to list some general aspects of the diagrammatic approach:

6 In the figure, the coordinates carried by the field vertices have been dropped for notational simplicity. To restore
the full information carried by any of these “naked” graphs one attaches coordinates x and x′ to the external
field vertices and integration coordinates yi to each of the i nodes that do not connect to an external field vertex.
Since no information is lost, diagrams are often represented without explicit reference to coordinates.
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9 + 72

+ 24 + 72 + 288

+ 192 + 288

Figure 5.2 Graphical representation of the second-order correction to the Green function. In the
main text, the seven types of diagram contributing to the contraction will be referred to (in the
order they appear above) as diagrams 1 to 7.

� Firstly, diagrammatic methods help to efficiently represent the perturbative expansion.

However, we are still left with the problem (see the discussion above) of computing the

analytical expressions corresponding to individual diagrams. To go back from an nth-order

graph to its analytical representation one (i) attaches coordinates to all field vertices,

(ii) identifies lines between points with Green functions, (iii) multiplies the graph by the

overall constant gn/n!, and (iv) integrates over all of the internal coordinates. When one

encounters expressions like G(n) = “sum of graphs,” the operations (i)–(iv) are implicit.

� As should be clear from the formulation of our basic rules, there is no fixed rule as to

how to represent a diagram. As long as no lines are cut, any kind of reshaping, twisting,

rotating, etc. of the diagram leaves its content invariant. (At large orders of perturbation

theory, it often takes a second look to identify two diagrams as equivalent.)

� From the assembly of diagrams contributing to any given order, a number of internal

structures common to the series expansion become apparent. For example, looking at the

diagrams shown in Fig. 5.2, we notice that some are connected, and some are not. Among

the set of connected diagrams (nos. 5, 6, 7) there are some whose “core portion,” i.e.

the content of the diagram after the legs connecting to the external vertices have been

removed, can be cut into two pieces just by cutting one more line (no. 7). Diagrams of

this type are called one-particle reducible while the others are termed one-particle

irreducible. More generally, a diagram whose core region can be cut by severing n lines is

called n-particle reducible. (For example, no. 6 is three-particle reducible, no. 7 one-

particle reducible, etc.) One can also attach a loop order to a diagram, i.e. the number of

inequivalent loops formed by segments of Green functions (for Fig. 5.2: 4, 3, 3, 3, 2, 2, 2,

in that order). One (correctly) expects that these structures, which are difficult to discern

from the equivalent analytical representation, will reflect themselves in the mathematics

of the perturbative expansion. We return to the discussion of this point below.

� Then there is the issue of combinatorics. The diagrammatic representation simplifies

the determination of the combinatorial factors appearing in the expansion. However, the

problem of getting the combinatorics right remains non-trivial. (If you are not impressed

with the factors entering the second-order expansion, consider the (14 − 1)!! = 135135
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terms contributing at third order!) In some sub-disciplines of theoretical physics, the art

of identifying the full set of combinatorial coefficients at large orders of perturbation

theory has been developed to a high degree of sophistication. Indeed, one can set up

refined sets of diagrammatic construction rules which to a considerable extent automate

the combinatorics. Pedagogical discussions of these rules can be found, for example, in

the textbooks by Negele and Orland, and Ryder.7 However, as we will see shortly, the

need to explicitly carry out a large-order expansion, with account of all diagrammatic

sub-processes, rarely arises in modern condensed matter physics; mostly one is interested

in subclasses of diagrams, for which the combinatorics is less problematic. For this reason,

the present text does not contain a state-of-the-art exposition of all diagrammatic tools

and interested readers are referred to the literature.

� Finally, and perhaps most importantly, the diagrammatic representation of a given con-

tribution to the perturbative expansion often suggests a physical interpretation of the

corresponding physical process. (After all, any term contributing to the expansion of a

physical observable must correspond to some “real” physical process.) Unfortunately, the

φ4-theory is not well suited to illustrate this aspect, i.e., being void of any dynamical con-

tent, it is a little bit too simple. However, the possibility of “reading” individual diagrams

will become evident in the next section when we discuss an application to the interacting

electron gas.

Above we have introduced the diagrammatic approach on the example of field expectation

values 〈φ(x)(φ(y)4)nφ(x′)〉0. However, to obtain the Green function to any given order in

perturbation theory, we need to add to these expressions the contributions emanating from

the expansion of the denominator of the functional average (cf. Eq. (5.14) and (5.15)).

While, at first sight, the need to keep track of even more terms seems to complicate matters,

we will see that, in fact, quite the opposite is true! The combined expansion of numerator

and denominator leads to a miraculous “cancellation mechanism” that greatly simplifies the

analysis.

= 3 + 12

0 0 0
–

– 3

= 12

Figure 5.3 Graphical representation of the first-order correction to the Green function: vacuum
graphs cancel out.

Let us exemplify the mechanism of cancellation on G(1). The three diagrams correspond-

ing to the contractions of Eq. (5.15) are shown in Fig. 5.3, where integral signs and coordi-

nates are dropped for simplicity. On the left-hand side of the equation, the brackets 〈· · · 〉0

7 J. W. Negele and H. Orland, Quantum Many Particle Systems (Addison-Wesley, 1988); L. H. Ryder, Quantum
Field Theory (Cambridge University Press, 1996).
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indicate that the second contribution comes from the expansion of the denominator. The

point to be noticed is that the graph produced by the contraction of that term cancels

against a contribution arising from the numerator. One further observes that the canceled

graph is of a special type: it contains an interaction vertex that does not connect to any of

the external vertices. Diagrams with that property are commonly termed vacuum graphs.8

EXERCISE Construct the diagrammatic representation of G(2) and verify that the expansion of

the denominator eliminates all vacuum graphs of the numerator. In particular, show that G(2) is

given by the sum of connected diagrams shown in Fig. 5.4. (For more details, see Problem 5.5.)

+ 288+ 288G(2) = 192

Figure 5.4 Graphical representation of the second-order contribution to the Green function.

Indeed, the cancellation of vacuum graphs pertains to higher-order correlation functions

and to all orders of the expansion:

The contribution to a correlation function C(2n)(x1, . . . ,x2n) at lth order of

perturbation theory is given by the sum of all graphs, excluding vacuum graphs.

+

C(4)(1,2,3,4) = 24

1 2

3 4

1

3

2

4

12 + perm.

For example, the first-order expansion of the four-point

function C(4)(x1, . . .x4) is shown in the figure, where coor-

dinates xi ↔ i are abbreviated by indices and “+ perm.”

stands for the six permutations obtained by interchang-

ing arguments. In the literature, the statement of vacuum

graph cancellation is sometimes referred to as the linked

cluster theorem. Notice that the linked cluster feature

takes care of two problems: firstly we are relieved of the burden of a double expansion of

numerator and denominator, and secondly only non-vacuum contributions to the expansion

of the former need to be kept.

INFO The proof of the linked cluster theorem is straightforward. Consider a contribution

of nth order to the expansion of the numerator of Eq. (5.14): (−g)n

n!

〈
X[φ](

∫
ddxφ

4)n
〉
0
. The

contraction of this expression will lead to a sum of vacuum graphs of pth-order and non-vacuum

graphs of (n− p)th-order, where p runs from 0 to n. The pth-order contribution is given by

1

n!

(
n

p

)〈
X[φ]

(∫
φ4

)n−p
〉n.v.

0

〈(∫
φ4

)p〉
0

,

where the superscript 〈· · · 〉n.v. indicates that the contraction excludes vacuum graphs and the

combinatorial coefficient counts the number of possibilities to choose p vertices φ4 of a total of n

8 The term “vacuum graph” has its origin in the diagrammatic methods invented in the 1950s in the context
of particle theory. Instead of thermal averages 〈· · · 〉0, one considered matrix elements 〈Ω| · · · |Ω〉 taken on the
ground state or “vacuum” of the field theory. This caused matrix elements 〈Ω|(Sint[φ])

n|Ω〉 not containing an
external field vertex to be dubbed “vacuum graphs.”
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Figure 5.5 Momentum space representation of a first-order contribution to the Green function.
Internal momenta pi are integrated over.

vertices to form a vacuum graph. Summing over p, we find that the expansion of the numerator,

split into vacuum and non-vacuum contributions, reads

∞∑
n=0

n∑
p=0

(−g)n

(n− p)! p!

〈
X[φ]

(∫
, φ4

)n−p
〉n.v.

0

〈(∫
, φ4

)p〉
0

.

By a straightforward rearrangement of the summations, this can be rewritten as

∞∑
n=0

(−g)n

n!

〈
X[φ]

(∫
, φ4

)n〉n.v.

0

∞∑
p=0

(−g)p

p!

〈(∫
, φ4

)p〉
0

.

The p-summation recovers exactly the expansion of the denominator, so we are left with the sum

over all non-vacuum contractions.

Before concluding this section, let us discuss one last technical point. The translational

invariance of the φ4-action suggests a representation of the theory in reciprocal space.

Indeed, the momentum space representation of the propagator Eq. (5.11) is much

simpler than the real space form, and the subsequent analytical evaluation of diagrams will

be formulated in momentum space anyway (cf. the prototypical expression (5.17)).

p
φ p φ–p–p

G0( p)

p

〈...〉0

The diagrammatic formulation of the theory in momentum

space is straightforward. All we need to do is to slightly adjust

the graphical code. Inspection of Eq. (5.11) shows that the ele-

mentary contraction should now be formulated as indicated in the

figure. Only fields with opposite momentum can be contracted;

the line carries this momenta as a label. Notice that the momen-

tum representation of the field vertex φ4(x) is not given by φ4
p.

Rather, Fourier transformation of the vertex leads to the three-

fold convolution ∫
ddxφ4(x) → 1

Ld

∑
p1,...,p4

φp1φp2φp3φp4δp1+p2+p3+p4 .

The graphical representation of the first-order correction to the Green function (i.e. the

momentum space analog of Fig. 5.3) is shown in Fig. 5.5. It is useful to think about the

vertices of the momentum-space diagrammatic language in the spirit of “Kirchhoff laws”:

the sum of all momenta flowing into a vertex is equal to zero. Consequently (exercise) the

total sum of all momenta “flowing” into a diagram from external field vertices must also

equal zero: 〈φp1φp2 · · ·φpn〉0 → δ∑n
i=1 pi,0(· · · ). This fact expresses the conservation of the

total momentum characteristic for theories with global momentum conservation.
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EXERCISE Represent the diagrams of the second-order contraction shown in Fig. 5.2 in momen-

tum space. Convince yourself that the “Kirchhoff law” suffices to fix the result. Observe that the

number of summations over internal momenta is equal to the number of loops.

This concludes the first part of our introduction to the formal elements of perturbation

theory. Critical readers will object that, while we undertook some efforts to efficiently rep-

resent the perturbative expansion, we have not in the least addressed the question of how

interactions will actually modify the results of the free theory. Indeed, we are not yet in

a position to quantitatively address this problem, the reason being that we first need to

better understand the origin and remedy of the UV/IR divergences observed above.

However, temporarily ignoring the presence of this roadblock, let us try to outline what

kind of information can be extracted from perturbative analyses, in principle. One impor-

tant point to be noted is that, in condensed matter physics,9 low-order perturbation theory

is usually not enough to obtain quantitative results. The fact that the “perturbation” cou-

ples to a macroscopic number of degrees of freedom10 usually necessitates summation of

infinite (sub)series of a perturbative expansion or even the application of non-perturbative

methods. This, however, does not mean that the tools developed above are useless: given

a system subject to unfamiliar interactions, low-order perturbation theory will usually be

applied as a first step to qualitatively explore the situation. For example, a malign diver-

gence of the expansion in the interaction operator may signal the presence of an instability

towards the formation of a different phase. Or it may turn out that certain contributions to

the expansion are “physically more relevant” than others. Technically, such contributions

usually correspond to diagrams of a regular graphical structure. If so, a summation over

all “relevant processes” may be in reach. In either case, low-order expansions provide vital

hints as to the appropriate strategy of further analysis. In the following we discuss two

examples that may help to make these remarks more transparent.

5.2 Ground state energy of the interacting electron gas

In Section 2.2 we began to consider the physics of highly mobile electron compounds. We

argued that such a system can be described in terms of the free particle Hamiltonian (2.18)

together with the interaction operator (2.19). While we have reviewed the physics of the

non-interacting system, nothing has hitherto been said about the role of electron–electron

interactions. Yet by now we have developed enough analytical machinery to begin to address

this problem. Below we will apply concepts of perturbation theory to estimate the contribu-

tion of electronic correlations to the ground state energy of a Fermi system. However, before

plunging into the technicalities of this analysis, it is worthwhile discussing some qualitative

aspects of the problem.

9 There are subdisciplines of physics where the situation is different. For example, consider the high-precision
scattering experiments of atomic and sub-atomic physics. In these areas, the power of a theory to quantitatively
predict the dependence of scattering rates on the strength of the projectile/target interaction (the “perturba-
tion”) is a measure of its quality. Such tests involve large-order expansions in the physical coupling parameters.

10 In contrast, low-order expansions in the external perturbation (e.g. experimentally applied electric or magnetic
fields) are usually secure; see Chapter 7.
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Qualitative aspects

A principal question that we will need to address is under what physical conditions are

interactions “weak” (in comparison to the kinetic energy), i.e. when does a perturbative

rs

approach with the interacting electron system make sense at

all? To estimate the relative magnitude of the two contributions

to the energy, let us assume that each electron occupies an aver-

age volume r30. According to the uncertainty relation, the min-

imum kinetic energy per particle will be of order O(�2/mr20).

On the other hand, assuming that each particle interacts pre-

dominantly with its nearest neighbors, the Coulomb energy is

of order O(e2/r0). The ratio of the two energy scales defines

the dimensionless density parameter (see figure)

e2

r0

mr20
�2

=
r0
a0

≡ rs,

where a0 = �2/e2m denotes the Bohr radius.11 Physically, rs is the radius of the spherical

volume containing one electron on average; for the Coulomb interaction, the denser the

electron gas, the smaller rs. We have thus identified the electron density as the relevant

parameter controlling the relative strength of electron–electron interactions.

Eugene P. Wigner 1902–95
Nobel Laureate in Physics in 1963
“for his contributions to the the-
ory of the atomic nucleus and the
elementary particles, particularly
through the discovery and appli-
cation of fundamental symmetry
principles.” (Image c© The Nobel
Foundation.)

Below, we will be concerned with

the regime of high density, rs � 1,

or weak Coulomb interaction. In the

opposite limit, rs � 1, properties

become increasingly dominated by

electronic correlations. Ultimately,

for sufficiently large rs (low density)

it is believed that the electron gas

undergoes a (first order) transition

to a condensed phase known as a Wigner crystal. Although Wigner crystals have never

been unambiguously observed, several experiments performed on low-density electron gases

are consistent with a Wigner crystal ground state. Monte Carlo simulation suggests that

Wigner crystallization may occur for densities with rs > 35 in the two-dimensional electron

gas and rs > 106 in three.12 (Note that this scenario relies on being at low temperature,

11 Notice that the estimate of the relative magnitude of energy scales mimics Bohr’s famous qualitative discussion
of the average size of the hydrogen atom.

12 With the earliest reference to electron crystallization appearing in E. Wigner, On the interaction of electrons
in metals, Phys. Rev. 46 (1934), 1002–11, a discussion of the results of quantum Monte Carlo simulations in
three-dimensions can be found in the following papers: D. M. Ceperley and B. J. Alder, Ground state of the
electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980), 566–569 and N. D. Drummond, Z. Radnai, J.
R. Train, M. D. Towler, and R. J. Needs, Diffusion quantum Monte Carlo study of three-dimensional Wigner
crystals, Phys. Rev. B 69 (2004), 085116, and in two-dimensions in B. Tanatar and D. M. Ceperley, Ground
state of the two-dimensional electron gas, Phys. Rev. B 39 (1989) 5005-5016. For a further discussion of the
subtleties of the transition in two-dimensions, we refer to B. Spivak and S. A. Kivelson, Phases intermediate
between a two-dimensional electron liquid and Wigner crystal, Phys. Rev. B 70 (2004), 155114.
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Table 5.1 Density parameters of a number of metals.

Metal rs Metal rs Metal rs Metal rs

Li 3.2 Be 1.9 Na 3.9 Al 2.1

K 4.9 Sn 2.2 Cu 2.7 Pb 2.3

Source: Data taken from Ashcroft and Mermin, Solid State
Physics.a

a N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-
Saunders International, 1983).

and on the long-range nature of the Coulomb interaction. In particular, if the Coulomb

interaction is subject to some screening mechanism, V (r) ∼ e−r/λ, rs ∼ (r0/a0)e
−r0/λ, and

the influence of Coulomb interaction at low densities becomes diminished.)

For rs ∼ O(1), the potential and kinetic energies are comparable. This regime of inter-

mediate coupling is notoriously difficult to describe quantitatively. Yet most metals lie in a

regime of intermediate coupling 2 < rs < 6 (see Table 5.1). Fortunately, there is overwhelm-

ing evidence to suggest that a weak coupling description holds even well outside the regime

over which the microscopic theory can be justified. The phenomenology of the intermediate

coupling regime is the realm of Landau’s Fermi liquid Theory.13

Lev D. Landau 1908–68
Nobel Laureate in Physics in 1962
“for his pioneering theories for
condensed matter, especially liq-
uid helium.” Landau’s work covers
all branches of theoretical physics,
ranging from fluid mechanics to
quantum field theory. A large por-
tion of his papers refer to the theory of the con-
densed state. They started in 1936 with a formu-
lation of a general thermodynamical theory of the
phase transitions of the second order. After P.L.
Kapitsa’s discovery, in 1938, of the superfluidity
of liquid helium, Landau began extensive research
which led him to the construction of the complete
theory of the “quantum liquids” at very low temper-
atures. (Image c© The Nobel Foundation.)

The fundamental principle under-

lying the Fermi liquid theory is

one of “adiabatic continuity”:14 in

the absence of an electronic phase

transition (such as Wigner crystal-

lization), a non-interacting ground

state evolves smoothly or adiabat-

ically into the interacting ground

state as the strength of interaction

is increased.15 An elementary exci-

tation of the non-interacting system

represents an “approximate excita-

tion” of the interacting system (i.e.

its “lifetime” is long). Excitations

are quasi-particles (and quasi-holes)

above a sharply defined Fermi surface.

13 L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3 (1956), 920.
14 P. W. Anderson, Basic Notions in Condensed Matter Physics (Benjamin, 1984).
15 As a simple non-interacting example, consider the adiabatic evolution of the bound

states of a quantum particle as the confining potential is changed from a box to a
harmonic potential well (see figure). While the wavefunctions and energies evolve,
the topological characteristics of the wavefunctions, i.e. the number of the nodes,
and therefore the assignment of the corresponding quantum numbers, remain
unchanged.
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The starting point of Fermi liquid theory is a few phenomenological assumptions, all

rooted in the adiabaticity principle. For example, it is postulated that the density of quasi-

particles can be described in terms of a momentum-dependent density distribution n(p)

which, in the limit of zero interaction, evolves into the familiar Fermi distribution. From

this assumption (and a few more postulates) a broad spectrum of observables can be ana-

lyzed without further “microscopic” calculation. Its remarkable success (as well as the few

notorious failures) has made Landau Fermi liquid theory a powerful tool in the development

of modern condensed matter physics but one which we are not going to explore in detail.16

Instead, motivated in part by the phenomenological success of the “adiabatic continuity,”

we will continue with the development of a microscopic theory of the weakly interacting

three-dimensional electron gas, with rs � 1.

Perturbative approach

The starting point of the perturbative analysis is the functional representation of the free

energy F = −T lnZ through the quantum partition function. (Here, as usual, we set kB =

1.) Expressed as a coherent state path integral, Z =
∫
D(ψ̄, ψ) e−S[ψ̄,ψ], where

S[ψ, ψ̄] =
∑
p

ψ̄pσ

(
−iωn +

p2

2m
− μ

)
ψpσ +

T

2L3

∑
pp′q

ψ̄p+qσψ̄p′−qσ′V (q)ψp′σ′ψpσ.

Here, for brevity, we have introduced the “4-momentum” p ≡ (p, ωn) comprising both

frequency and momentum.17 As with the Green function discussed in the previous section,

the free energy can be expanded in terms of an interaction parameter. To fix a reference

scale against which to compare the correlation energies, let us begin by computing the free

energy Eq. (4.41) of the non-interacting electron gas:

F (0) = −T
∑
pσ

ln
(
1 + e−β(p2/2m−μ)

)
T→0−→

∑
p2/2m<μ,σ

(
p2

2m
− μ

)
� −2

5
Nμ, (5.19)

where μ ≡ p2F/2m, N = (23/2/3π2)m3/2L3μ3/2 is the number of particles, and the last

estimate is obtained by replacing the sum over momenta by an integral. According to

Eq. (5.19), the average kinetic energy per particle is equal to 3/5 of the Fermi energy. To

relate this scale to the density parameter rs, we choose to measure all energies in units of

the Rydberg energy (alias the ionization energy of hydrogen), ERy = me4/2�2 = 13.6 eV,

F (0)

ERy
∼ N

r2s
. (5.20)

16 Interested readers are referred to one of several excellent reviews, e.g. P. W. Anderson, Basic Notions in
Condensed Matter Physics (Benjamin, 1984).

17 Notice that “4-momentum” p and the modulus of the “3-momentum”, p = |p|, are denoted by the same symbol
(standard notation!). However, in its context, this should not cause confusion.
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If we turn now to the discussion of interactions, a formal expansion of F to first order in

V gives

F (1) =
T 2

2L3

B∑
pp′q

ψ̄p+qσψ̄p′−qσ′V (q)ψp′σ′ψpσ

C
0

, (5.21)

where 〈· · · 〉0 denotes the functional average with respect to the non-interacting action. The

two18 diagrams contributing to this expression are shown in the figure overleaf. To account

for the specifics of the electron gas, we are using a diagrammatic code slightly different from

that of the previous section:

� The Coulomb interaction is represented by a wavy line labeled by the momentum argu-

ment q.

� A contraction 〈ψpσψ̄pσ〉0 is indicated by a solid arrow representing the free Green func-

tion of the electron gas,

Gp ≡ 1

−iωn + p2

2m − μ
, (5.22)

i.e. the inverse of the free action. The labeling of the contraction by an arrow (instead

of a unidirectional line as in φ4-theory) is motivated by two considerations: firstly, the

mnemonic has the effect of indicating that a contraction 〈ψηψ̄λ〉0 describing the creation

of an electron with quantum numbers λ, followed by the annihilation of an electron at η,

is a directed process; secondly, there are situations (e.g. when a magnetic field is present)

where 〈ψnσ(r)ψ̄nσ(r
′)〉0 �= 〈ψnσ(r

′)ψ̄nσ(r)〉0.
� The sum of all 4-momenta emanating from an interaction vertex formed by a wavy line

and two electron field lines is equal to zero (exercise) – the “Kirchhoff law.”

� Finally, we have to be careful about sign factors arising when Grassmann variables are

interchanged. However, the anti-commutativity of the fields merely leads to an overall

factor (−)Nl , where Nl is the number of loops of a diagram. (To verify this claim, one may

notice that a loop is formed by a “ringwise contraction” 〈ψ̄1ψ2ψ̄3 . . . ψN 〉0, (2 → 3)(4 →
5) . . . ((N − 2) → (N − 1))(N → 1). The last contraction introduces the minus sign.)

First-order perturbation theory

Turning to the discussion of the specific diagrams shown in the figure below, we notice

that the first, generally known as a Hartree contribution, vanishes. Technically, this is a

Douglas R. Hartree, 1897–1958
Originally appointed as a professor of applied math-
ematics he became one of the first “computational
physicists.” He developed methods for numerically
solving the Schrödinger equation, among them the
celebrated “Hartree approximation.”

consequence of the fact that the

interaction line connecting the two

loops carries zero momentum. How-

ever, as discussed in Section 2.2,

V (q = 0) = 0. Physically, the van-

ishing of the Hartree contribution is

a consequence of charge neutrality.

18 Remember that, in a theory with complex or Grassmann fields, only contractions ∼ 〈ψ̄ψ〉0 exist, i.e. there is a
total of n! distinct contributions to a contraction 〈ψ̄ψ . . . ψ〉0 of 2n field operators.
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Indeed, the two Green function loops
∑

p Gp measure the local particle density of the

electron gas (cf. the discussion on page 171). Global charge neutrality requires that the

electronic density cancels against the density of the ionic background. However, notice that

this cancellation mechanism relies on our assumption of overall spatial homogeneity.

pp

q=0

p+q

p

q

Only in a spatially uniform system does the density of the

electron gas locally compensate the positive counter-density.

In realistic metals, the inevitable presence of impurities breaks

translational invariance and there is no reason for the Hartree

contribution to vanish. Indeed, the analysis of Hartree-type

contributions to the correlation energy in disordered electronic

media is a subject of ongoing research.

While the Hartree term describes the classical interaction

of charge densities through the Coulomb potential, the second

diagram shown in the figure, known as a Fock contribution,

is quantum. Translating the diagrammatic language back into

Green functions, we obtain

F (1) = −T 2

L3

∑
p,p′

GpGp′V (p− p′)

= − 1

L3

∑
p,p′

nF(εp)nF(εp′)
e2

|p− p′|2

T→0
= − 1

L3

∑
εp,εp′<μ

e2

|p− p′|2 = −e2L3p4F
(2π)4

. (5.23)

Here, the sign factor in the first equality is due to the odd number of fermion loops, and the

evaluation of the last sum, which can be found, for example, in the text by Kittel,19 is left

as an exercise. (Up to numerical factors, the result follows from dimensional considerations.

We are integrating the inverse square of the distance in momentum space ([momentum]−2)

over two Fermi spheres ([momentum]6). Since the integral is convergent at low momenta, it

0.5 1 1.5
x

1

2

3

4
Γ(x)must scale as the fourth power of the upper cutoff ∼ p4F.)

Division by the Rydberg energy leads to the scaling

F (1)

ERy
= const. · N

rs
, (5.24)

where the constant is of order unity. This result con-

forms with our previous estimate of the density depen-

dence of correlation energies.

19 C. Kittel, Quantum Theory of Solids (Wiley, 1963).
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INFO A closer analysis shows that other predictions following from Eq. (5.23) are less sensible.

To understand what goes wrong, let us rewrite the sum of F (0) and F (1) as

F (0) + F (1) =
∑

|p|<pF

⎛
⎝ p2

2m
− μ− 1

L3

∑
�p′<μ

e2

|p− p′|2

⎞
⎠ .

This way of writing suggests that the interaction of an electron of momentum p with all partner

electrons of momentum p′ leads to a reduction20 of the single particle energy by an amount

L−3 ∑
�p′<μ e2/|p− p′|2.

Evaluation of the internal sum (exercise) leads to21

F (0) + F (1) =
∑

|p|<pF

(
p2

2m
− μ− e2pF

2π
Γ(|p|/pF)

)
,

where the function Γ(x) = 2+ 1−x2

x
ln

∣∣∣ 1+x
1−x

∣∣∣ is shown in the figure. The most important charac-

teristic of the scaling function Γ is a logarithmically diverging derivative at x = 1 (exercise). To

appreciate the consequences of this feature, let us consider the single particle density of states

ρ(ε) =
∑

pσ δ(ε− εp), where εp = p2

2m
− e2pF

2π
Γ(p/pF) is the first-order Fock single-particle energy.

Approximating the sum by an integral, we obtain

ρ(ε) =
L3

π2

∫ ∞

0

p2dp δ(ε− εp) =
L3p2�
π2

(
dεp
dp

)−1

,

where p� is defined through εp� = ε. The singularity of the derivative of Γ(p/pF) at p = pF

implies that the density of states is predicted to vanish as ε approaches the Fermi energy, clearly

a nonsensical result.22 The origin of this pathological divergence can be traced back to the long-

range (|r|−1 → |q|−2) decay of the Coulomb potential (cf. Eq. (5.21)). Yet we know that, in

systems with mobile charge carriers, electrostatic forces are screened, i.e. they decay exponen-

tially. Microscopically, screening is due to the polarization of a medium in response to an applied

electric field. This by itself is an interaction effect, albeit one of “higher order” in the Coulomb

interaction, i.e. if we ever want to observe signatures of the screening mechanism, we need to

advance to higher orders in the expansion in V .

Second-order perturbation theory

Let us then consider the second-order contribution

F (2) = −T

2

(
T

2L3

)2
B⎛⎝∑

pp′q

ψ̄p+qσψ̄p′−qσ′V (q)ψp′σ′ψpσ

⎞⎠2Cc

0

,

where the superscript indicates that only connected diagrams contribute.

20 Why a reduction? Charge neutrality implies that the classical correlation energy vanishes. However, being
fermionic in nature, electrons tend to avoid each other even more than classical particles, i.e. quantum statistics
leads to a lowering of the correlation energy below the classical value of zero.

21 See, e.g., J. Hubbard, The description of collective motion in terms of many-body perturbation theory, Proc.
Roy. Soc. (London) A243 (1957), 336.

22 The majority of transport observables in metals are proportional to the density of states at the Fermi energy,
i.e. ρ(μ) = 0 would entail the vanishing of almost all transport coefficients!
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EXERCISE Using the field integral representation of Z, show that second-order expansion of

F = −T lnZ in the interaction operator Sint leads to F (2) = −(T/2)
[〈
S2
int

〉
0
−

[
〈Sint〉0

]2]
.

Convince yourself that the second term cancels disconnected diagrams. Apply arguments similar

to those involved in the proof of the linked cluster theorem to verify that the cancellation of

disconnected graphs pertains to all orders in the expansion of F . I.e. the free energy can be

obtained by expanding the partition function Z (not its logarithm) and keeping only connected

diagrams; dropping disconnected contributions is equivalent to taking the logarithm.

Connected contraction of the eight field operators leads to four distinct types of diagram

(exercise) of which two are of Hartree type (i.e. contain a zero-momentum interaction line

V (q = 0)). The non-vanishing diagrams F (2),1 and F (2),2 are shown in the figure below.23

Translating these diagrams to momentum summations over Green functions, one obtains

(exercise)

F (2),1 = −T 3

L6

∑
p1,p2,q

Gp1Gp1+qGp2Gp2+qV (q)2,

F (2),2 =
1

2

T 3

L6

∑
p,q1,q2

GpGp−q1Gp−q1−q2Gp−q2V (q1)V (q2). (5.25)

While, at first sight, these expressions do not look very illuminating, closer inspection reveals

some structure. Reflecting the fact that electronic transport in solids is carried by excitations

at the Fermi energy, the electron Green function (5.22) assumes large values for momenta

p � pF. This implies that only configurations where all momentum arguments carried by the

Green function are close to the Fermi surface contributes significantly to the sums (5.25).

Considering the first sum, we see that, for small |q| and |pi| � pF, this condition is met,

i.e. there are two unbound summations over momentum shells around the Fermi surface.

However, with the second sum, the situation is less favourable. For fixed |p1| � pF, fine-

tuning of both q1 and q2 is necessary to bring all momenta close to pF, i.e. effectively one

momentum summation is frozen out. There is no need to enter into detailed calculations to

predict that, due to the relatively larger “phase volume,” F (2),1/F (2),2 � 1, where the ratio

will be proportional to the area of the Fermi surface which, in turn, is proportional to the

density of the electron gas. For large densities, the second Fock diagram can be neglected

in comparison with the first.

23 In fact, one more non-vanishing contribution is obtained by drawing a single “ring” of Green functions contain-
ing two non-crossing interaction lines. This diagram, and its obvious generalization to higher order processes
containing sequential “self–interactions” of a single Green function do not play an essential role (in the present
context.) The reasons why will become clear in section 5.3 when we introduce the notion of self-energies.
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(a) (b)

Figure 5.6 Diagram of second-order Fock contributions to the free energy of the electron gas.
(a) Interaction process involving a single electron–hole pair. An electron is virtually excited
above the Fermi energy, and subsequently recombines with a hole state left behind by a second
electron excitation which then jumps into the hole created by the initial excitation. (b) Virtual
excitation of independent electron–hole pairs.

F (2),1

F (2),2

Of course, there must be a ‘more physical’ way of under-

standing this observation. The Green function lines in the

diagrams F (2),i describe the propagation of quasi-particles

and quasi-holes24 on the background of the interacting

medium. Now, the diagram F (2),2 contains a simply con-

nected propagator line: a single particle–hole excitation

undergoes a second-order interaction process with itself

(see Fig. 5.6(a)). By contrast, the first diagram F (2),1

involves two independent electron–hole excitations, as

shown in Fig. 5.6(b). Since, in a dense electron gas, a

second-order interaction process will more likely involve

different particles, this type of contribution is more important. Notice that the process

shown in Fig. 5.6(b) can be interpreted as a “polarization” of the medium due to the

excitation of electron–hole pairs.

Higher orders in perturbation theory

The picture above readily generalizes to interaction processes of higher order. In the high-

density limit, dominant contributions to the free energy should contain one free integration

over the Fermi momentum per interaction process. A moment’s

thought shows that only diagrams of “ring graph” structure (see the

figure) meet this condition. Expanding the free energy functional to

nth order in the interaction operator, and retaining only diagrams

of that structure, one obtains

F
(n)
RPA = − T

2n

∑
q

(
2T

L3
V (q)

∑
p

GpGp+q

)n

. (5.26)

(To understand the origin of the multiplicative factor 1/n, notice

that F (n) results from the connected contraction of an operator ∼

24 In principle, the system consists of physical electrons immersed into a globally positive background. However
(cf. the discussion of Section 2.2), keeping in mind that at low temperatures dynamical processes take place in
the immediate vicinity of the Fermi surface, a more problem-oriented way of thinking about states is in terms
of quasi-particles and quasi-holes, i.e. electronic states immediately above and below the Fermi surface.
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(n!)−1〈(Sint[ψ̄, ψ])
n〉c0. There are (n−1)! different ways of arranging the interaction operators

Sint in a ring-shaped structure, i.e. the diagram carries a global factor (n− 1)!/n! = 1/n.)

In Eq. (5.26) the subscript “RPA” stands for random phase approximation.25 How-

ever, more important than the designation are the facts: (a) we have managed to identify

a particularly relevant subclass of diagrams contributing to the plethora of interaction pro-

cesses; (b) there is a physical parameter controlling the dominance of these diagrams; and

(c) we are apparently able to sum up the entire series of nth-order RPA-interaction contri-

butions. Indeed, summation over n leads to the simple result

FRPA ≡
∑
n

F
(n)
RPA =

T

2

∑
q

ln (1− V (q)Πq) , (5.27)

where we have introduced the polarization operator,26

Πq ≡ 2T

L3

∑
p

GpGp+q. (5.28)

Equation (5.27) represents our first example of an infinite-order expansion. However, before

turning to the discussion of further aspects of infinite-order perturbation theory, let us stay

for a moment with the RPA free energy. Specifically, let us investigate whether the RPA

repairs the pathology in the Fermi surface density of states observed above.

The last unknown we need to compute before turning to the discussion of the RPA free

energy is the polarization operator. Drawing on the frequency summation in Problem 4.5,

the polarization operator can be written explicitly as

Πq =
2T

L3

∑
p

1

−iωn + ξp

1

−iωn+m + ξp+q
=

2

L3

∑
p

nF(εp+q)− nF(εp)

iωm + ξp+q − ξp
. (5.29)

The evaluation of the momentum sum is straightforward if a bit tedious. As a result of the

calculation outlined in the Info block below one obtains

Πq,ωm = −ν0

[
1− iωm

2vFq
ln

(
iωm + vFq

iωm − vFq

)]
, (5.30)

where

ν0 ≡ 1

Ld

∑
p,σ

δ(μ− εp) = 2

∫
d3p

(2π)3
δ(εp − μ) =

mpF
π2

, (5.31)

25 The attribute “random phase” seems to allude to the fact that the quantum mechanical phase carried by the
particle–hole excitations stirred up by interactions gets lost after each elementary polarization process. This
contrasts with more-generic contributions to F where quantum phases may survive more complex interaction
processes. Also notice that more than one approximation scheme in statistical physics has been dubbed “random
phase.”

26 The definition (5.28) applies to the specific case of a three-dimensional translationally invariant system. More
generally, the polarization operator is defined as the frequency/momentum Fourier transform of the connected
average

〈ψ̄(x, τ)ψ(x, τ)ψ̄(x
′
, τ

′
)ψ(x

′
, τ

′
)〉c.
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is the density of states per volume of non-interacting electrons at the Fermi surface.

INFO For an isotropic three-dimensional system at zero temperature, the polarization operator

(5.29) becomes a function of |q| and ωn, known as the Lindhard function. The evaluation

of the momentum sum is greatly simplified by noting that, due to the difference of the Fermi

functions, only momenta with |p| � pF significantly contribute. Assuming that |q| 	 pF, we may

thus effect the linearization ξp+q−ξp = (1/m)p ·q+O(q2), where the term of O(q2) is negligibly

small. Similarly, nF(εp+q)−nF(εp) � ∂�pnF(εp)(1/m)p ·q � −δ(εp−μ)(1/m)p ·q, where, in the

zero-temperature limit, the last equality becomes exact. Converting the momentum sum into an

integral, we thus obtain

Πq,ωm = −2

∫
d3p

(2π)3
δ(εp − μ)

1
m
p · q

iωm + 1
m
p · q

.

Setting 1/(2π)3
∫
d3p = 1/(2π)3

∫
dp p2

∫
dΩ, where

∫
dΩ is the integral over the three-

dimensional unit sphere, and p = pn, with |n| = 1, the integral can be evaluated, thus:

Πq,ωm = − 2

(2π)3

∫
dp p2

∫
dΩ δ(εp − μ)

vFn · q
iωm + vFn · q

= − 2

(2π)3

∫
dp p2

∫
dΩ δ(εp − μ)︸ ︷︷ ︸

ν0

1∫
dΩ

∫
dΩ

vFn · q
iωm + vFn · q

= −ν0
2

∫ 1

−1

dx
vFxq

iωm + vFxq
= −ν0

[
1− iωm

2vFq
ln

(
iωm + vFq

iωm − vFq

)]
.

Murray Gell-Mann 1929–
Nobel Laureate in Physics in 1969
“for his contributions and discov-
eries concerning the classification
of elementary particles and their
interactions.” Among his many
accomplishments, he formulated
the quark model of hadronic res-
onances, and identified the SU(3) flavor symme-
try of the light quarks, extending isospin to include
strangeness, which he also discovered. (Image c©
The Nobel Foundation.)

To obtain the free energy, we need

to substitute the Lindhard func-

tion into Eq. (5.27) and sum over

q = {q, ωm}. Yet, due to the com-

plicated dependence of the function

Πq,ωm on its arguments, this final

part of the calculation is far from

trivial. An asymptotic expression

for the high-density expansion of

the RPA approximation to F was

first obtained in a famous study by

Gell-Mann and Brueckner.27 Measuring in atomic units, they obtained the free energy per

particle of

FRPA

ERyN
= −0.142 + 0.0622 ln rs. (5.32)

For a derivation of this result we refer the interested reader to the literature. (In the late

1950s, motivated largely by applications to the physics of heavy nuclei, the perturbative

calculation of ground state energies had become an industry. A comprehensive discussion of

27 M. Gell-Mann and K. Brueckner, Correlation energy of an electron gas at high density, Phys. Rev. 106 (1957),
364–8. To explore this and related literature, it is useful to refer to D. Pines, The Many-Body Problem (Ben-
jamin, 1962) where the important reprints are collected.



5.2 Ground state energy of the interacting electron gas 219

the subject, and details of the asymptotic rs- expansion of FRPA can be found, for example,

in Mahan.28) When added to the kinetic energy Eq. (5.20) and the first-order correlation

energy Eq. (5.24), the structure of the density expansion of the free energy becomes clear:

the sum over all RPA diagrams yields the coefficient of O(r0s ) in the expansion in rs.
29

More important for our present discussion is the conceptual meaning of the RPA, notably

the connection to screening. To this end, let us temporarily consider the expectation value

of the particle number N = −∂μF , rather than the free energy itself. Specifically, we wish

to compare the first order correction (with the non-interacting result) N (1) = −∂μF to the

RPA, NRPA = −∂μFRPA. Noting that ∂μGp = −(Gp)
2 we readily find (cf. Eq. (5.23))

N (1) = −2T 2

L3

∑
p,q

(Gp)
2Gp+qV (q).

After a second differentiation, ρ(1) = ∂μN
(1), this expression would lead to the pathological

density of states, a consequence of the unscreened interaction line. (The diagrammatic

visualization of N (1) is shown in Fig. 5.7(a).) Now, consider the μ-derivative of FRPA,

Eq. (5.27):

NRPA =
T

2

∑
q

V (q)∂μΠq

1− V (q)Πq
= −T 2

L3

∑
q

V (q)

1− V (q)Πq

[∑
p

Gp+q(Gp)
2 + (q ↔ −q)

]

= −2T 2

L3

∑
q

V (q)

1− V (q)Πq

∑
p

Gp+q(Gp)
2 = −2T 2

L3

∑
q

Veff(q)
∑
p

Gp+q(Gp)
2, (5.33)

where we have defined the “effective” interaction

Veff(q) ≡
1

V (q)−1 −Πq
≡ V (q)

ε(q)
, (5.34)

with the generalized dielectric function

ε(q) ≡ 1− V (q)Πq. (5.35)

Structurally, the expression for NRPA resembles the first-order expression N (1), only with

the “bare” Coulomb interaction replaced by the effective interaction Veff . From its definition,

it is clear that Veff represents a geometric series over polarization bubbles, augmented by

bare interaction lines. This is visualized in Fig. 5.7(b), where the fat line is defined in the

bottom part of the figure. In fact, we do not need to stare at the analytical expression

(5.33) to understand its origin. The μ-differentiation acting on FRPA may pick any of the

n rings contributing to F
(n)
RPA in Eq. (5.26). The “differentiated ring” becomes the bubble

in Fig. 5.7, while all other rings conspire to form the (n − 1)th-order contribution to the

effective interaction line.

28 G. Mahan, Many Particle Physics (Plenum Press, 1981).
29 Here we follow a convention (used mostly in the older literature) where the RPA starts from the second-order

ring diagram F (2),1. However, henceforth we will refer to the “RPA” as the sum over all ring diagrams, including

the first, F (1).
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p+q

p

p+q

p
qq

= + + + . . .

= +

(a) (b)

Figure 5.7 Diagrammatic visualization of expectation value of the particle number. (a) First-order
Fock correction and (b) the RPA approximation, where the definition of the RPA interaction line
is shown in the bottom part of the figure.

At this stage, the connection between RPA and the collective electromagnetic response

of the charged system becomes discernible. We remember that the electric field E in a

medium is related to the vacuum field D through the relation D(q, ω) = ε(q, ω)E(q, ω),

where the dielectric function ε(q, ω) = 1+4πχ(q, ω) is determined by the electromagnetic

susceptibility, i.e. a function that measures the tendency of the medium to “respond”

or adjust to an external electromagnetic perturbation. Identifying E(D) with the gradient

of the “dressed” potential Veff (the “bare” potential V ), we conclude that, on the level of

the microscopic theory, 4πχ(q, ω) = −V (q)Πq,ωn , i.e. the susceptibility is proportional to

the polarization operator Πq. These connections motivate the introduction of the dielectric

function as in Eq. (5.35) above.

The full complexity of the polarization of the dense homogeneous electron gas is encoded

by the Lindhard function (5.30). However, there are some interesting limiting cases, where

the situation simplifies. Inspection of Eq. (5.30) shows that the Lindhard function depends

on the dimensionless ratio between two characteristic length scales: the “wavelength” q−1,

and the distance vF/ω an excitation propagating with Fermi velocity travels during the time

ω−1. For small frequencies, vF/ω � q−1, the electron gas has enough time to optimally

adjust to the spatial variation ∼ q−1 of the potential, i.e. to screen out electro-neutrality

violating potential fluctuations. In this static limit, we may expand Πq,ωm

ω�qvF
= −ν0 +

O(ω/vFq). In this case, the electron gas interacts through the effective potential,

Veff(q)
ω�qvF
=

1

V (q)−1 + ν0
=

4πe2

q2 + 4πe2ν0
≡ 4πe2

q2 + λ−2
,

where the constant λ ≡
(
4πe2ν0

)−1/2
is known as the Thomas–Fermi screening length.

Indeed, it is straightforward to verify that the inverse Fourier transform leads to an effective

interaction potential

Veff(r) = e2 e−|r|/λ
|r| , (5.36)

i.e. the potential is exponentially supressed, or screened, on length scales |r| > λ.
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EXERCISE To verify Eq. (5.36), introduce polar coordinates q = (q, θ, φ) in q-space and per-

form first the elementary integrations over φ and θ. It is then straightforward to complete the

remaining q-integration over the radial coordinate by analogy to the contour integral (5.13).

INFO Let us briefly recapitulate the heuristic interpretation of Thomas–Fermi screening.

Imagine a test charge e has been immersed in an electron gas. The host system will respond to

this perturbation by a local distortion of its density. To compute the distortion, we note that

the effective potential Veff(r) created by the test charge changes the electronic energy levels

according to εp → εp − Veff . (Here, we assume that the external perturbation changes so slowly

that the simultaneous usage of momentum and coordinate quantum numbers is not in conflict

with the uncertainty relation.) The induced charge density thus reads as

ρind(r) = −e

∫
d3p

(2π)3
[nF(εp − Veff(r))− nF(εp)] ≈ eVeff(r)

∫
d3p

(2π)3
∂�nF(εp)

T→0� −eVeff(r)

∫
dε

∫
d3p

(2π)3
δ(ε− εp)︸ ︷︷ ︸

ν(�)

δ(ε− μ) = −eVeff(r)ν0,

where in the second equality we assumed weakness of the induced potential and in the third

equality used the low-temperature approximation ∂�nF(ε) � −δ(ε − μ). A substitution of this

result into the Fourier transform of the Poisson equation ∇2Veff(r) = −4πeρ(r) = −4πe(eδ(r) +

ρind(r)) gives

Veff(q) =
4πe2

q2 + 4πe2ν0
.

We also note that Thomas–Fermi screening repairs our problem with the density of states.

The pathology discussed on page 213 found its origin in the (1/q2)-singularity of the

unscreened potential. This IR singularity is now cut off at momenta q ∼ λ−1, implying

benign behavior of the density of states. Using the fact that the density parameter rs scales

with the Fermi energy as (exercise) rs ∼ μ−1/2, and differentiating ρ = ∂2
μF , it is indeed

straightforward to verify that the RPA expansion of F no longer leads to singular behavior

of ρ at the Fermi energy.

It is also interesting to consider the limit vF/ω � q−1 of essentially dynamic polariza-

tion. Expansion of Πq,ωm in Eq. (5.30) to first order in vFq/ω � 1 leads to the expression

Veff(q, ωm) =
4πe2

q2
1

1 +
4πν0e2v2

F

3ω2
m

=
4πe2

q2
1

1− ω2
p

ω2

,

where ωp ≡ (4πne2/m)1/2 denotes the plasma frequency and we have used the fact that

(exercise) the particle density n ≡ N/L3 = 2k3F /6π
2. In fact, the form of the denominator

hints at a collective instability of the electron gas at frequencies ∼ ωp. Referring for a more

rigorous discussion to the next chapter, one can understand the origin of the instability by

another heuristic argument. What we need to remember is that the current formalism is
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x

E

developed for imaginary times τ . Eventually we will be

interested in real-time dynamics, i.e. we need to analyt-

ically continue back to t ∼ −iτ . In the language of fre-

quencies, this amounts to an analytic continuation process

from Matsubara frequencies to real frequencies, iωm → ω.

Sloppily substituting a real frequency into the potential, we

obtain Veff(q, ωm → −iω) ∝
(
1− ω2

p/ω
2
)−2

, i.e. the system

seems to respond singularly to excitations with frequency

ω ∼ ωp. The cause of this instability is the well-known

plasmon mode of the electron gas.

INFO The physics of the plasmon mode can be understood as follows. Imagine the electron

gas uniformly displaced by a distance x against the positively charged background (see figure).

This will lead to the formation of oppositely charged surface layers at the two ends of the system.

The surface charge densities ρ± = ±exn lead to an electric field E = 4πenx directed opposite

to the displacement vector. Mobile charge carriers inside the system are thus subject to a force

−4πe2nx. The solution of the equation of motion mẍ = −4πe2nx oscillates at a frequency

ωp = (4πe2n/m)1/2, the plasma frequency. Since the motion of the charge carriers is in turn

responsible for the accumulation of the charged surface layers, we conclude that the system

performs a collective oscillatory motion, known as the plasmon excitation.

At this point we conclude our preliminary discussion of the electron gas. We have seen that

large-order perturbation theory can be applied to successfully explain various features of

the interacting system: energetic lowering due to quantum correlation, screening, and even

collective instabilities.

The interacting electron gas is but one example of the many applications of the diagram-

matic perturbation theory. After the full potential of the approach had become evident – in

the late 1950s and early 1960s – diagrammatic techniques of great sophistication were devel-

oped, and applied to a plethora of many-body problems. Indeed, more than two decades

passed before large-order perturbation theory eventually ceased to be the most important

tool of theoretical condensed matter physics. Reflecting the great practical relevance of the

approach, there is a huge body of textbook literature concentrating on perturbative meth-

ods.30 Although it would make little sense to develop the field in its full depth once again,

a few generally important concepts of diagrammatic perturbation theory are summarized

in the next section.

30 See, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinkii, Methods of Quantum Field Theory in
Statistical Physics (Dover Publications, Inc., 1975), A. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, 1971), D. Pines and P. Nozières, The Theory of Quantum Liquids – Normal
Fermi Liquids (Addison-Wesley, 1989), and S. Doniach and E. H. Sondheimer, Green Functions for Solid State
Physicists (Benjamin/Cummings, 1974).
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5.3 Infinite-order expansions

Turning back to the prototypical φ4-model, it is the purpose of the present section to

introduce a number of general concepts of infinite-order perturbative summations. As should

be clear from the discussion above, a meaningful summation over an infinite set of diagrams

necessitates the existence of a class of perturbative corrections that is “more important”

than others. In practice, what we need is a small parameter that discriminates between

diagrams of different structure. In our example above, this parameter was the effective

density rs of the electron gas. However, in other settings, the control parameter N may

be defined quite differently: large values of a spin, S, the number of colors, Nc, in QCD,

the number of spatial dimensions, d, the number of modes of an optical wave guide, etc.

Unfortunately, in most physical contexts, these parameters are typically far from large,

S = 1/2, d = Nc = 3, etc. So we have to resort to a “poor man’s” strategy where we

develop a controlled and self-consistent theory in the limit of asymptotically large control

parameters and hope that some fragments of truth survive the limit down to more mundane

values of N . Perhaps unexpectedly, this strategy often works astonishingly well down to

values N = O(1).

So let us, then, begin by introducing a large control parameter into a φ4-

type theory. This can be achieved by promoting φ from a scalar to an N -

component vector field φ = {φa}, a = 1, . . . , N . The self-interaction of the

field is modeled as g
∫
ddxφaφaφbφb, i.e. an expression that is “rotationally” invariant in

φ-space. The action of our modified theory is thus given by

S[φ] ≡
∫

ddx

(
1

2
∂φ · ∂φ+

r

2
φ · φ+

g

4N
(φ · φ)2

)
, (5.37)

where the factor 1/N in front of the interaction constant has been introduced for later

convenience.

As before, we shall concentrate on the Green function Gab(x − y) = 〈φa(x)φb(y)〉 as

a “test observable.” Denoting the Green function by a bold line, the free Green function

G0 ≡ 〈φa(x)φb(y)〉0 ∝ δab by a thin line, and the interaction operator by a wavy line,31

the structure of the first- and second-order expansion of the Green function is shown in

the upper portion of Fig. 5.8. For simplicity, the combinatorial factors weighting individual

diagrams have been omitted.

Self-energy operator

Even without resorting to the large-N structure of the theory, it is possible to bring some

order in the spaghetti of diagrams contributing to the expansion. Indeed, there are two

distinct subclasses of diagrams: diagrams that are one-particle reducible (i.e. can be cut

into two halves by cutting a single internal line, see the classification on page 204) and

those that are not. This observation motivates the collection of all one-particle irreducible

31 Since the four field vertices entering the interaction are no longer indiscriminate, the interaction “point” rep-
resentation of Section 5.1 is no longer suitable.
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Figure 5.8 Expansion of the Green function of φ4-theory. Bottom: expansion of the self-energy
operator.

subportions of the diagrammatic expansion into a structural unit. In Fig. 5.8 this entity,

which is commonly called the self-energy operator, and sometimes also the effective

mass operator, is denoted by a hatched circle. The first- and second-order expansion of

the self-energy is shown in the bottom part of the figure.

Freeman Dyson, 1923–
Trained as a mathematician,
Dyson turned to physics in
the 1940s. His work in con-
densed matter physics, statisti-
cal mechanics, and several other
areas has had lasting influence on
the development of modern the-
oretical physics. Beyond his professional work in
physics, Dyson has written several books on the
social implications of modern science. (Photo by
Randall Hagadorn. Courtesy of the Institute of
Advanced Study.)

With that definition, the Green

function becomes a “chain” of self-

energy operators, separated by free

Green function lines, as shown in

the second equality of the figure.

A convenient representation of the

expansion is shown in the third

equality. An insertion of the full

Green function after the first self-

energy correction recursively gener-

ates the full series. Let us translate

these statements into the language
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of formulae. Denoting the set of all self-energy diagrams by Σ̂ = {Σab(x − y)},32 the

expansion of the Green function assumes the form

Ĝ = Ĝ0 + Ĝ0Σ̂Ĝ0 + Ĝ0Σ̂Ĝ0Σ̂Ĝ0 + · · · = Ĝ0 + Ĝ0Σ̂Ĝ. (5.38)

Here, the operator products involve summation over coordinates and internal indices, i.e

(ÂB̂)ab(x−y) =
∫
ddz Aac(x−z)Bcb(z−y). Recursion relations of this type are commonly

referred to asDyson equations. The Dyson equation states that the problem of calculating

Ĝ is essentially tantamount to that of analyzing the self-energy. To make this point more

explicit, let us reformulate the Dyson equation in momentum space:

Ĝp = Ĝ0,p + Ĝ0,pΣ̂pĜp ⇔ [1− Ĝ0,pΣ̂p]Ĝp = Ĝ0,p.

Here we have used the convolution theorem or, more physically, the fact that all scattering

processes lumped into the self-energy conserve momentum separately. Matrix multiplication

of this identity from the right by [1− Ĝ0,pΣ̂p]
−1 leads to the expression

Ĝp = [1− Ĝ0,pΣ̂p]
−1Ĝ0,p =

[
Ĝ−1

0,p − Σ̂p

]−1

.

Finally, using the fact that
[
Ĝ−1

0,p

]ab
= (p2 + r)δab, we arrive at the formal solution

Gab
p =

[
(p2 + r − Σ̂p)

−1
]ab

. (5.39)

This equation provides two lessons: firstly, the full information about the Green function is

indeed stored in the self-energy; secondly, the self-energy somehow “adds” to the arguments

p2 and r entering the quadratic action, a point to be discussed in more detail below.

But how then do we compute the self-energy operator? In fact, the construction recipe

follows from what has been said above. By definition, the nth-order contributions to the self-

energy are generated by a connected and one-particle irreducible contraction of n interaction

operators (weighted with the appropriate combinatorial factor 1/n!). Two field vertices stay

uncontracted as connectors to the free Green function lines contacting the self-energy. For

example, the first-order contribution is given by (exercise)

[
Σ(1)

p

]ab
= −δab

g

Ld

⎛⎝ 1

N

∑
p′

G0,p′ +
∑
p′

G0,p−p′

⎞⎠ ,

where the first (second) contribution corresponds to the first (second) diagram in the self-

energy expansion of Fig. 5.8.

EXERCISE Represent the second-order contribution Σ(2) in terms of Green functions.

Once the self-energy has been computed to any desired order, the result is substituted into

Eq. (5.39) and one obtains the Green function.

32 The conservation of global momentum of the theory implies (exercise: think about it!) that, like the Green
function, the self-energy depends only on the difference of its coordinate arguments.
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INFO The critical reader will note that there are some problems with the line of argument above.

Firstly, we have tacitly ignored the issue of combinatorics. (How do we know that once we have

plugged the expansion of the self-energy into the Dyson equation we get the same result as a

brute-force direct expansion of the Green function would have obtained?) To understand that the

two-step program – “first compute the self-energy, and then substitute into the Dyson series” –

indeed produces correct results, let us consider the nth-order contribution to the expansion of

the Green function with its overall combinatorial factor 1/n!. Now imagine that we want to

distribute those diagrams that contain, say, one free internal Green function over two self-energy

operators according to the expression G0ΣG0ΣG0. Assuming that the first self-energy operator

is of order m < n and the second one of order n−m, we notice that there are
 
n
m

!
possibilities

to distribute the interaction vertices over the two self-energies. That means that we obtain an

overall combinatorial factor of 1
n!

 
n
m

!
= 1

m! (n−m)!
. But 1/m! and 1/(n − m)! are precisely the

combinatorial factors that appear in the definition of an mth- and an (n − m)th-order self-

energy operator, respectively. Arguing in reverse, we conclude that the prescription above indeed

produces the correct combinatorics.

A second objection concerns the consistency of the expansion, i.e. the nth-order expansion

of the self-energy is, of course, by no means equivalent to nth-order expansion of the Green

function, nor to any specific order of the expansion. Indeed, when working with the concept of a

self-energy, structuring the expansion according to its order in the interaction operator does not

make much sense. We should rather focus on the summation of specific infinite-order diagram

classes as exemplified in the previous section and discussed in more general terms below.

Large-N expansion

So far we have not made reference to the N -component structure of the theory. However,

let us now assume that N is very large, i.e. that we may be content with an expansion of

the Green function to leading order in 1/N . This condition can be made explicit by sending

N → ∞ and declaring limN→∞ Gaa
p to be our observable of interest.

Max Born, 1882–1970
Worked on the mathematical
basis of quantum mechanics.
Amongst his major contributions
was the interpretation of the abso-
lute square of the wave function
as a measure of the probability
of finding the particle at a given location. Born
shared the 1954 Nobel Prize in Physics with Walter
Bothe for “for his fundamental research in quantum
mechanics, especially for his statistical interpretation
of the wavefunction.” (Image c© The Nobel Foun-
dation.)

The limit of large N entails a

drastic simplification of the diagram-

matic expansion. Each interaction

vertex comes with an overall factor

of 1/N which must be compensated

by a summation over field com-

ponents to produce a contribution

that survives the limit N → ∞.

This condition removes numerous

diagrams contributing to the series.

For example, in the Green function

expansion of Fig. 5.8 only the first,

third, eighth and ninth diagrams survive the limit. In all other contributions, interaction

and Green function lines are interwoven in a way that does not leave room for one field-index

summation per interaction vertex.
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. . .= + +

=

Inspection of the series shows that only dia-

grams void of crossing interaction lines (cf. the

figure on the right) survive the limit of large N .

The approximation – indeed in the limit of infi-

nite N it becomes exact – that retains only these

contributions is commonly called the non-crossing approximation (NCA). More poet-

ically, the diagrams contributing to the reduced expansion are sometimes called “rainbow

diagrams.”

Importantly, the NCA self-energy can be computed in closed form. All one has to realize

is that the summation over all rainbow diagrams amounts to substitution of the full NCA

Green function under a single interaction line (exercise). Using the fact that in the NCA

the self-energy is proportional to unity in the field-index space, we can express this fact

through the formula

Σ̂p
NCA
= −gL−d

∑
p′

Gp′ = −gL−d
∑
p′

(
p′2 + r − Σp′

)−1
. (5.40)

In the literature, this equation goes under the name self-consistent Born approxima-

tion. It is a “Born approximation” because, formally, it resembles a first-order perturbative

correction (the overall factor of g). The approximation is “self-consistent” because the self-

energy recursively appears on the right-hand side of the equation again, i.e. the equation is

in fact not of first but of infinite order.

INFO Although the objective of the present section is to expose general structures, let us

briefly review the solution of a Born equation. To keep things simple, let us assume that

we are dealing with the low-energy approximation to some microscopic model, i.e. that the

momentum summations must be cut off at some upper limit Λ. We further make the assumption

(to be checked self-consistently) that the solution for the self-energy operator will turn out to be

momentum-independent: Σp = Σ. This leads to the expression

Σ ≈ −g

∫ Λ ddp

(2π)d
1

p2 + r − Σ
.

The evaluation of the integral depends on dimensionality and on the analytical structure of

the energy denominator. For example, taking d = 2 and assuming that the parameter r is

much smaller than the self-energy induced by scattering – an assumption also to be checked

self-consistently later on – we obtain

Σ ≈ − g

4π

∫ Λ2

0

d(p2)
1

p2 − Σ
� − g

4π
ln

(
−Λ2

Σ

)
.

A solution Σ(g,Λ) can now be sought by approximate analytical methods, or graphically. (One

plots both sides of the equation as functions of Σ and seeks a crossing point.)

However, for our present discussion, more important than the detailed dependence of Σ on the

input parameters g and Λ is the principal meaning of the self-energy: apparently, Σ adds to the

parameter r of the naked Green function. (Notice that the solution of the equation determining

Σ will be negative.) Remembering that r ∼ ξ−1/2, one concludes that the interaction operator

lowers the spatial correlation of the system. This is indeed what one should expect intuitively:

scattering due to interactions acts as a source of “disorder” inside the system.
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Figure 5.9 Expansion of the four-point function. Notice that the arrows represent the full Green
function, i.e. all diagrams “renormalizing” the two-particle subunits of the diagram are automati-
cally included.

At this stage, it is worthwhile to take a step back and see what we have achieved. We

have managed to compute the Green function to infinite order in an expansion in the set

of “relevant” diagrams. How does that fit together with what has been said in Section 5.1

about the “asymptotic” nature of perturbative series? In fact, the exponential proliferation

of the number of diagrams, i.e. the mechanism that led to the eventual breakdown of the

perturbative expansion, is blocked by the limit N → ∞. Only subclasses of diagrams, with

far fewer members, contribute and the series remains summable.

The large-N principle is actually not limited to the expansion of the Green function. To

illustrate the point, let us briefly consider the expansion of the four-point correlation

function

C(4)
q =

1

N

∑
ab

1

L2d

∑
p,p′

〈φa
pφ

a
−p−qφ

b
−p′φb

p′+q〉. (5.41)

In the next chapter we will see that objects of this architecture represent the most impor-

tant information carriers of the theory. Unlike the Green function discussed previously, they

relate directly to observable quantities. In the many-body literature, the four-point function

is described as a two-particle propagator, indicating that it describes the joint propaga-

tion of two particles. Leaving a more substantial discussion of the meaning of this object to

the next chapter, we concentrate here on the formal aspects of its perturbative expansion.

The structure of the expansion of the four-point function is shown in Fig. 5.9 where, for

simplicity, momentum/component-indices are indicated only once. The simplest diagram

contributing to the expansion consists of just two Green functions. It encapsulates all dis-

connected contractions, i.e.
〈
φa
pφ

b
−p′

〉 〈
φa
−p−qφ

b
p′+q

〉
∼ δabδpp′ contributing to C(4). All
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other contractions simultaneously involve all four field operators, i.e. they contain interac-

tion lines between the Green functions. The sum of all these contributions is represented by

the diagram containing the hatched surface. A few low-order contributions to the expansion

are explicitly shown in the second line. Notice that all arrows appearing in these diagrams

are fat. This means that diagrams “dressing” the two-particle sub-units of the expansion

are automatically included. For example, the second contribution, containing just a single

interaction line between the two-particle propagators, in fact represents an entire series of

diagrams obtained by substituting the expansion of Fig. 5.8 for the full Green function. (In

an analytical calculation, one will take account of these contributions simply by substitution

of the self-energy renormalized Green function for each arrow.)

EXERCISE Write down the analytical expressions contributing to the low-order diagrams shown

in the first and second lines of the figure.

All diagrams involving interactions between the two Green functions have the common factor

that they contain four external “legs,” i.e. the Green function connectors to the external

field operators. If you imagine these legs removed, you end up with a “core contribution”

often called the vertex. (The designation is motivated by the fact that the first contribution

to the vertex is, indeed, the contracted interaction vertex of the action; see diagram no. 2.)

In Fig. 5.9, the vertex is denoted by a tightly hatched area.

As with the Green function, the expansion of the vertex can be given some structure.

To this end, notice that some of the diagrams contributing to the vertex (e.g. the second

diagram in the second line with external legs removed) can be cut into two just by cutting

two internal Green function lines. Vertex diagrams of this type are called two-particle

reducible, by analogy with the “one-particle reducible” contributions to the expansion

of the Green function. As with the expansion of the latter, one can lump all irreducible

contributions to the vertex (e.g. the last diagram in the first line, or the first diagram in

the second line, external legs removed) into a structural subunit called the irreducible

vertex. In Fig. 5.9, that unit is denoted by a lightly hatched area. The first two diagrams

contributing to the irreducible vertex are shown in the fourth line of the figure. Here, one can

see that the irreducible vertex plays a role similar to the self-energy of the Green function.

Expressed in terms of the irreducible vertex, the expansion assumes the regular form shown

in the third line.

Hans Albrecht Bethe, 1906–
2005
Nobel Laureate in physics in 1967
for his “contributions to the the-
ory of nuclear reactions, espe-
cially his discoveries concerning
the energy production in stars.”
As well as nuclear matter, he has
also contributed substantially to atomic and con-
densed matter physics.” (Image c© The Nobel Foun-
dation.)

To represent these graphical rela-

tions in analytical form, we denote

the full vertex by the symbol Γ̂ =

{Γaa′,bb′
p,p′,q } and the irreducible ver-

tex by Γ̂0 = {Γaa′,bb′
0,p,p′,q} where the

indices a, a′, b, b′ keep track of the

index labels carried by the four

Green functions entering the ver-

tex. (Although we have defined our

correlation function in such a way

that a = a′, b = b′, a generalization
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to a four-fold index label is necessary to formulate the recursion Eq. (5.42).) The three

momentum arguments represent the momenta of the Green functions connecting to the

vertex operators, as indicated explicitly in the first line of the figure. (Remember that

the theory has overall momentum conservation, i.e. three momentum arguments suffice to

unambiguously fix the momentum dependence of Γ and C(4).) The content of the third line

of the figure can then be expressed in terms of a closed recursion relation:

Γaa′,bb′
p,p′,q = Γaa′,bb′

0,q,p′,p +
1

Ld

∑
c,c′,p′′

Γaa′,cc′
0,p,p′′,q G

c
p′′Gc′

p′′+q Γ
cc′,bb′
p′′,p′,q. (5.42)

Equations of this type are (often) called Bethe–Salpeter equations. Comparison with

Eq. (5.38) shows that this equation appears to be conceptually similar to the Dyson equation

for the one-particle Green function.33 Indeed, the principle behind most recursion relations

of perturbation theory is a structure like

X̂ = X̂0 + X̂0 ∗ Ẑ ∗ X̂, (5.43)

where X̂ is our object of interest (e.g. Γ̂), X̂0 its “free” version, Ẑ a subunit that is, in

some sense, “irreducible” (Σ̂ or Γ̂0GG), and ∗ some generalized matrix convolution.

+ + + . . .C(4) =

Figure 5.10 Large-N expansion of the two-particle correlation function into a “ladder structure”.

Owing to the importance of the two-particle propagator, the solution of Bethe–Salpeter

type equations is a central issue of many areas of many-body physics. In most cases only

approximate solutions can be obtained. With our present example, “approximate” means

that one sends N to large values and seeks a solution to leading order in N−1. In that limit,

the only surviving contribution to the irreducible vertex is the first, i.e. a plain interaction

line (see Fig. 5.10). As with the self-energy operator discussed in the previous section, all

diagrams with “entangled” interaction lines are frustrated in the sense that we do not have

as many index summations as interaction constants ∼ g/N . Such contributions vanish in

the limit of large N . We thus conclude that the Bethe–Salpeter equation assumes the simple

form

Γab
p,p′,q = − g

NLd
− g

N

1

Ld

∑
c,p′′

Ga
p′′Gc

p′′+q Γ
cb
p′′,p′,q,

33 We can make the analogy perfect by defining a “one-particle vertex” Γ̂(1) = Ĝ(0)−1[Ĝ−Ĝ(0)]Ĝ(0)−1. Inspection

of the second equality of Fig. 5.8 shows that the expansion of Γ(1) starts and ends with a self-energy operator,
i.e. the first free Green function line G0 is removed, and so are the two external G0s connecting to the self-energy

operator. In direct analogy to Eq. (5.42), the analytical formula for Γ(1) then reads Γ̂(1) = Σ + ΣG0Γ̂
(1).
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where Γab ≡ Γaa′,bb′δaa
′
δbb

′
.34 This equation can be simplified even further by making the

ansatz Γab
p,p′,q = Γq, where Γ is independent of discrete indices and input momenta p and

p′. (When solving a perturbative recursion relation, it is always a good idea to try an ansatz

of maximal simplicity, i.e. one that is no more complex than the constituting elements of

the equation.) Then,

Γq = − g

NLd
− gPqΓq ⇒ Γq = − g

NLd

1

1 + gPq
, (5.44)

where we have introduced the abbreviation Pq = 1
Ld

∑
p GpGp+q. In principle, one may now

proceed by substituting the large-N expansion of the Green function (5.39) and computing

the function Pq by integration over p. This would produce a closed expression for Γ and,

by virtue of the relation

C(4)
q = Pq

[
1

Ld
+NΓqPq

]
,

our correlation function. Since the emphasis in this section is on conceptual aspects of

perturbation theory, we will not pursue the analysis to its very end. (For an analysis of the

Bethe–Salpeter equation in a context more interesting than φ4-theory, see the discussion of

the quantum disorder problem in the next chapter.) Yet there is one aspect of the expression

for Γq worth noticing. Consider Pq expanded as a Taylor series in q and focus on the

zeroth-order contribution, P0. From the definition of the Green function (5.39) we have

P0 =
1

Ld

∑
p

G2
p = ∂Σ

1

Ld

∑
p

Gp
(5.40)
= −g−1∂ΣΣ = −g−1. (5.45)

When substituted into the formula for Γ, this shows that for small momenta the expansion

of the numerator of the vertex starts with a power of q. (By symmetry, the first non-

vanishing contribution will be of O(q2).) This means that both the vertex and the four-point

correlation function are long-ranged objects, i.e. unlike the Green function, they decay not

exponentially, but as a power law. The long-range character of the four-point function has

observable consequences, as discussed in the next chapter.

Summarizing, our discussion of the two- and four-point functions, and of the RPA theory

of the interacting electron gas has shown that, if a large parameter is present, (a) relevant

subclasses of perturbative contributions can be identified and (b) they can be summed to

infinite order. As a matter of fact, there are not too many of these summable diagram classes:

ring-diagrams, rainbow-diagrams and ladder-diagrams nearly exhaust the set of “friendly”

corrections, amenable to analytical summation. Notice that, so far, we have largely restricted

ourselves to the discussion of abstract summation schemes; i.e. we still need to learn more

about the way intermediate results like Eq. (5.39) or (5.44) can be translated into concrete

physical information. These aspects are discussed – on applications more rewarding than

34 Here we have used the fact that the large-N approximation of the irreducible vertex forces the two input indices
a, a′ to be equal (and the same for the output indices). As a word of caution, strictly speaking, our large-
N approximation of the irreducible vertex explicitly uses the fact that the input/output indices entering our
definition of the vertex are equal, i.e. should we compute a correlation function where the two input/output
indices are different (a rare occurrence in realistic applications), the large-N approximation of the four-point
functions would no longer assume the simple form of a regular ladder.
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plain φ4-theory – a little later. However, at this point we leave the discussion of formal

perturbation theory. While a state-of-the-art exposition of the subject would require much

more space – for pedagogical and condensed-matter-oriented texts on perturbative methods,

see Pines and Nozières, and Schulman35 – the material introduced in this section suffices

for nearly all purposes of the present text.

Turning back to our prototypical problem of the interacting electron gas, in the next

chapter we extend the purely diagrammatic methods discussed above to a more powerful

hybrid approach comprising perturbative concepts in combination with functional methods.

5.4 Summary and outlook

This concludes our preliminary introduction to the concepts of perturbation theory. We have

seen that general perturbative expansions mostly have the status of “asymptotic” rather

than convergent series. We have learned how to efficiently encode perturbative series by

graphical methods and how to assess the “importance” of individual contributions. Further,

we have seen how the presence of a large parameter can be utilized to firmly establish

infinite-order expansions. A number of recursive techniques have been introduced to sum

up diagram sequences of infinite order.

However, a second look at the discussion of the previous sections shows that the central

tool, the functional integral, did not play much of a role. All it did was to provide the

combinatorial framework of the perturbative expansion of correlation functions. However,

for that we hardly need the full machinery of functional integration. Indeed, the foundations

of the perturbative approach were laid down in the 1950s, long before people even began

to think about the conventional path integral. (For a pure operator construction of the

perturbative expansion, see the problem set.)

More importantly, the analysis so far has a serious methodological weakness: all subclasses

of relevant diagrams had the common feature that they contained certain “sub-units,” more

structured than the elementary propagator or the interaction line. For example, the RPA

diagrams were organized in terms of polarization bubbles, the NCA diagrams had their

rainbows, and the ladder diagrams their rungs. Within the diagrammatic approach, in each

diagram these units are reconstructed “from scratch,” i.e. in terms of elementary propaga-

tors and interaction lines. However, taking seriously the general philosophy on information

reduction declared at the beginning of the text, we should strive to make the “important”

structural elements of an expansion our elementary degrees of freedom. This program is

hardly feasible within purely diagrammatic theory. However, the functional integral is ide-

ally suited to introducing degrees of freedom hierarchically, i.e. trading microscopic objects

for entities of higher complexity. The combination of functional integral techniques with

perturbation theory presents a powerful theoretical machinery which is the subject of the

next chapter.

35 See D. Pines and P. Nozières, The Theory of Quantum Liquids — Normal Fermi Liquids (Addison-Wesley,
1989), and L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 1981).
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5.5 Problems

Technical aspects of diagrammatic perturbation theory

Taking the second-order expansion of the φ4 Green function as an example, it is the purpose of this

problem to discuss a number of technical aspects relating to the classification and the combinatorics of

diagrams.

(a) Show that the full contraction of
〈
φ(x)φ4(y)φ4(y′)φ(x′)

〉
generates the 945 terms

9G0(x− x′)G4
0(0)︸ ︷︷ ︸

1

+ 72G0(x− x′)G2
0(y − y′)G2

0(0)︸ ︷︷ ︸
2

+ 24G0(x− x′)G4
0(y − y′)︸ ︷︷ ︸

3

+

[
36G0(x− y)G0(x

′ − y)G3
0(0)︸ ︷︷ ︸

4

+144G0(x− y)G0(x
′ − y)G2

0(y − y′)G0(0)︸ ︷︷ ︸
5

+96G0(x− y)G0(x
′ − y′)G3

0(y − y′)︸ ︷︷ ︸
6

+144G0(x− y)G0(x
′ − y′)G0(y − y′)G2

0(0)︸ ︷︷ ︸
7

+(y ←→ y′).

]
(5.46)

Try to reproduce the combinatorial prefactors.

(b) Check explicitly that the disconnected terms cancel against the “vacuum loops” from

the expansion of the denominator.

(c) Represent the corresponding diagrams in momentum space. Convince yourself that the

“Kirchhoff law” discussed in the main text suffices to unambiguously fix the result.

Answer:

(a) The seven distinct pairings of the ten φ-fields are shown in Fig. 5.2 (and referred to here

as diagrams 1–7 in the order in which they appear in the figure). By way of example,

let us consider the combinatorial factor of diagram 2. There are 3 · 2 = 6 ways to pair

two fields φ(y) and the same for φ(y′). From these two contractions, we obtain a factor

(6G(0))2. Then, there are two possible ways of pairing the two remaining φ(y) with the

two remaining φ(y′) leading to a factor 2G2
0(y − y′). Finally, the pairing of φ(x) with

φ(x′) obtains a single factor G0(x − x′). Multiplying all contributions, we obtain term

2.

(b) To obtain all terms contributing to G(2), both numerator and denominator of Eq. (5.14)

have to be expanded to second order (where the identification X[φ] = φ(x)φ(x′) is

understood). In symbolic notation,

N0 +N1 +
1
2N2 + · · ·

1 +D1 +
1
2D2 + · · ·

� N0 +N1 −N0D1︸ ︷︷ ︸
G(1)

+
1

2
N2 −N1D1 +N0D

2
1 −

1

2
N0D2︸ ︷︷ ︸

G(2)

.
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The expression for N2 is given by formula (5.46). From the main text, we know that

N1 = 3G0(x − x′)G2
0(0) + 12G0(x − y)G0(0)G0(y − x′) and D1 = 3G2

0(0). Further,

N0 = G0(x− x′). Finally, D2 reads〈
φ4(y)φ4(y′)

〉
= 9G4

0(0) + 72G2
0(0)G

2
0(y − y′) + 24G4

0(y − y′).

Collecting all the terms, we obtain

N2 − 18G0(x− x′)G4
0(0)−72G0(x− y)G3

0(0)G0(y − x′)︸ ︷︷ ︸
−(4+y↔y′)

+18G0(x− x′)G4
0(0)

−9G0(x− x′)G4
0(0)︸ ︷︷ ︸

−1

−72G0(x− x′)G2
0(0)G

2
0(y − y′)︸ ︷︷ ︸

−2

−24G0(x− x′)G4
0(y − y′)︸ ︷︷ ︸

−3

= 144G0(x− y)G0(x
′ − y)G2

0(y − y′)G0(0)︸ ︷︷ ︸
5

+144G0(x− y)G0(x
′− y′)G0(y− y′)G2

0(0)︸ ︷︷ ︸
6

+96G0(x− y)G0(x
′− y′)G3

0(y− y′)︸ ︷︷ ︸
7

+(y ←→ y′),

i.e. the set of connected diagrams shown in Fig. 5.4.

(c) This translates to a straightforward exercise in Fourier transformation.

Self-consistent T-matrix approximation

As well as scattering from lattice vibrations and other electrons, the low-temperature conductivity of

a metal is heavily influenced by defects or impurities. The general role of weak impurity scattering is

discussed in some detail in Section 6.5. As a warm-up to our more comprehensive discussion below,

the aim of the present problem is to determine the scattering rate imposed by a collection of isolated

impurities using diagrammatic perturbation theory.

Consider a system of spinless electrons subject to a random pattern of Nimp non-magnetic

scattering impurities and described by the Hamiltonian Ĥ = Ĥ0 + Ĥimp, where Ĥ0 =∑
k εkc

†
kck,

Ĥimp = v0a
d

∫
ddr

Nimp∑
i=1

δ(r−Ri)c
†(r)c(r) = v0a

d

Nimp∑
i=1

c†(Ri)c(Ri),

and we have assumed that an impurity at position Ri creates a local potential v0a
dδ(r−Ri).

(Here a is a constant, of dimensionality [length], identified roughly with the extension of

the impurity.)
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Our aim is to compute the single-particle Green function Gn(r− r′) ≡ 〈〈c†n(r)cn(r′)〉〉imp

where n is a Matsubara frequency index and the configurational average 〈. . .〉imp ≡
L−dNimp

∏
i

∫
ddRi is defined by integration over all impurity coordinates.

(a) To begin, let us consider scattering from a single impurity (i.e. Nimp = 1). By developing

a perturbative expansion in the impurity potential, show that the Green function can

be written as Ĝn = Ĝ0,n + Ĝ0,nT̂nĜ0,n, where

T̂n = 〈Ĥimp + ĤimpĜ0,nĤimp + ĤimpĜ0,nĤimpĜ0,nĤimp + · · · 〉imp, (5.47)

denotes the T-matrix,36 and Ĝn = {Gn(r − r′)}. Show that the T-matrix equation is

solved by Tn(r, r
′) = δ(r− r′)L−d

(
(v0a

d)−1 −G0,n(0)
)−1

.

(b) For a collection of random impurities, the capacity for multiple scattering makes the

concept of the T-matrix defined for the full operator Ĥimp unilluminating. Instead, one

would like to find an expression for the configurational average of the Green function

involving the T-matrix of a single isolated impurity. Presenting the Green function as

a series expansion in the impurity potential v, enumerate and classify the contributions

entering the configurational average up to third order in v. Organising the series at this

order in a diagrammatic expansion, show that a subset (all but one) of the diagrams can

be incorporated into a Dyson series expansion, Gk = G0,k+G0,kΣkGk, where Gk ≡ Gn,k

denotes the Green function in a four-momentum representation, Σk = Nimp〈k|T̂n|k〉 is
the self-energy and T̂n represents the T-matrix for a single isolated impurity.

The Dyson series expansion can be inverted to give Gk = (iωn − ξk − Σk)
−1. When

Fourier transformed back to time/space, one may note that the imaginary part of the

self-energy can be associated with (one half of) the scattering rate, ImΣk = − 1
2τ sgn(n)

(cf. the Info block on page 379 for further discussion of this point). To understand the

sign factor sgn(n), notice that the imaginary part of Tn is determined by the imaginary

part of G0,n. However, it is straightforward to verify that sgn(ImG0,n) ∝ sgnn. (For

a comprehensive discussion of the analyticity properties of the self-energy, we refer to

Chapter 7.)

(c) Sometimes, one is interested in the T-matrix for a fixed (unaveraged) pattern of dilute

impurities. In this case, the single-impurity T-matrix is given by the right hand side of

Eq. (5.47), without the averaging brackets; it is no longer diagonal in momentum space,

i.e. T̂n = {〈k|T̂n|k′〉} = {Tn,kk′}.
Making use of the operator identity (1−Ô2)

−1−(1−Ô1)
−1 = (1−Ô2)

−1(Ô2−Ô1)(1−
Ô1)

−1, and defining the real-frequency analytical continuation T̂±(ε) ≡ T̂ (iωn → ε± iδ)

(the same for Ĝ) show that

T̂+(ε)− T̂−(ε) = T̂−(ε)(Ĝ+
0 (ε)− Ĝ−

0 (ε))T̂
+(ε). (5.48)

Using this result, show that the scattering rate is given by

1

2τ
≡ Im Σ(ε = εk + i0) = π

∑
k′

|〈k′|T̂+(εk)|k〉|2 δ(εk − εk′). (5.49)

36 For a discussion of the physical content of the T-matrix and its connection to the scattering matrix, we refer
to any elementary text on scattering theory.
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Answer:

(a) Representing the Green function as a coherent state path integral and performing the

Gaussian integral over the Grassmann field, we obtain the formal result Ĝn = (iωn −
Ĥ0 − Ĥimp)

−1. We next expand Ĝn in Ĥimp and compare with the definition of the T-

matrix to identify the series in Eq. (5.47). Substitution of Ĥimp = v0a
dδ(r−R), where R

is the impurity position, we obtain T̂ = 〈δ(r−R)δ(r′−R)〉impv0a
d(1−v0a

dG0,n(0, 0))
−1.

Performing the average and rearranging terms we arrive at the result (see Fig. 5.11).

+ + +

+ ++ ++ +

=

. . .

Figure 5.11 Diagrammatic series expansion of the impurity averaged Green function (for a discus-
sion, see the main text).

(b) Presented as a series expansion in the random potential,

Ĝn = 〈Ĝ0,n + Ĝ0,nĤimpĜ0,n + Ĝ0,nĤimpĜ0,nĤimpĜ0,n + · · · 〉imp.

Turning to a momentum space representation and using the fact that 〈k|Ĥimp|k′〉 =

v0 (a/L)
d
∑

i e
iRi(k−k′), the first term in the series assumes the form

G
(1)
k,k′ = G0,kv0

( a

L

)d ∑
i

〈eiRi(k−k′)〉impG0,k′ = G0,kv0Nimp

( a

L

)d

G0,kδkk′ .

At second order, we obtain

G
(2)
k,k′ = G0,kv

2
0

( a

L

)2d ∑
k′′

∑
i,i′

〈eiRi(k−k′′)G0,k′′eiRi′ (k
′′−k′)〉impG0,k′

= G0,kv
2
0

( a

L

)2d
(
Nimp

∑
k′′

G0,k′′ +N2
impG0,k

)
G0,kδkk′ ,

where the first (second) contribution describes the two-fold scattering off a single (one-

fold scattering off two different) impurities. Notice that, upon averaging, both types

of scattering conserve momentum, i.e. Gkk′ ∝ δkk′ . A graphical representation of the

two processes is shown in the first line of Fig. 5.11 where crosses represent individual

impurities (averaging over position understood) while the dashed lines denote scattering

events. At third order in v, one may identify contributions from where all three impu-

rities are distinct, where only two are distinct, and where the scattering occurs at the

same impurity (see the bottom line of the figure). Of these terms, one may note that

the penultimate diagram is special as it involves a “crossing” of the impurity (i.e. the

dotted) lines. Later, in the discussion of the weakly disordered system, we show that

such contributions enter with a suppression factor of 1/kF� � 1, where � = vFτ is the

elastic mean free path, kF the Fermi wavevector, and the inequality holds in all but the

dirtiest metals. Physically, diagrams with crossed lines represent processes wherein an
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electron alternately scatters off different impurities. Clearly, such events become highly

improbable in the limit of a low impurity concentration.
Since impurity averages engaging a single impurity involve zero

momentum transfer, one may note that the remaining series can be

organised into the form of the required Dyson series expansion. Here,

since the blocks entering the series do not correlate different impurities, the self-energy

may be identified as Nimp times the single-impurity T-matrix; the approximation

neglecting crossed lines is called the T-matrix approximation.

Now, when pursuing to fourth order and higher, one may note the existence of a second

class of “rainbow” diagrams which (a) do not involve crossed impurity lines and (b)

are not included in the Dyson series (see the figure above.) These contributions can be

incorporated by replacing the bare Green function Ĝ0,k by the impurity averaged Green

Ĝk in the T-matrix expansion Eq. (5.47), an exercise that can be performed only self-

consistently. Such a scheme is known as the self-consistent T-matrix approximation

(SCTA).

(c) Noting that T̂±(ε) = Ĥimp(1 − Ĝ±
0 (ε)Ĥimp)

−1, a straightforward application of the

given identity gives the required expression. Now, applying this result to the self-energy,

substituting ε = εk for the energy arguments of the Green functions, and noting that

Im 〈k′|Ĝ+
0 (εk)|k′〉 = πδ(εk−εk′), one obtains Eq. (5.49), a manifestation of the “Golden

Rule.”

Kondo effect: perturbation theory

In Problem 2.4, we introduced the Kondo effect, describing the interaction of a local impurity with an

itinerant band of carriers. (Those unfamiliar with the physical context and background to the problem

are referred back to that section.) There we determined an effective Hamiltonian for the coupled system,

describing the spin exchange interaction that acts between the local moment of the impurity state and

the itinerant band. In the following, motivated by the seminal work of Kondo, we employ methods

of perturbation theory to explore the impact of magnetic fluctuations on transport. In doing so, we

elucidate the mechanism responsible for the observed minimum of electrical resistance found in magnetic

impurity systems.

The perturbation theory of the Kondo effect is one of those problems where the traditional formalism

of second quantized operators is superior to the field integral (the reason being that perturbative

manipulations on quantum spins are difficult to formulate in a field integral language). More specifically,

the method of choice would be second quantized perturbation theory formulated in the interaction

picture, a concept discussed in great detail in practically any textbook on many-body perturbation

theory, but not in this text. For this reason, the solution scheme discussed below is somewhat awkward

and surely not very efficient (yet fully sufficient for understanding the essence of the phenomenon).
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Although the phenomenology of the Kondo system can be explored in several different

ways ranging from the exact analytical solution of the Kondo Hamiltonian system37 to a

variational analysis of the Anderson impurity Hamiltonian,38 in the following we focus on

the perturbative scheme developed in the original work of Kondo. Later, in Problem 8.8.5, we

will introduce a more advanced approach based on the renormalization group. The starting

point of the analysis is the effective sd–Hamiltonian (2.51) introduced in Problem 2.4.

Setting Ĥsd = Ĥ0 + Ĥimp where

Ĥ0 =
∑
kσ

εkc
†
kσckσ, Ĥimp = 2J Ŝ · ŝ(r = 0),

and ŝ(0) = 1
2

∑
kk′σσ′ c

†
kσσσσ′ck′σ′ , our aim here is to develop a perturbative expansion in J

to explore the scattering properties of the model. Here we have assumed that the exchange

constant J is characterized by a single parameter, positive in sign (i.e. antiferromagnetic).

In Problem 5.5, we have seen that the scattering rate associated with a system of impu-

rities is specified by the T-matrix:

1

2τ
= πNimp

∑
k′,σ′

〈
|〈k, σ|T+(ε)|k′, σ′〉|2

〉
S
δ(εk − εk′),

where the symbol 〈· · · 〉S ≡ trS(· · · )/trS(1) indicates that the calculation of the electron

self-energy implies an average over all configurations of the impurity spin. (Indeed, it is the

presence of an internal impurity degree of freedom which makes the problem distinct from

conventional disorder scattering.) Via the Drude formula, ρ = m/e2nτ (n is the electron

density), the scattering time can be used to estimate the effect of the impurities on the

electric resistivity ρ of the system.39

(a) Show that to leading order in the exchange constant J the scattering rate is given by

1

2τ(εF )
= πcimpνJ

2S(S + 1),

where ν denotes the density of states at the Fermi level. From this result, one can infer

a resistivity ρimp ∼ (m/e2εF)cimpJ
2S(S + 1), independent of temperature. Taken at

this order, scattering off magnetic impurities clearly does not explain the existence of a

resistance minimum.

(b) At second order in the expansion in Ĥimp, the T-matrix assumes the form T̂ (2) =

Ĥimp(ε
+−Ĥ0)

−1Ĥimp. Assuming for simplicity that we are working at zero temperature,

|k, σ〉 = c†kσ|Ω〉 is a configuration where a single particle with momentum k, |k| > pF,

and spin σ is superimposed on the filled Fermi sphere. Convince yourself that the state

Ĥimp|k, σ〉 is a linear combination of a single-particle state and a two-particle–one-hole

37 N. Andrei, Diagonalization of the Kondo Hamiltonian, Phys. Rev. Lett. 45 (1980), 379–82, P. B. Wiegmann,
Exact solution of the s–d exchange model (Kondo problem), J. Phys. C. 14 (1981), 1463–78.

38 C. M. Varma and Y. Yafet, Magnetic susceptibility of mixed-valence rare-earth compounds, Phys. Rev. B 13
(1976), 2950–4.

39 Notice that, besides magnetic impurities, the system will typically contain non-magnetic scattering centers, i.e.
ρtotal = ρ0 + δρ, where ρ0 is the resistivity due to conventional disorder and we used the fact that the inverse
scattering times corresponding to different types of disorder add independently, τ−1

total = τ−1
0 + τ−1.
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k,σ k,σ
k ′,σ ′

k ′,σ ′p,μ

p,μ

S″ S′S S″ S′S

Figure 5.12 The two spin-scattering processes contributing to the electron T-matrix at second-
order perturbation theory. The second process involves a two-particle–one-hole configuration as an
intermediate state.

state (see Fig. 5.12). Determine the excitation energies of the two configurations. Use

this result to compute (ε+k − Ĥ0)
−1Ĥimp|k, σ〉. Then show that the real part of the

second-order matrix element is given by

Re 〈k′, σ′|T̂ (2)|k, σ〉 = J2
∑
p

1

ξk − ξp
[S(S + 1)− S · σσσ′(Θ(ξp)−Θ(−ξp))] . (5.50)

(Hint: (i) In deriving this result, all “vacuum contributions” have to be discarded [for

they cancel against the partition function denominator of the properly normalized per-

turbation series]. The defining property of a vacuum contribution is that it factorizes

into two independent ground state matrix elements. For example, 〈Ω|ckσĤimp(ε
+ −

Ĥ0)
−1c†k′σ′ |Ω〉 · 〈Ω|Ĥimp|Ω〉 is of this type. (ii) Note that (Ŝ · σ)2 = Ŝ2 − σ · Ŝ. (iii)

Taking the real part of the T- matrix amounts to omitting the infinitesimal imaginary

increment in the energy denominators.)

At finite temperature, the Pauli blocking factors Θ(ε) → (1−nF(ε)) and Θ(−ε) → nF(ε)

generalize to Fermi functions and we obtain

Re〈k′, σ′|T̂ (2)|k, σ〉 = J2
∑
p

1

ξk − ξp

[
S(S + 1)δσ′σ + (2nF(ξp)− 1)Ŝ · σσ′σ

]
. (5.51)

Neglecting the first (non-singular, why?) contribution, one may note that the second

can be absorbed into a renormalization of the term first-order in J derived above, viz.
1
2τ = πνcimpJ

2
effS(S + 1), where Jeff = J(1 + 2Jg(ε, T )) and the function g(ε, T ) =

ν
2P

∫D

−D
dξ tanh(βξ/2)

ξ−ε depends sensitively on the bandwidth 2D of the itinerant electrons

and on the energy ε ≡ εk of the reference state. Noting that

lim
ε→0

g(ε, 0) = ν ln

∣∣∣∣Dε
∣∣∣∣ , lim

T→0
g(0, T ) = ν ln

∣∣∣∣ D

kBT

∣∣∣∣ ,
the effective exchange constant can be written as

Jeff = J

(
1 + 2ν(εF )J ln

∣∣∣∣ D

max(ε, T )

∣∣∣∣) .
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On substituting into the expression for the scattering rate, one finds that the resistivity

diverges logarithmically with temperature,

ρ(T ) � ρ(0)

[
1− 4νJ ln

(
T

D

)]
.

Finally, on combining with the effect of electron scattering from phonons, which provides

a contribution to the resistivity that scales as T 5, one may confirm that the resistance

develops a shallow minimum.

Although the perturbation theory suggests a divergence of the resistivity with tem-

perature, the result remains valid only up to the characteristic Kondo temperature

scale,

TK = D exp

[
− 1

2νJ

]
,

i.e. a temperature where the logarithmic correction becomes of the order of the first-

order term. Experimentally, it is found that, at temperatures T � TK, the resistance

saturates. In fact, the low-energy physics can be reconciled through the formation of

a resonance in which an electron in the itinerant band combines with the electron

on the impurity site to form a singlet bound state effectively screening the magnetic

impurity. Formally, one can explore the formation of the resonance state by developing

a variational analysis based on the trial wavefunction |ψ〉 =
[
α0 +

∑
kσ ααd

†
σckσ

]
|Ω〉,

where |Ω〉 represents a filled Fermi sea. In doing so, one may confirm that a bound state

develops with a binding energy ΔK = TK set by the Kondo temperature.

INFO Although it was originally conceived for the problem of magnetic impurities in metals,

lately the effects of Kondo resonance formation have been observed in artificial quantum

dot structures.40 Here a microscopic quantum dot (with dimensions of ca. 1μm) is sandwiched

between two metallic leads. In the so-called Coulomb blockade regime (see Problem 6.7), the

charging energy of the dot plays the role of the local Hubbard interaction while the leads act

as the Fermi sea. The development of a Kondo resonance below TK appears as a signature in

the quantum transport through the dot. In particular, for temperatures T < TK, the differential

conductance dI/dV shows a peak corresponding to the suppression of scattering off the impurity

state.

40 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, et al., Kondo effect in a single-electron transistor, Nature
391 (1998), 156–9.
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Answer:

(a) To leading order in Ĥimp, the T-matrix is given by T̂ � T̂ (1) = Ĥimp. Using the fact

that 〈k′, σ′|Ĥimp|k, σ〉 = JL−d〈σ|S · σ|σ′〉 we then obtain

1

2τ
� πNimp

∑
k′,σ′

>
|〈k, σ|Ĥimp|k′, σ′〉|2

?
S
δ(εk − εk′)

= πcimpJ
2L−d

∑
σ′

〈〈σ|S · σ|σ′〉〈σ′|S · σ|σ〉〉S
∑
k

δ(εk − εk′)

= πcimpνJ
2〈〈σ|S · σS · σ|σ〉〉S = πJ2S(S + 1)cimpν,

where in the last line we have used the fact that
∑

k δ(εk − εk′) = Ldν and 〈(S · σ)(S ·
σ)〉S = S(S + 1) · 1.

(b) Substituting the explicit form of Ĥimp and using the anti-commutation relations of

fermions, we obtain (summation convention)

Ĥimp|k′, σ′〉 = J
∑
p1p2

c†p1μ1
(S · σμ1μ2)cp2μ2c

†
k′,σ′ |Ω〉

= J
∑
p1

(S · σμ1σ′)c†p1μ1
|Ω〉 − J

∑
p1p2

(S · σμ1μ2)c
†
p1μ1

c†k′σ′cp2μ2 |Ω〉,

i.e. a linear combination of a one-particle state and a two-particle–one-hole state. Noting

that the energies of the two contributions are given by εp1 and εp1+εk′−εp2 , respectively,

multiplying by the “bra” 〈k, σ|Ĥimp, and observing that the overlap between a one-

particle state and a two-particle–one-hole state vanishes, we obtain

Re〈k, σ|T̂ (2)|k′, σ′〉 = J2(S · σσμ′
1
)(S · σμ1σ′)

∑
p1p′

1

〈Ω|cp′
1μ

′
1
c†p1μ1

|Ω〉
εk − εp1

+J2(S · σμ′
2μ

′
1
)(S · σμ1μ2)

∑
p1p2p′

1p
′
2

〈Ω|c†
p′

2μ
′
2
ckσcp′

1μ
′
1
c†p1μ1

c†k′σ′cp2μ2 |Ω〉
εk − εp1 − εk′ + εp2

→ J2(S · σσμ)(S · σμσ′)
∑
p

Θ(ξp)

εk − εp
+ J2(S · σμσ′)(S · σσμ)

∑
p

Θ(−ξp)

εk − εp
,

where the arrow indicates that vacuum contributions have been discarded. Application of

the spin identity then leads directly to Eq. (5.50).
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Broken symmetry and collective phenomena

Previously, we have seen how the field integral method can be deployed to formulate perturbative

approximation schemes to explore weakly interacting theories. In this chapter, we will learn how elements

of the perturbative approach can be formulated more efficiently by staying firmly within the framework

of the field integral. More importantly, in doing so, we will see how the field integral provides a method

for identifying and exploring non-trivial reference ground states – “mean-fields.” A fusion of perturbative

and mean-field methods will provide us with analytical machinery powerful enough to address a spectrum

of rich applications ranging from superfluidity and superconductivity to metallic magnetism and the

interacting electron gas.

As mentioned in Chapter 5, the perturbative machinery is but one part of a larger frame-

work. In fact, the diagrammatic series already contained hints indicating that a straight-

forward expansion of a theory in the interaction operator might not always be an optimal

strategy: all previous examples that contained a large parameter “N” – and usually it is

only problems of this type that are amenable to controlled analytical analysis – shared the

property that the diagrammatic analysis bore structures of “higher complexity.” (For exam-

ple, series of polarization operators appeared rather than series of the elementary Green

functions, etc.) This phenomenon suggests that large-N problems should qualify for a more

efficient and, indeed, a more physical formulation.

While these remarks appear to be largely methodological, the rationale behind search-

ing for an improved theoretical formulation is, in fact, much deeper. With our previous

examples, the perturbative expansion was benign. However, we already saw some glimpses

indicating that more drastic things may happen. For example, for frequencies approach-

ing the plasma frequency, the polarization operator of the weakly interacting electron gas

developed an instability. The appearance of such instabilities usually indicates that one is

formulating a theory around the “wrong” reference state (in that case, the uniformly filled

Fermi sphere of the non-interacting electron gas). Thus, what we would like to develop

is a theoretical framework (a) that is capable of detecting the “right” reference states, or

“mean-fields” of a system, and that enables us (b) to efficiently apply perturbative methods

around these states and, finally, (c) to do this in a language that draws upon the “physical”

rather than the plain microscopic degrees of freedom as the fundamental units.

To this end, in the following sections we develop a functional-integral-based approach that

meets these criteria. In contrast to the previous chapters, the discussion here is decidedly

biased towards concrete application to physically motivated problems. After the formulation

242
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of the general strategy of field-integral-based mean-field methods, the next section addresses

a problem that we have encountered before, the weakly interacting electron gas. The exem-

plification of the new concepts on a known problem enables us to better understand the

intimate connection between the mean-field approach and straightforward perturbation the-

ory. In subsequent sections we then turn to the discussion of problems that lie firmly outside

the range of direct perturbative summation, superfluidity and superconductivity.

6.1 Mean-field theory

Roughly speaking, the functional approach to problems with a large parameter proceeds

according to the following program:

1. In the first place, one must identify the relevant structural units of the theory. (That part

of the program can be efficiently carried out by the straightforward methods discussed

above.)

2. Secondly, it is necessary to introduce a new field – let us call it φ for concreteness – that

encapsulates the relevant degrees of freedom of the low-energy theory.

3. With this in hand, one can then trade integration over the “microscopic fields” for an inte-

gration over φ, a step often effected by an operation known as the Hubbard–Stratonovich

transformation.

4. The low-energy content of the theory can often be explored by subjecting the resulting

action S[φ] to a stationary phase analysis. (The justification for applying stationary phase

methods is provided by the existence of a large parameter N � 1.) Often, at this stage,

instabilities in the theory show up – an indication of a physically interesting problem!

5. Finally, the nature of the elementary (collective) excitations above the ground state can be

explored by expanding the functional integral around the solution of the stationary phase

equations – the “mean-field.” From this low-energy effective action, one can compute

physical observables.

In the next section, we will illustrate how such a program can be implemented on a specific

example, studied earlier by diagrammatic means.

6.2 Plasma theory of the interacting electron gas

To begin, let us return to the field theory of the interacting electron gas (see the action

defined in section 5.2),

S[ψ, ψ̄] =
∑
p

ψ̄pσ

(
−iωn +

p2

2m
− μ

)
ψpσ +

T

2L3

∑
pp′q

ψ̄p+qσψ̄p′−qσ′V (q)ψp′σ′ψpσ,

where the pairwise Coulomb interaction assumes the form V (q) = 4πe2/|q|2. Here the

summation runs over the 4-momenta k = (ωn,k) comprising Matsubara and momentum

components and summation over repeated spin indices is implied. Being quartic in the fields

ψσ, the Coulomb interaction prevents an explicit computation of the ψ-integral along the
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lines of the free fermion integrals discussed in the previous chapter. However, it is actually

a straightforward matter to reduce, or “decouple,” the interaction operator, bringing it to

a form quadratic in the fields ψ. Let us multiply the functional integral by the “fat unity”

1 ≡
∫

Dφ exp

[
− e2β

2Ld

∑
q

φqV
−1(q)φ−q

]
,

where φ represents a real bosonic field variable, and a normalization constant has been

absorbed in the definition of the functional measure Dφ. Notice that the summation runs

over a 4-momentum q = (ωm,q) comprising a vectorial momentum and a bosonic Matsubara

frequency. Employing the variable shift φq → φq+ ie−1V (q)ρq/β, where ρq ≡
∑

p ψ̄pσψp+qσ

(summation on σ implied), one obtains

1 =

∫
Dφ exp

[
1

Ld

∑
q

(
−e2β

2
φqV

−1(q)φ−q + ieρqφ−q +
1

2β
ρqV (q)ρ−q

)]
.

The rationale behind this exercise can be seen in the last contribution to the exponent: this

term is equivalent to the quartic interaction contribution to the fermionic path integral,

albeit with opposite sign. Therefore, multiplication of our unity by Z leads to the field

integral Z =
∫
Dφ

∫
D(ψ̄σ, ψσ) e

−S[φ,ψ̄σ,ψσ], where

S[φ, ψ̄σ, ψσ] =
β

8πLd

∑
q

φqq
2φ−q+

∑
pp′

ψ̄pσ

[(
−iωn +

p2

2m
− μ

)
δpp′ +

ie

Ld
φp′−p

]
ψp′σ, (6.1)

denotes the action, i.e. an expression that is free of quartic field interactions of ψσ. Before

proceeding, to acquire some intuition for the nature of the action it is helpful to rewrite S

in a real space representation. With φq = T
∫ β

0
dτ

∫
ddr e−iq·r+iωτφ(r, τ), one may confirm

that (exercise)

S[φ, ψ̄, ψ] =

∫
dτ

∫
ddr

)
1

8π
(∂φ)2 + ψ̄σ

[
∂τ − ∂2

2m
− μ+

ie

Ld
φ

]
ψσ

*
.

Physically, φ couples to the electron degrees of freedom as a space/time-dependent (imagi-

nary) potential, while the first term reflects the Lagrangian energy density associated with

the electric component of the electromagnetic field. Before proceeding, let us step back and

discuss the general philosophy of the manipulations that led from the original partition

function to the two-field representation Eq. (6.1).

INFO The sequence of manipulations developed above, i.e. the “decoupling” of a quartic inter-

action through an auxiliary field, is known more generally as a Hubbard–Stratonovich trans-

formation (see our discussion of the Ising model on page 196). The essence of the transformation

is a straightforward manipulation of a Gaussian integral. To make this point more transparent,

let us reformulate the Hubbard–Stratonovich transformation in a notation that is not burdened

by the presence of model-specific constants. Consider an interaction operator of the form Sint =

Vαβγδψ̄αψβψ̄γψδ (summation convention implied), where ψ̄ and ψ may be either bosonic or

fermionic field variables, the indices α, β, . . . refer to an unspecified set of quantum numbers,

Matsubara frequencies, etc., and Vαβγδ is an interaction matrix element. Now, let us introduce

composite operators ρ̂αβ ≡ ψ̄αψβ to rewrite the interaction as Sint = Vαβγδ ρ̂αβ ρ̂γδ. The notation
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can be simplified still further by introducing composite indices m ≡ (αβ), n ≡ (γδ), whereupon

the action Sint = ρ̂mVmnρ̂n acquires the structure of a generalized bilinear form. To reduce the

action to a form quadratic in the ψs, one may simply multiply the exponentiated action by unity,

i.e.

e−ρ̂mVmnρ̂n =

∫
Dφ e−

1
4
φmV −1

mnφn

︸ ︷︷ ︸
1

e−ρ̂mVmnρ̂n ,

where φ is bosonic. (Notice that here V −1
mn represents the matrix elements of the inverse and

not the inverse (Vmn)
−1 of individual matrix elements.) Finally, applying the variable change

φm → φm + 2i(V ρ̂)m, where the notation (V ρ̂) is shorthand for Vmnρ̂n, one obtains

exp [−ρ̂mVmnρ̂n] =

∫
Dφ exp

[
−1

4
φmV −1

mnφn − iφmρ̂m

]
,

i.e. the term quadratic in ρ̂ is cancelled.1 This completes the formulation of the Hubbard–

Stratonovich transformation. The interaction operator has been traded for (a) an integration

over an auxiliary field (b) coupled to a ψ-bilinear (the operator φmρ̂m).

� In essence, the Hubbard–Stratonovich transformation is tantamount to the Gaussian integral

identity Eq. (3.13) but read in reverse. An exponentiated square is removed in exchange for

a linear coupling. (In (3.13) we showed how terms linear in the integration variable can be

removed.)

� To make the skeleton outlined above a well-defined prescription, one has to be more specific

about the meaning of the Gaussian integration over the kernel φmV −1
mnφn, i.e. the integration

variables can be real or complex, and V must be a positive matrix (which is usually the case

on physical grounds).

� There is some freedom as to the choice of the integration variable. For example, the factor of

1/4 in front of the Gaussian weight φmV −1
mnφn was introduced for mere convenience (i.e. to

generate a coupling φmρ̂m free of numerical factors). If one does not like to invert the matrix

kernel Vmn, one can scale φm → (V φ)m, whereupon the key formula reads

e−ρ̂mVmnρ̂n =

∫
Dφ e−

1
4
φmVmnφn−iφmVmnρ̂n .

EXERCISE Show that the passage from the Lagrangian to the Hamiltonian formulation of the

Feynman path integral can be interpreted as a Hubbard–Stratonovich transformation.

As defined, the Hubbard–Stratonovich transformation is exact. However, to make it a meaningful

operation, it must be motivated by some physical considerations. In our discussion above, we

split up the interaction by choosing ρ̂αβ as a composite operator. However, there is clearly some

arbitrariness with this choice. Why not, for example, pair the fermion-bilinears according to

(ψ̄αψβ)(ψ̄γψδ), or otherwise? The three inequivalent choices of pairing up operators are shown

in Fig. 6.1 where, as usual, the wavy line with attached field vertices represents the interaction,

and the dashed ovals indicate how the field operators are paired.

1 Here we have assumed that the matrix V is symmetric. If it is not, we can apply the relation ρ̂mVmnρ̂n ≡
ρ̂TV ρ̂ = 1

2

�
ρ̂T (V + V T )ρ̂

�
to symmetrize the interaction.
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α β

γ δ

α β

γ δ

α β

γ δ

(a) (b) (c)

Figure 6.1 On the different channels of decoupling an interaction by Hubbard–Stratonovich trans-
formation. (a) Decoupling in the “density” channel; (b) decoupling in the “pairing” or “Cooper”
channel; and (c) decoupling in the “exchange” channel.

The version of the transformation discussed above corresponds to Fig. 6.1(a). That type of

pairing is sometimes referred to as decoupling in the direct channel. The designation becomes

more transparent if we consider the example of the spinful electron–electron interaction,

Sint =
1

2

∫
dτ

∫
ddr ddr′ ψ̄σ(r, τ)ψ̄σ′(r′, τ)V (r− r′)ψσ′(r′, τ)ψσ(r, τ),

i.e. here α = β = (r, τ, σ), γ = δ = (r′, τ, σ′), and Vαβγδ = V (r − r′). The “direct” decoupling

proceeds via the most obvious choice, i.e. the density operator ρ̂(r, τ) = ψ̄σ(r, τ)ψσ(r, τ). One

speaks about decoupling in a “channel” because, as will be elucidated below, the propagator of

the decoupling field can be interpreted in terms of two Green function lines tied together by

multiple interactions, a sequential object reminiscent of a “channel.”

However, more important than the terminology is the fact that there are other choices for ρ.

Decoupling in the exchange channel (Fig. 6.1(c)) is generated by the choice ρ̂αδ ∼ ψ̄αψδ where,

in the context of the Coulomb interaction, the reversed pairing of field operators is reminiscent

of the exchange contraction generating Fock-type contributions. Finally, one may decouple in

the Cooper channel (Fig. 6.1(b)) ρ̂αγ = ψ̄αψ̄γ , ρ̂βγ = ρ̂†γβ . Here, the pairing field is conjugate

to two creation operators. Below we will see that this type of decoupling is tailored to problems

involving superconductivity.

The remarks above may convey the impression of a certain arbitrariness inherent in the

Hubbard–Stratonovich scheme. Indeed, the “correct” choice of decoupling can be motivated only

by physical reasoning, not by plain mathematics. Put differently, the transformation as such is

exact, no matter what channel we choose. However, later on we will want to derive an effective

low-energy theory based on the decoupling field. In cases where one has accidentally decoupled

in an “unphysical” channel, it will be difficult, if not impossible, to distill a meaningful low-

energy theory for the field φ conjugate to ρ. Although the initial model still contains the full

microscopic information (by virtue of the exactness of the transformation) it is not amenable to

further approximation schemes.

In fact, one is frequently confronted with situations where more than one Hubbard–

Stratonovich field is needed to capture the full physics of the problem. To appreciate this point,

consider the Coulomb interaction in momentum space.

Sint[ψ̄, ψ] =
1

2

∑
p1,...,p4

ψ̄σp1 ψ̄σ′p3V (p1 − p2)ψσ′p4ψσp2δp1−p2+p3−p4 . (6.2)
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In principle, we can decouple this interaction in any one of the three channels discussed

above. However, “interesting” physics is usually generated by processes where one of the three

unbounded momenta entering the interaction vertex is small. Only these interaction processes

have a chance to accumulate an overall collective excitation of low energy (see our previous

discussion of the RPA, the interacting electron gas, and many of the examples to follow). It may

be instructive to imagine the situation geometrically: in the three-dimensional Cartesian space

of free momentum coordinates (p1, p2, p3) entering the vertex, there are three thin layers, where

one of the momenta is small, (q, p2, p3), (p1, q, p3), (p1, p2, q), |q| 	 |pi|. (Why not make all

momenta small? Because that would be in conflict with the condition that the Green functions

connecting to the vertex be close to the Fermi surface.) One will thus often choose to break down

the full momentum summation to a restricted summation over the small-momentum sublayers:

Sint[ψ̄, ψ] �
1

2

∑
p,p′,q

 
ψ̄σpψσp+qV (q)ψ̄σ′p′ψσ′p′−q − ψ̄σpψσ′p+qV (p′ − p)ψ̄σ′p′+qψσp′

− ψ̄σpψ̄σ′−p+qV (p′ − p)ψσp′ψσ′−p′+q

!
.

Now, each of these three contributions has its own predestined choice of a slow decoupling field.

The first term should be decoupled in the direct channel ρ̂d,q ∼
∑

p ψ̄σpψσp+q, the second in

the exchange channel ρ̂x,σσ′q ∼
∑

p ψ̄σpψσ′p+q, and the third in the Cooper channel ρ̂c,σσ′q ∼∑
p ψ̄σpψ̄σ′−p+q. One thus winds up with an effective theory that contains three independent

slow Hubbard–Stratonovich fields. (Notice that the decoupling fields in the exchange and in the

Cooper channel explicitly carry a spin structure.)

In our discussion of the high-density limit of the electron gas above, we effected a decoupling in

the direct channel. That choice is made because, drawing on our previous discussion, we already

know in advance that relevant contributions to the free energy of the system are generated by

RPA-type contraction of operators ρ̂d,q ∼
∑

p ψ̄σpψσp+q, where q is small. If we had not known,

a more careful three-fold Hubbard–Stratonovich decoupling, followed (see below) by a careful

analysis of the decoupled action, would have identified the density channel as relevant. More

generally, if in doubt, one should decouple in all available channels, and let the mean-field analysis

discriminate between the relevant fields.

After this digression on the principles of the Hubbard–Stratonovich transformation, let us now

return to the discussion of the electron gas.

At the expense of introducing a second field, the Hubbard–Stratonovich transformation

provides an action quadratic in the fermion fields. In this case, the fermion integration

can be undertaken exactly. Making use of the Gaussian functional integral Eq. (4.19), one

obtains

Z =

∫
Dφ e−

β

8πL3

∑
q φqq

2φ−q det

[
−iω̂ +

p̂2

2m
− μ+

ie

Ld
φ̂

]
,

where, as usual, the circumflexes appearing in the argument of the determinant indicate

that symbols have to be interpreted as operators (acting in the space of Matsubara and

Hilbert space components).

The standard procedure to deal with the determinants generated at intermediate stages

of the manipulation of a field integral is to simply re-exponentiate them. This is achieved
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by virtue of the identity

ln det Â = tr ln Â, (6.3)

valid for arbitrary (non-singular) operators Â.2 Thus, the quantum partition function takes

the form Z =
∫
Dφ e−S[φ], where

S[φ] =
β

8πLd

∑
q

φqq
2φ−q − tr ln

[
−iω̂ +

p̂2

2m
− μ+

ie

Ld
φ̂

]
. (6.4)

This is as far as purely formal exact manipulations can carry us. We have managed to trade

the integration over the interacting Grassmann field ψσ for an integration over an auxiliary

field φ; a field that we believe encapsulates the relevant degrees of freedom of the model.

This completes steps 1, 2, and 3 of the general program outlined above.

The next step in the program is to subject the action to a stationary phase analysis, i.e.

to seek solutions of the set of saddle-point equations such that

∀q = (q �= 0, ω) :
δS[φ]

δφq

!
= 0.

The solution φ(x, t) ↔ φq is commonly referred to as the mean-field. This terminology can

be understood by inspection of the argument of the “tr ln” above. The structure p̂2/2m−
μ+ ieφ/Ld, where φ is a fixed configuration (to be determined by solving the saddle-point

equations), resembles the Hamiltonian operator of particles subject to some background

potential, or “mean” field. The notation on the left-hand side of the saddle-point equations

indicates that our original interaction V (q) and, therefore, the decoupling field φ do not

possess a zero-momentum mode (a consequence of charge neutrality).

The concrete evaluation of the functional derivative δS/δφ leads us to question how one

differentiates the trace of the logarithm of the operator,

Ĝ−1[φ] = iω̂ − p̂2

2m
+ μ− ie

Ld
φ̂,

with respect to its argument. (The notation Ĝ−1 is motivated by its structural similarity

to an inverse Green function.) Owing to the presence of the trace, the differentiation can

be carried out as if Ĝ were a function:3 (δ/δφq)tr ln(Ĝ
−1) = tr(Ĝ(δ/δφq)Ĝ

−1), where we

2 Equation (6.3) is readily established by switching to an eigenbasis, whereupon one obtains ln det Â =
∑

a ln εa =

tr ln Â, where εa are the eigenvalues of Â and we have used the fact that the eigenvalues of ln Â are ln εa.
3 Consider an operator Â(x) depending on some parameter x. Let f(Â) be an arbitrary function (f(Â) = ln Â in
the present application). Then

∂xtr(f(Â)) = ∂x

∑
n

f(n)(0)

n!
tr(Â

n
) =

∑
n

f(n)(0)

n!
tr((∂xÂ)Â

n−1
+ Â(∂xÂ)Â

n−2
+ · · · + Â

n−1
∂xÂ)

=
∑
n

n

n!
f
(n)

(0)tr(Â
n−1

(∂xÂ)) = tr(f
′
(Â)∂xÂ),

where, in the third equality, we have used the cyclic invariance of the trace.
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omitted the argument [φ] for notational clarity. Then, making use of the identity

tr

[
Ĝ

δ

δφq
Ĝ−1

]
= 2

∑
q1q2

Ĝq1q2

(
δ

δφq
Ĝ−1

)
q2q1

= −2ie

Ld

∑
q1q2

Ĝq1q2δq1−q2,q,

the saddle-point equation assumes the form

δ

δφq
S[φ] =

β

4πLd
q2φ−q +

2ie

Ld

∑
q1

Ĝq1,q1−q
!
= 0. (6.5)

Here, the factor of two appearing in front of the double summation accounts for the electron

spin. Further, we have used the fact that Ĝ−1 is linear in its argument φ and that, following

the rules of functional differentiation, (δφq φ̂)q1q2 = δq1−q2,q. In fact (owing to the discreteness

of the momentum) we are not even differentiating functionals: φ̂ is a matrix in momentum

space. Its matrix elements are given by components φq : (φ̂)q1,q2 = φq1−q2 . Differentiation of

this matrix with respect to φq then produces another matrix with matrix elements one for

q1−q2 = q and zero otherwise. (Admittedly, it takes some time to get used to differentiation

formulae of this type.)

Equations of this form are solved not from scratch, but by making a physically motivated

ansatz, i.e. by guessing the solution! Naturally, the first guess is a homogeneous solution,

φ(r, t) ≡ φ̄ = const., i.e. one relies on the picture that a spatially and temporarily varying

field configuration is energetically more costly than a constant one, and therefore cannot

provide a stable extremum.

INFO Be aware that there exist translationally invariant problems with inhomogeneous mean-

fields; or a homogeneous solution exists, but it is energetically inferior to a textured field con-

figuration. Indeed, there may be sets of degenerate solutions, etc. Often, when new theories

describing an unknown territory have been developed, the search for the “correct” mean-field

turns out to be a matter of long, and sometimes controversial, research.

In the present context, spatial and temporal homogeneity translates to the solution φq,ω = 0

if either ω or q is non-zero. Indeed, such an ansatz solves the mean-field equation: assuming

that all fluctuating components of φ are switched off, the Green function operator becomes

diagonal in momentum space, (Ĝ[φ])q1,q2 ∝ δq1,q2 . We thus see that, for non-vanishing q,

both terms in the equation vanish. Moreover, since charge neutrality requires φq=0 = 0 one

may identify φ̂ = 0 as the solution of the mean-field equation, settling step 4 of the general

program.

We now proceed to expand the functional in fluctuations around φ = 0. Since the mean-

field solution vanishes, it makes no sense to introduce new notation, i.e. we will denote the

fluctuations again by the symbol φ. As regards the first term in the action (6.4), it already

has a quadratic form. The logarithmic contribution can be expanded as if we were dealing

with a function (again, a consequence of the trace), i.e.

tr ln Ĝ−1 = tr ln Ĝ−1
0 +

ie

Ld
tr(Ĝ0φ̂) +

1

2

( e

Ld

)2

tr(Ĝ0φ̂Ĝ0φ̂) + · · · ,

where Ĝ−1
0 ≡ iω̂− p̂2

2m +μ is the momentum and frequency diagonal operator whose matrix

elements give the free Green function of the electron gas. Now, let us discuss the terms
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appearing on the right-hand side in turn. Being φ-independent, the first term generates an

overall constant multiplying the functional integral, i.e. a constant that must describe the

non-interacting content of the theory. Indeed, one may note that etr ln Ĝ−1
0 = e−tr ln Ĝ0 =

det Ĝ−1
0 ≡ Z0 is just the partition function of the non-interacting electron gas. Linear in φ̂,

the second term of the expansion must, by virtue of the mean-field analysis, vanish after all.

(We are expanding around an extremum! Exercise: Write out the momentum representation

of the first-order contribution to confirm that it vanishes identically.) The third term is the

interesting one. Remembering that φ̂ couples to the theory as a voltage, this term describes

the way potential fluctuations are affected by the presence of the electron gas, i.e. it must

encode screening.

To resolve this connection, let us make the momentum dependence of the second-order

term explicit (exercise):

1

2

( e

Ld

)2

tr(Ĝ0φ̂Ĝ0φ̂) =
( e

Ld

)2 ∑
p,q

G0,pφqG0,p+qφ−q =
e2

2TLd

∑
q

Πqφqφ−q,

where, once again, we encounter the polarization operator (5.28). Combining with the first

term in the action, one finally obtains

Seff [φ] =
1

2TL3

∑
q

φq

(
q2

4π
− e2Πq

)
φ−q +O(φ4), (6.6)

where we note that odd powers of φ vanish by the symmetry of the problem (exercise).

Indeed, the form of the effective action (6.6) is suggestive. Ignoring the coupling to the

electron gas, φ represents a field with bare “propagator” ∼ q−2, i.e. the long-range cor-

relation mediated by the electric field in vacuum. Coupling the field to a medium leads

to the appearence of a “self-energy” ∼ Πq. As we saw above, the self-energy converts the

long-range power law correlation into something exponential – screening. The form of the

screened propagator exactly coinicides with the effective RPA interaction (5.34) derived

diagrammatically above. In passing we note that the structures emerging in the functional

integral analysis support a unified way of “reading” the theory: there appear “propagators,”

“self-energies,” etc. irrespective of the concrete context, i.e. irrespective of whether we are

dealing with a fermionic field (ψ) or a bosonic field (φ).

From here it is a one-line calculation to reproduce the result for the RPA free energy of

the electron gas discussed previously. Gaussian integration over the field φ (step 5 of the

program) leads to the expression ZRPA = Z0

∏
q(1− 4πe2

q2 Πq)
−1/2, where we have noted that

the φ-integration was normalized to unity, i.e. for Π = 0, the integral collapses to unity.

Taking the logarithm, we obtain the free energy

FRPA = −T (lnZ − lnZ0) =
T

2

∑
q

ln

(
1− 4πe2

q2
Πq

)
,

in agreement with Eq. (5.27).

At this point, it is instructive to pause and compare the two approaches to the problem:

diagrammatics and field integration. We first note that the functional integral formulation

indeed leads to the “reduced” description we sought: the minimal degree of freedom (φ)
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directly couples to the physically relevant entities of the theory (Πq). The downside is

that, to formulate the approach, we had to go through some preparatory analysis, notably

work that required prior physical insight into the problem (i.e. the correct choice of the

Hubbard–Stratonovich decoupling). However, this turned out to be an effort well invested.

After the identification of φ as the “appropriate” field, the further construction of the

theory proceeded along the lines of a largely “automated program” (seeking saddle-points,

expanding, etc.). In particular, there was no need to do battle with combinatorial problems.

Further, in functional integral approaches, the risk of missing relevant contributions, or

diagrams, in the expansion of the theory is far less pronounced than in direct diagrammatic

expansions. But undoubtedly the most important advantage of the functional integral route

is its extensibility. For example, an expansion of the theory to higher orders in φ would

have generated an interacting theory of voltage fluctuations. Correlations on the level of

that theory correspond to diagrams beyond the RPA level, i.e. diagrams whose direct and

error-free summation would require more refined skills, a program beyond the scope of the

present text.

The mean-field optimizing the problem above was particularly simple with φ = 0. More-

interesting situations arise when one encounters non-vanishing mean-field configurations, i.e.

the perturbation theory has to be organized around a state different from the trivial vacuum

of the theory. Referring to Problem 6.7, we will discuss how, under certain circumstances,

Coulomb interaction can favor an itinerant magnetic state.

6.3 Bose–Einstein condensation and superfluidity

Previously, we have considered the influence of weak Coulomb interaction on the properties

of the electron gas. In the following, our goal will be to consider the phases realized by a

weakly interacting Bose gas. To this end, let us introduce the quantum partition function

Z =
∫
D(ψ̄, ψ) e−S[ψ̄,ψ], where

S[ψ̄, ψ] =

∫
ddr

∫
dτ

[
ψ̄(r, τ)(∂τ + Ĥ0 − μ)ψ(r, τ) +

g

2
(ψ̄(r, τ)ψ(r, τ))2

]
. (6.7)

Satyendranath Bose 1894–1974
He undertook important work
in quantum theory, in particular
on Planck’s black body radiation
law. His work was enthusiasti-
cally endorsed by Einstein. He also
published on statistical mechan-
ics, leading most famously to the
concept of Bose-Einstein statistics. Dirac coined the
term “boson” for particles obeying such statistics.

Here ψ represents a complex field

subject to the periodic boundary

condition ψ(r, β) = ψ(r, 0). The

functional integral Z describes the

physics of a system of bosonic par-

ticles in d dimensions subject to

a repulsive contact interaction of

strength g > 0. For the moment the

specific structure of the one-body

operator Ĥ0 need not be specified.

The most remarkable phenomena displayed by systems of this type are Bose–Einstein

condensation and superfluidity. However, contrary to a widespread belief, these two effects
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do not depend on each other: superfluidity can arise without condensation and vice versa.

We begin our discussion with the more elementary of the two phenomena.

Bose–Einstein condensation

Albert Einstein 1879–1955
Nobel Laureate in Physics in 1921
“for his services to theoretical
physics, and especially for his dis-
covery of the law of the pho-
toelectric effect.” He is perhaps
best known for his theory of
relativity and specifically mass–
energy equivalence, expressed by the equation E =
mc2. His work on the low-temperature behavior
of the bosonic quantum gas is published in A.
Einstein, Quantentheorie des einatomigen idealen
Gases, Sitzungsber. Preuss. Akad. Wiss. (1925),
261-7. (Image c© The Nobel Foundation.)

As may be recalled from elemen-

tary statistical mechanics, at suffi-

ciently low temperatures the ground

state of a bosonic system can involve

the condensation of a macroscopic

fraction of particles into a single

state. This phenomenon, predicted

in a celebrated work by Einstein, is

known as Bose–Einstein condensa-

tion. To see how this phenomenon

is born out of the functional inte-

gral formalism, let us temporarily

switch off the interaction and turn

to the basis in which the one-particle Hamiltonian is diagonal. Expressed in the frequency

representation, the partition function of the non-interacting system is given by

Z0 ≡ Z|g=0 =

∫
D(ψ̄, ψ) exp

[
−

∑
an

ψ̄an (−iωn + εa − μ)ψan

]
.

Without loss of generality, we may assume that the eigenvalues εa ≥ 0 are positive with

a ground state ε0 = 0.4 (In contrast to the fermionic systems discussed above, we should

not have in mind low-energy excitations superimposed on high-energy microscopic degrees

of freedom. Here, everything will take place in the vicinity of the ground state of the

microscopic single-particle Hamiltonian.) Further, we note that, to ensure stability, the

chemical potential determining the number of particles in the system must be negative for,

otherwise, the Gaussian weight corresponding to the low-lying states εa < −μ would change

sign, resulting in an ill-defined theory.

From our discussion of Section 4.2 we recall that the number of particles in the system is

set by the relation

N(μ) = −∂μF = T
∑
na

1

iωn − εa + μ
=

∑
a

nB(εa),

4 The chemical potential μ can always be adjusted so as to meet this condition.
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T

μ

0
Tc

where, as usual, nB(ε) = (eβ(ε−μ)−1)−1 denotes the Bose dis-

tribution. For a given number of particles, this equation deter-

mines the temperature dependence of the chemical potential,

μ(T ). As the temperature is reduced, the distribution func-

tion controlling the population of individual states decreases.

Since the number of particles must be kept constant, this scal-

ing must be counter-balanced by a corresponding increase in

the chemical potential.

Below a certain critical temperature Tc, even the maximum value of the chemical poten-

tial, μ = 0, will not suffice to keep the distribution function nB(εa �=0) large enough to

accommodate all particles in the states of non-vanishing energy, i.e.
∑

a>0 nB(εa)|μ=0
T<Tc≡

N1 < N . I.e. below the critical temperature, the chemical potential stays constant at μ = 0

(see the figure). As a result, a macroscopic number of particles, N −N1, must accumulate

in the single-particle ground state: Bose–Einstein condensation.

EXERCISE For a three-dimensional free particle spectrum, εk = �2k2/2m, show that the critical

temperature is set by Tc = c0�
2/ma2, where a = ρ−1/3 is the average inter-particle spacing, and

c0 is a constant of order unity. Show that for temperatures T < Tc, the density of particles in

the condensate (k = 0) is given by ρ0(T ) = ρ[1− (T/Tc)
3/2].

Eric A. Cornell
1961– (left), Wolf-
gang Ketterle
1957– (center),
and Carl E. Wie-
man 1951– (right)
Joint recipients of
the 2001 Nobel Prize
in Physics “for the achievement of Bose-Einstein condensation in
dilute gases of alkali atoms, and for early fundamental studies of the
properties of the condensates.” (Images c© The Nobel Foundation.)

Since its prediction in

the early 1920s, the

phenomenon of Bose–

Einstein condensation

has been a standard

component of under-

graduate texts. How-

ever, it took some

seven decades before

the condensation of

bosonic particles was

directly5 observed in experiment. The reason for this delay is that the critical condensation

temperature of particles (atoms) that are comfortably accessible to experiment is absurdly

low.

INFO In 1995 the groups of Cornell and Wieman at Colorado University and, soon after, Ketterle

at MIT succeeded in cooling a system of rubidium atoms down to temperatures of 20 billionths(!)

of a kelvin.6 To reach these temperatures, a gas of rubidium atoms was caught in a magnetic

5 Here, by “direct” we refer to the controlled preparation of a state of condensed massive bosonic particles. There
are numerous “indirect” manifestations of condensed states, e.g. the anomalous properties of the helium liquids
at low temperatures, or of Cooper-pair condensates in superconductors.

6 M. H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E. A. Cornell, Observation of Bose–Einstein
condensation in a dilute atomic vapor, Science 269 (1995), 198-201.
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Figure 6.2 Spectroscopic images of the Bose–Einstein condensation process for three values of
temperature (400 nK, 200 nK, and 50 nK from left to right). (Figure courtesy of the JILA Institute,
University of Colorado.)

trap, i.e. a configuration of magnetic field gradients that couple to the magnetic moments of the

atoms so as to keep the system spatially localized.

The gas of atoms was then brought to a temperature of O(10−5)K – still much too hot to

condense – by “laser cooling”: crudely speaking, a technique where atoms, subjected to a suitably

adjusted ray of monochromatic light, may transmit more of their kinetic energy to the photons

than they get back. To lower the temperature still further, the principle of “evaporative cooling”

was applied: by lowering the potential well of the trap, a fraction of the atoms, namely those

with large kinetic energy, is allowed to escape. The remaining atoms have a low kinetic energy

and, therefore, a low temperature. What sounds like a simple recipe actually represents a most

delicate experimental procedure. (For example, if the trap potential is lowered too strongly, all

atoms escape and there is nothing left to condense. If, on the other hand, trapping is too strong,

the atoms remain too hot, etc.) However, after more than a decade of intensive experimental

preparation, the required temperatures have been reached.

Spectroscopic images of the Bose–Einstein condensation process are shown in Fig. 6.2 at three

temperatures. The peak in the density distribution signals the onset of condensation. On low-

ering the temperature, one may observe the transition to a condensed phase by monitoring the

formation of a peak in the density distribution. The preparation of a Bose-Einstein condensed

state of matter was recognized with the award of the 2001 Nobel prize in physics. Since 1995,

research on atomic condensates has blossomed into a broad arena of research. Already, it is

possible to prepare complex states of Bose condensed matter such as atomic vortices in rotat-

ing Bose–Einstein condensates, condensates in different dimensionalities, or even an artificial

crystalline state of matter (see Fig. 6.3). Regrettably, a detailed discussion of these interesting

developments is beyond the scope of the present text. Those interested in learning more about

this area are referred to the many reviews of the field.

With this background, let us now try to understand how the phenomenon of Bose–Einstein

condensation can be implemented in the functional integral representation. Evidently, the

characteristics of the condensate will be described by the zero field component ψ0(τ). The

problem with this zero mode is that, below the condensation transition, its action appears

to be unbounded: both the chemical potential and the eigenvalue are zero. This means that

the action of the zero Matsubara component ψ0,0 vanishes. We will deal with this difficulty
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in a pragmatic way. That is, we will treat ψ0(τ) not as an integration variable but rather

as a time-independent Lagrange multiplier to be used to fix the number of particles below

the transition. More precisely, we introduce a reduced action of the form

S0[ψ̄, ψ] = −ψ̄0βμψ0 +
∑

a �=0,n

ψ̄an (−iωn + εa − μ)ψan,

where we did not yet set μ = 0 (since we still need μ as a differentiation variable). To

understand the rationale behind this simplification one may note that

N = −∂μF0|μ=0− = T∂μ lnZ0|μ=0− = ψ̄0ψ0 + T
∑

a �=0,n

1

iωn − εa
= ψ̄0ψ0 +N1, (6.8)

determines the number of particles. According to this expression, ψ̄0ψ0 = N0 sets the num-

ber of particles in the condensate. Now, what enables us to regard ψ0 as a time-independent

field? Remembering the construction of the path integral, we note that the introduction

of time-dependent fields, or “time slicing,” was necessitated by the fact that the operators

appearing in the Hamiltonian of a quantum theory do not, in general, commute. (Otherwise

we could have decoupled the expression tr(e−β(Ĥ−μN̂)(a†,a)) �
∫
d(ψ̄, ψ) e−β(Ĥ−μN̂)(ψ̄,ψ)

in terms of a single coherent state resolution, i.e. a “static” configuration.) Reading this

observation in reverse, we conclude that the dynamic content of the field integral represents

the quantum character of a theory. (Alluding to this fact, the temporal fluctuations of field

variables are often referred to as quantum fluctuations.) Conversely,

Figure 6.3 The creation of an artificial mono-atomic crystal from a Bose–Einstein condensate.
A system of bosons in a condensed state – the state signaled by the pronounced coherent intensity
peaks in the left portion of the figure – is exposed to a “grid” formed by two crossing fields of
intense laser radiation. For strong enough field amplitudes, the electromagnetic radiation inter-
feres, presenting a periodic lattice of deep potential minima. These minima become occupied by
one atom each. The result is an artificial mono-atomic crystal, characterized by the absence of
coherent superposition of atomic wavefunction amplitudes, i.e. an equilibrated density profile (mid-
dle). If the laser intensity is lowered, the atoms re-arrange to the characteristic density distribution
of the condensate (right). (Source: Courtesy of Max-Planck-Institut für Quantenoptik, Garching,
Germany.)
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A static approximation in a field integral ψ(τ) = ψ0 = const. amounts

to replacing a quantum degree of freedom by its classical approxima-

tion.

(In order to distinguish them from quantum, fluctuations in the “classical” static sector of

the theory are called thermal fluctuations.) To justify the approximation of a0 ↔ ψ0 by a

classical object, notice that, upon condensation, N0 = 〈a†0a0〉 will assume “macroscopically

large” values. On the other hand, the commutator [a0, a
†
0] = 1 continues to be of O(1). It

thus seems to be legitimate to neglect all commutators of the zero operator a0 in comparison

with its expectation value – a classical approximation.7

Now, we are still left with the problem that the ψ0-integration appears to be undefined.

The way out is to remember that the partition function should extend over those states

that contain an average number N of particles. That is, Eq. (6.8) has to be interpreted as

a relation that fixes the modulus ψ̄0ψ0 so as to adjust the appropriate value of N .8

The weakly interacting Bose gas

Now, with this background, let us restore the interactions focusing on a small but non-

zero coupling constant g. To keep the discussion concrete, we specialize to the case of

a free single-particle system, Ĥ0 = p̂2/2m. (Notice that the ground state wavefunction

of this system is described by a spatially constant zero-momentum state.) By adiabatic

continuity we expect that much of the picture developed above will survive generalization

to non-zero interaction strengths. In particular, the ground state, which in the case under

consideration corresponds to a temporally and spatially constant mode ψ0, will continue

to be macroscopically occupied. In these circumstances, the dominant contribution to the

action will again come from the classical ψ0 sector:

TS[ψ̄0, ψ0] = −μψ̄0ψ0 +
g

2Ld
(ψ̄0ψ0)

2. (6.9)

(Notice the similarity of the action to the integrand of the toy problem discussed in Sec-

tion 5.1.) Crucially, the stability of the action is now guaranteed by the interaction vertex,

no matter how small is g > 0 (see the schematic plot of the action in the figure on page

263). Accordingly, we will treat ψ0 no longer as a fixed parameter but rather as an ordinary

integration variable. Integration over all field components will produce a partition function

Z(μ) that depends parametrically on the chemical potential. As usual in statistical physics,

the function can then be employed to fix the particle number. (Notice that, vis-à-vis aspects

7 Notice the similarity of that reasoning to the arguments employed in connection with the semi-classical treatment
of spin systems in the limit of large S (Section 2.2). Unfortunately, the actual state of affairs with the classical
treatment of the condensate is somewhat more complex than the simple argument above suggests. (For a good
discussion, see A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory
in Statistical Physics [Dover Publications, 1975]) However, the net result of a more thorough analysis, i.e. an
integration over all dynamically fluctuating components ψ0,n �=0, shows that the treatment of ψ0 as classical
represents a legitimate approximation.

8 For a more rigorous discussion of the choice of the thermodynamic variables in the present context, we again
refer to Abrikosov et al., ibid.
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of thermodynamics, the interacting system appears to behave more “naturally” than its

ideal, non-interacting approximation. This reflects a general feature of bosonic systems:

interactions “regularize” a number of pathological features of the ideal gas.)

Returning to the ψ0-integration, we observe that, for low enough temperatures, the prob-

lem is an ideal candidate for saddle-point analysis. Variation of the action with respect to

ψ0 gives

ψ̄0

(
−μ+

g

Ld
ψ̄0ψ0

)
= 0.

This equation is solved by any constant complex field configuration ψ0 with modulus |ψ0| =√
μLd/g ≡ γ. In spite of its innocent appearance, this equation reveals much about the

nature of the system:

� For μ < 0 (i.e. above the condensation threshold of the non-interacting system), the

equation exhibits only the trivial solution ψ0 = 0. This means that no stable condensate

amplitude exists.

� Below the condensation threshold (i.e. for μ ≥ 0),9 the equation is solved by any config-

uration with |ψ0| = γ ≡
√
μLd/g. (Notice that ψ̄0ψ0 ∝ Ld, reflecting the macroscopic

population of the ground state.)

� The equation couples only to the modulus of ψ0. That is, the solution of the stationary

phase equation is continuously degenerate: each configuration ψ0 = γ exp(iφ), φ ∈ [0, 2π],

is a solution.

For our present discussion, the last of the three aspects mentioned above is the most impor-

tant. It raises the question of which configuration ψ0 = γexp(iφ) is the “right” one?

Without loss of generality, we may choose ψ0 = γ ∈ R as a reference configuration for

our theory. This choice amounts to selecting a particular minimum lying in the “Mexican

hat” profile of the action shown above. However, it is clear that an expansion of the action

around that minimum will be singular: fluctuations ψ0 → ψ0 + δψ that do not leave the

azimuthally symmetric well of degenerate minima do not change the action and, therefore,

have vanishing expansion coefficients. As a result, in the present situation, we will not be

able to implement a simple scheme, i.e. “saddle-point plus quadratic fluctuations”; there is

nothing that constrains the deviations δψ to be small. In the next section, we discuss the

general principles behind this phenomenon. In section 6.3, we then continue to explore its

ramifications in the physics of the Bose system.

Spontaneous symmetry breaking

The mechanism encountered here is one of spontaneous symmetry breaking. To under-

stand the general principle, consider an action S[ψ] with a global continuous symmetry

under some transformation g (not to be confused with the aforementioned coupling constant

of the Bose gas): specifically, the action remains invariant under a global transformation of

9 Owing to the stabilization of the zero mode integration by the interaction constant, μ ≤ 0 is no longer a strict
condition.
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the fields such that ∀i ∈ M : ψi → gψi, where M is the base manifold, i.e. S[ψ] = S[gψ]. The

transformation is “continuous” in the sense that g takes values in some manifold, typically

a group G.

Examples: The action of a Heisenberg ferromagnet is invariant under rotation of all

spins simultaneously by the same amount, Si → gSi. In this case, g ∈ G = O(3), the

three-dimensional group of rotations (g not to be confused with the coupling constant of

the interaction). The action of the displacement fields u describing elastic deformations of

a solid (phonons) is invariant under simultaneous translation of all displacements ui →
ui + a, i.e. the symmetry manifold is the d-dimensional translation group G ∼= Rd. In the

example above, we encountered a U(1) symmetry under phase multiplication ψ0 → eiφψ0.

This phase freedom expresses the global gauge symmetry of quantum mechanics under

transformation by a phase, a point we discuss in more detail below.

Reψ

Imψ

S

Now, given a theory with globally G invariant

action, two scenarios are conceivable: either the

ground states share the invariance properties of

the action or they do not. The two alternatives

are illustrated in the figure for the example of

the Bose system. For μ < 0, the action S[ψ̄0, ψ0]

has a single ground state at ψ0 = 0. This state

is trivially symmetric under the action of G =

U(1). However, for positive μ, i.e. in the situation discussed above, there is an entire manifold

of degenerate ground states, defined through the relation |ψ0| = γ. These ground states

transform into each other under the action of the gauge group. However, none of them is

individually invariant.

With the other examples mentioned above, the situation is similar. For symmetry groups

more complex than the one-dimensional manifold U(1), the ground states will, in general, be

invariant under transformation by the elements of a certain subgroup H ⊆ G (that includes

the two extremes H = {1} and H = G). For example, below the transition temperature, the

ground state of the Heisenberg magnet will be given by (domain-wise) aligned configurations

of spins. Assuming that the spins are oriented along the z-direction, the ground state is

invariant under the abelian subgroup H ⊂ O(3) containing all rotations around the z-axis.

However, invariance under the full rotation group is manifestly broken. Solids represent

states where the translation symmetry is fully broken, i.e. all atoms collectively occupy a

fixed pattern of spatial positions in space, H = {1}, etc.
In spite of the undeniable existence of solids, magnets, and Bose-Einstein condensates of

definite phase, the notion of a ground state that does not share the full symmetry of the

theory may appear paradoxical, or at least “unnatural.” For example, even if any particular

ground state of the “Mexican hat” potential shown in the figure above “breaks” the rota-

tional symmetry, should not all these states enter the partition sum with equal statistical

weight, such that the net outcome of the theory is again fully symmetric?

To understand why symmetry breaking is a “natural” and observable phenomenon, it is

instructive to perform a gedankenexperiment. To this end, consider the partition function
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of a classical10 ferromagnet,

Z = tr
(
e−β(H−h·∑i Si)

)
,

where H is the rotationally invariant part of the energy functional and h represents a weak

external field. (Alternatively, we can think of h as an internal field, caused by a slight

structural imperfection of the system.) In the limit of vanishing field strength, the theory

becomes manifestly symmetric. Symbolically,

lim
N→∞

lim
h→0

Z −→ rot. sym.,

where the limit N → ∞ serves as a mnemonic indicating that we consider systems of

macroscopic size. However, keeping in mind the fact that the model ought to describe a

physical magnetic system, the order of limits taken above appears questionable. Since the

external perturbation couples to a macroscopic number of spins, a more natural description

of an “almost” symmetric situation would be

lim
h→0

lim
N→∞

Z −→?

The point is that the two orders of limits lead to different results. In this case, for any h,

the N → ∞ system is described by an explicitly symmetry broken action. No matter how

small the magnetic field, the energetic cost to rotate N → ∞ spins against the field is too

high, i.e. the ground state |S〉 below the transition temperature will be uniquely aligned,

Si � h. When we then send h → 0 in a subsequent step, that particular state will remain

the observable reference state of the system. Although, formally, a spontaneous thermal

fluctuation rotating all spins by the same amount |S〉 → |gS〉 would not cost energy, that

fluctuation can be excluded by entropic reasoning.11 (By analogy, one rarely observes kettles

crashing into the kitchen wall as a consequence of a concerted thermal fluctuation of the

water molecules!)

However, the appearance of non-trivial ground states is just one manifestation of spon-

taneous symmetry breaking. Equally important, residual fluctuations around the ground

state lead to the formation of soft modes (sometimes known as massless modes), i.e.

field configurations φq whose action S[φ] vanishes in the limit of long wavelengths, q → 0.

Specifically, the soft modes formed on top of a symmetry broken ground state are called

Goldstone modes. As a rule, the presence of soft modes in a continuum theory has impor-

tant phenomenological consequences. To understand this point, notice that the general

structure of a soft mode action is given by

S[φ] =
∑
q,i

φq

[
ci1|qi|+ ci2q

2
i

]
φ−q +O(φ4, q3), (6.10)

where ci1,2 are coefficients. As discussed in Section 5.1, the absence of a constant contribution

to the action (i.e. a contribution that does not vanish in the limit q → 0) signals the existence

of long-range power-law correlations in the system. As we will see shortly, the vanishing of

10 The same argument can be formulated for the quantum magnet.
11 In Chapter 8, we show that this (overly) simple picture in fact breaks down in dimensions d ≤ 2.
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the action in the long-wavelength limit q → 0 further implies that the contribution of the

soft modes dominates practically all observable properties of the system.

EXERCISE Explore the structure of the propagator G(q) ≡ 〈φqφ−q〉 associated with S[φ] and

convince yourself that the arguments formulated for the specific case of the φ4-theory are of

general validity. To this end, notice that, for small q, G(q) ∼ |q|−n, where n denotes the index

of the first non-vanishing coefficient c1, c2, . . ., i.e. the propagator is dominated by the smallest

q-power appearing in the action. The power-law behavior of the correlation function implies a

homogeneity relation G(q/λ) = λnG(q). Show that this scaling relation implies that the Fourier

transform G(r ≡ |r|) = 〈φ(r)φ(0)〉 obeys the “scaling law” G(λr) = λ−d+nG(r). This, in turn,

implies that the real space correlation function also decays as a power law, namely G(r) ∼
|r|−d+n, i.e. in a “long-range” manner. Explore the breakdown of the argument for an action

with a finite mass term. Convince yourself that, in this case, the decay would be exponential,

i.e. “short-range.”

λ

ψ0

gψ0

g(x)ψ0

What, then, are the origin and nature of the

soft Goldstone modes caused by the sponta-

neous breakdown of a symmetry? To address

this point let us consider the action of a sym-

metry group element g on a (symmetry broken)

ground state ψ0 (cf. the middle row of the fig-

ure). By definition, S[gψ0] = S[ψ0] still assumes its extremal value. Assuming that g is close

to the group identity, we may express g = exp[
∑

a φaTa], where the {Ta} are generators

living in the Lie algebra of the group and φa are some expansion coefficients.12 Express-

ing fluctuations around ψ0 in terms of the “coordinates” φa, we conclude that the action

S[φ] = 0. However, if we promote the global transformation to one with a weakly fluctuating

spatial profile, g → g(r), ψ0 → g(r)ψ0 (bottom row of the figure), some price must be paid.

That is, for a spatially fluctuating coordinate profile {φa(r)}, S[φ] �= 0, where the energy

cost depends inversely on the fluctuation rate λ of the field φ. The expansion of S in terms

of gradients of φ is thus bound to lead to a soft mode action of the type Eq. (6.10).

In view of their physical significance, it is important to ask how many independent soft

modes exist. The answer can be straightforwardly given on the basis of the geometric picture

developed above. Suppose our symmetry group G has dimension r, i.e. its Lie algebra is

spanned by r linearly independent generators Ta, a = 1, . . . , r. If the subgroup H ⊂ G has

dimension s < r, s of these generators can be chosen so as to leave the ground state invariant.

On the other hand, the remaining p ≡ r− s generators inevitably create Goldstone modes.

In the language of group theory, these generators span the coset space G/H. For example,

for the ferromagnet, H = O(2) is the one-dimensional subgroup of rotations around the

quantization axis (e.g. the z-axis). Since the rotation group has dimension 3, there must be

two independent Goldstone modes. These can be generated by the action of the rotation, or

angular momentum generators Jx,y acting on the z-aligned ground state. The coset space

12 Here we have used the fact that, for any reasonable model, G will be a Lie group, i.e. a group with the structure
of a differentiable manifold.
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O(3)/O(2) can be shown to be isomorphic to the 2-sphere, i.e. the sphere traced out by the

spins as they fluctuate around the ground state.

Finally, you may ask why we bothered to formulate these concepts in the abstract lan-

guage of Lie groups and generators, etc. The reason is that the connection between the

coordinates parameterizing the Goldstone modes φi, i = 1, . . . , p, residual “massive modes”

κj , j = 1, . . . , n − p, and the original coordinates ψi, i = 1, . . . , n, of the problem, respec-

tively, is usually nonlinear and sometimes not even very transparent. With problems more

complex than the three prototypical examples mentioned above, it is usually profitable to

first develop a good understanding of the geometry of the problem before specific coordinate

systems are introduced.

After these general considerations it is time to get back to the Bose system and to explore

the physical consequences of Goldstone mode formation on the level of a concrete example!

Superfluidity

The theory of the weakly interacting superfluid to be discussed below was originally con-

ceived by Bogoliubov, then in the language of second quantization.13 We will reformulate

the theory in the language of the field integrals starting with the action of the weakly inter-

acting Bose gas (6.7). Focussing on temperatures below Tc (μ > 0), let us expand the theory

around the particular mean-field ground state ψ̄0 = ψ0 = (μLd/g)1/2 = γ. (Of course, any

other state lying in the “Mexican hat” minimum of the action would be just as good.) Notice

that the quantum ground state corresponding to the configuration ψ0 is unconventional in

the sense that it cannot have a definite particle number. The reason is that, according to the

correspondence ψ ↔ a between coherent states and operators, respectively, a non-vanishing

functional expectation value of ψ0 is equivalent to a non-vanishing quantum expectation

value 〈a0〉. Assuming that, at low temperatures, the thermal average 〈. . .〉 will project onto
the ground state |Ω〉, we conclude that 〈Ω|a0|Ω〉 �= 0, i.e. |Ω〉 cannot be a state with a

definite number of particles.14

Re ψ

Im ψ

φ

δρ

S=extr.The symmetry group U(1) acts on this state by multiplication,

ψ0 → eiφψ0 and ψ̄0 → e−iφψ̄0. Knowing that the action of a weakly

modulated field φ(r, τ) will be massless, let us introduce coordinates

ψ(r, τ) = ρ1/2(r, τ)eiφ(r,τ), ψ̄(r, τ) = ρ1/2(r, τ)e−iφ(r,τ),

where ρ(r, τ) = ρ0 + δρ(r, τ) and ρ0 = ψ̄0ψ0/L
d is the condensate

density. Evidently, the variable δρ parametrizes deviations of the

field ψ(r, τ) from the extremum. These excursions are energetically costly, i.e. δρ will turn

out to be a massive mode. Also notice that the transformation of coordinates (ψ̄, ψ) → (ρ, φ),

viewed as a change of integration variables, has a Jacobian of unity.

13 N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23-32 (1947) (reprinted in D. Pines,
The Many-Body Problem, [Benjamin, 1961]).

14 However, as usual with grand canonical descriptions, in the thermodynamic limit the relative uncertainty in
the number of particles, (〈N̂2〉 − 〈N̂〉2)/〈N̂〉2, will become vanishingly small.
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INFO As we are dealing with a (functional) integral, there is a lot of freedom as to the choice

of integration parameters. (I.e., in contrast to the operator formulation, there is no a priori

constraint for a transform to be “canonical.”) However, physically meaningful changes of rep-

resentation will usually be canonical transformations, in the sense that the corresponding

transformations of operators would conserve the commutation relations. Indeed, as we have seen

in the info block starting on page 176, the operator transformation a(r) ≡ ρ̂(r)1/2 eiφ̂(r), a†(r) ≡
e−iφ̂(r) ρ̂(r)1/2, fulfills this criterion.

We next substitute the density–phase relation into the action and expand to second order

around the reference mean-field. Ignoring gradients acting on the density field (in compar-

ison with the “potential” cost of these fluctuations), we obtain

S[ρ, φ] ≈
∫

dτ

∫
ddr

[
iδρ∂τφ+

ρ0
2m

(∇φ)2 +
gρ2

2

]
. (6.11)

The first term of the action has the canonical structure “momentum× ∂τ (coordinate)”

indicative of a canonically conjugate pair. The second term measures the energy cost of

spatially varying phase fluctuations. Notice that fluctuations with φ(r, τ) = const. do not

incur an energy cost – φ is a Goldstone mode. Finally, the third term records the energy

cost of massive fluctuations from the potential minimum. Equation (6.11) represents the

Hamiltonian version of the action, i.e. an action comprising coordinates φ and momenta

ρ. Gaussian integration over the field δρ leads us to the Lagrangian form of the action

(exercise):

S[φ] ≈ 1

2

∫
dτ

∫
ddr

[
1

g
(∂τφ)

2 +
ρ0
m

(∇φ)2
]
. (6.12)

Comparison with Eq. (1.4) identifies this action as the familiar d-dimensional oscillator.

Drawing on the results of Chapter 1 (see, e.g., Eq. (1.29)), we find that the energy ωk carried

by elementary excitations of the system scales linearly with momentum, ωk = |k|(gρ0/m)1/2.

Let us now discuss the physical ramifications of these results. The actions (6.11) and (6.12)

describe the phenomenon of superfluidity. To make the connection between the fundamental

degree of freedom of a superfluid system, the supercurrent, and the phase field explicit,

let us consider the quantum mechanical current operator

ĵ(r, τ) =
i

2m

[
(∇a†(r, τ))a(r, τ)− a†(r, τ)∇a(r, τ)

]
fun. int.−→ i

2m

[
(∇ψ̄(r, τ))ψ(r, τ)− ψ̄(r, τ)∇ψ(r, τ)

]
≈ ρ0

m
∇φ(r, τ), (6.13)

where the arrow indicates the functional integral correspondence of the operator description

and we have neglected all contributions arising from spatial fluctuations of the density

profile. (Indeed, these – massive – fluctuations describe the “normal” contribution to the

current flow.)

INFOSuperfluidity is one of the most counterintuitive and fascinating phenomena displayed by

condensed matter systems. Experimentally, the most straightforward access to superfluid states

of matter is provided by the helium liquids. Representative of many other effects displayed by
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superfluid states of helium, we mention the capability of thin films to flow up the walls of a vessel

(if the reward is that on the outer side of the container a low-lying basin can be reached – the

fountain experiment) or to effortlessly propagate through porous media that no normal fluid may

penetrate. Readers interested in learning more about the phenomenology of superfluid states of

matter may refer to the seminal text by Pines and Nozières.15

The gradient of the phase variable is therefore a measure of the (super)current flow in

the system. The behavior of that degree of freedom can be understood by inspection of

the stationary phase equations – a.k.a. the Hamilton or Lagrange equations of motion –

associated with the action (6.11) or (6.12). Turning to the Hamiltonian formulation, one

obtains (exercise)

i∂τφ = −gρ+ μ, i∂τρ =
ρ0
m

∇2φ = ∇ · j.

The second of these equations represents (the Euclidean time version of) a continuity equa-

tion. A current flow with non-vanishing divergence is accompanied by dynamical distortions

in the density profile. The first equation tells us that the system adjusts to spatial fluc-

tuations of the density by a dynamical phase fluctuation. The most remarkable feature of

these equations is that they possess steady state solutions with non-vanishing current flow.

Setting ∂τφ = ∂τρ = 0, we obtain the conditions δρ = 0 and ∇ · j = 0, i.e. below the con-

densation temperature, a configuration with a uniform density profile can support a steady

state divergenceless (super)current. Notice that a “mass term” in the φ-action would spoil

this property, i.e., within our present approach, the phenomenon of supercurrent flow is

intimately linked to the Goldstone mode character of the φ field.

EXERCISE Add a fictitious mass term to the φ-action and explore its consequences. How do

the features discussed above present themselves in the Lagrange picture?

It is very instructive to interpret the phenomenology of supercurrent flow from a different,

more microscopic perspective. Steady state current flow in normal environments is pre-

vented by the mechanism of energy dissipation, i.e. particles constituting the current flow

scatter off imperfections inside the system, thereby converting part of their energy into the

creation of elementary excitations. (Macroscopically, the conversion of kinetic energy into

the creation of excitations manifests itself as heat production.) Apparently, this mechanism

is inactivated in superfluid states of matter, i.e. the current flow is dissipationless.

How can the dissipative loss of energy be avoided? Trivially, no energy can be exchanged if

there are no elementary excitations to create. In reality, this means that the excitations of the

system are energetically so high-lying that the kinetic energy stored in the current-carrying

particles is insufficient to create them. But this is not the situation that we encounter in the

superfluid! As we saw above, there is no energy gap separating the quasi-particle excitations

of the system from the ground state. Rather, the dispersion ω(k) vanishes linearly as k → 0.

However, there is an ingenious argument due to Landau showing that a linear excitation

spectrum indeed suffices to stabilize dissipationless transport.

15 D. Pines and P. Nozières, The Theory of Quantum Liquids: Superfluid Bose Liquids (Addison-Wesley, 1989).
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V

–V

p

(a)

(c)

(b)

(d)

Figure 6.4 (a) Flow of a fluid through a rough pipe. (b) The same viewed from the rest frame of
the fluid. (c) Dissipative creation of a (quasi-particle) excitation. (d) The same viewed from the
laboratory frame.

INFO Consider the flow of some fluid through a pipe (see Fig. 6.4(a)). To be concrete, let us

assume that the flow occurs at a uniform velocity V. Taking the mass (of a certain portion of the

fluid) to be M , the current carries a total kinetic energy E1 = MV2/2. Now, suppose we view

the situation from the point of view of the fluid, i.e. we perform a Galilean transformation into

its own rest frame (Fig. 6.4(b)). From the perspective of the fluid, the walls of the pipe appear

as though they were moving with velocity −V. Now, suppose that frictional forces between

fluid and the wall lead to the creation of an elementary excitation of momentum p and energy

ε(p), i.e. the fluid is no longer at rest but carries kinetic energy (Fig. 6.4(c)). After a Galilean

transformation back to the laboratory frame (Fig. 6.4(d)), one finds that the energy of the fluid

after the creation of the excitation is given by (exercise)

E2 =
MV2

2
+ p ·V + ε(p).

Now, since all of the energy needed to manufacture the excitation must have been provided by

the liquid itself, energy conservation requires that E1 = E2, or −p · V = ε(p). Since p · V >

−|p||V|, this condition can only be met if |p||V| > ε(p). While systems with a “normal” gapless

dispersion, ε(p) ∼ p2, are compatible with this energy-balance relation (i.e. no matter how

small |V|, quasi-particles of low momentum can always be excited), both gapped dispersions

ε(p)
p→0−→ const. and linear dispersions are incompatible if V becomes smaller than a certain

critical velocity V∗. Specifically for a linear dispersion ε(p) = v|p|, the critical velocity is given

by V∗ = v. For currents slower than that, the flow is necessarily dissipationless.

Let us conclude our preliminary discussion of the weakly interacting Bose gas with a very

important remark. Superficially, Eq. (6.11) and (6.12) suggest that we have managed to

describe the long-range behavior of the condensed matter system in terms of a free Gaus-

sian theory. However, one must recall that φ is a phase field, defined only modulo 2π. (In

Eq. (6.11) and (6.12) this condition is understood implicitly. At this point, it is perhaps

worth reiterating that when dealing with Goldstone modes it is important to keep the

underlying geometry in mind and not focus too tightly on a specific coordinate representa-

tion.) The fact that φ is defined only up to integer multiples of 2π manifests itself in the
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formation of the most interesting excitations of the superfluid: vortices, i.e. phase config-

urations φ(r, τ) that change by a multiple of 2π as one moves around a certain reference

coordinate, the vortex center. Existing in parallel with harmonic phonon-like excitations

discussed above, these excitations lead to a wealth of observable phenomena, to be dis-

cussed in more detail in Chapter 8. However, for the moment let us turn to the discussion

of another prominent superfluid, the condensate of Cooper pairs, more generally known as

the superconductor.

6.4 Superconductivity

Kammerlingh Onnes 1853–
1926
Nobel Laureate in Physics in
1913 “for his investigations on
the properties of matter at low
temperatures which led, inter
alia to the production of liquid
helium.” (Image c© The Nobel
Foundation.)

The electrical resistivity of many

metals and alloys drops abruptly

to zero when the material is cooled

to a sufficiently low temperature.

This phenomenon, which goes by

the name of superconductivity,

was first observed by Kammerlingh

Onnes in Leiden in 1911, three

years after he first liquefied helium.

Equally striking, a superconductor cooled below its transition temperature in a magnetic

field expels all magnetic flux from its interior. (One of the more spectacular manifesta-

tions of the field-aversion of superconductors is exemplified in the figure below: a magnet

levitated by a superconductor due to the expulsion of magnetic flux.) This phenomenon

of perfect diamagnetism is known as the Meissner effect and is characteristic of

superconductivity.

Indeed, the Meissner effect and dissipa-

tionless transport are but two of a plethora

of phenomena accompanying superconduc-

tivity.16 Along with the introduction of

more advanced theoretical machinery, a

variety of superconducting phenomena is discussed in the remainder of this text. The

present, introductory section is devoted to the formulation of the theoretical foundations

of the conventional “BCS” theory of superconductivity, cast into the language of the field

integral. Although the presentation is self-contained, our focus is on the theoretical aspects.

Depending on taste, some readers may find it useful to motivate their encounter with the

formalism developed below by first familiarizing themselves with the basic phenomenology

of the BCS superconductor.

16 In fact, it is not even appropriate to speak about the phenomenon of “superconductivity” as deriving from
the same microscopic origin: since the discovery of the class of high-temperature cuprate superconductors in
1986, it has become increasingly evident that the physical mechanisms responsible for high-temperature and
“conventional” superconductivity are likely to be strikingly different.
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Basic concepts of BCS theory

John Bardeen
1908–1991 (left),
Leon N. Cooper
1930– (center),
and John R. Schri-
effer 1931– (right)
Nobel Laureates in
Physics in 1972 for
their theory of superconductivity. (Bardeen was also awarded the
1956 Nobel Prize in Physics for his research on semiconductors
and discovery of the transistor effect.) (Images c© The Nobel
Foundation.)

Superconductivity

involves an ordered

state of conduction

electrons in a metal,

caused by the presence

of a residual attrac-

tive interaction at the

Fermi surface. The

nature and origin of

the ordering were elu-

cidated in a seminal

work by Bardeen, Cooper, and Schrieffer – BCS theory17 – some 50 years after its discovery!

At low temperatures, an attractive pairwise interaction can induce an instability of the

electron gas towards the formation of bound pairs of time-reversed states k ↑ and −k ↓ in

the vicinity of the Fermi surface.

From where does an attractive interaction between charged particles appear? In con-

ventional (BCS) superconductors, attractive correlations between electrons are due to the

exchange of lattice vibrations, or phonons: The motion of an electron through a metal causes

a dynamic local distortion of the ionic crystal. Crucially, this process is governed by two

totally different time scales. For an electron, it takes a time ∼ E−1
F to traverse the immedi-

ate vicinity of a lattice ion and to trigger a distortion out of its equilibrium position into a

configuration that both particles find energetically beneficial (top right panel of the figure).

EF
–1

∼ω  D
–1

However, once the ion has been excited it needs a time of

O
(
ω−1
D � E−1

F

)
to relax back into its equilibrium posi-

tion (middle left). Here, ωD denotes the Debye frequency,

i.e. the characteristic scale for phonon excitations. This

means that, long after the first electron has passed, a

second electron may benefit from the distorted ion poten-

tial (middle right). Only after the ion has been left alone

for a time > ω−1
D does it relax back into its equilibrium

configuration (bottom left and right). The net effect of

this retardation mechanism is an attractive interaction

between the two electrons. Since the maximum energy

scale of ionic excitations is given by the Debye frequency,

the range of the interaction is limited to energies ∼ ωD around the Fermi surface. (For a

more quantitative formulation, see Problem 4.5.) As regards the high-temperature cuprate

superconductors, the particular mechanism of pair formation remains (at the time of writ-

ing) controversial, although the consensus is that its origin is rooted in spin fluctuations.

17 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106 (1957),
162-4; Theory of Superconductivity, 108 (1957), 1175-204.
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Comprising two fermions, the electron–electron bound states, known as Cooper pairs,

mimic the behavior of bosonic composite particles.18 At low temperatures, these quasi-

bosonic degrees of freedom form a condensate which is responsible for the remarkable prop-

erties of superconductors, such as perfect diamagnetism.

To appreciate the tendency to pair formation in the electron system, consider the diagram

shown in the figure below. The region of attractive correlation is indicated as a shaded ring

of width ∼ ωD/vF. Now, consider a two-electron state |k ↑,−k ↓〉 formed by two particles

of (near) opposite momentum and opposite spin.19 Momentum conserving scattering of the

constituent particles may lead to the formation of a new state |(k + p) ↑,−(k + p) ↓〉 ≡
|k′ ↑,−k′ ↓〉 of the same, opposite-momentum structure. Crucially, the momentum transfer

k

k'

–k'

–k

EF
ω D ⁄ υF

pmay trace out a large set of values ofO(kd−1
F ωD/vF)

without violating the condition that the final states

be close to the Fermi momentum. (By contrast,

if the initial state had not been formed by parti-

cles of opposite momentum, the phase space for

scattering would have been greatly diminished.)

Remembering our previous discussion of the RPA

approximation, we recognize a familiar mechanism:

an a priori weak interaction may amplify its effect

by conspiring with a large phase space volume.

To explore this mechanism in quantitative terms,

we will adopt a simplified model defined by the

Hamiltonian

Ĥ =
∑
kσ

εkn̂kσ − g

Ld

∑
k,k′,q

c†k+q↑c
†
−k↓c−k′+q↓ck′↑, (6.14)

where g represents a (positive) constant. The Hamiltonian Ĥ should be interpreted as an

effective Hamiltonian describing the physics of a thin shell of states of width O(ωD) cen-

tered around the Fermi surface (i.e. the region where a net attractive interaction prevails).

Although a more realistic model of attraction would involve a complicated momentum-

dependent interaction such as the one obtained from the detailed consideration of the

electron–phonon interaction (see Problem 4.5), the simple constant pairing interaction cap-

tures the essential physics.20 After the trio who first explored its phenomenology, the model

Hamiltonian (6.14) is commonly referred to as the BCS Hamiltonian.

18 Strictly speaking, this identification deserves some qualification. In the superconducting context, Cooper pairs
have a length scale (the coherence length to be introduced below) which typically exceeds the average particle
spacing of the electron gas (usually by as much as three orders of magnitude). In this sense, it can be misleading
to equate a pair with a single composite particle. The interpretation of the BCS state as a Bose–Einstein
condensate of Cooper pairs is developed more fully in the problem set in the discussion of the BEC–BCS
crossover – see Problem 6.7.

19 Note that there are a minority of superconducting materials – the spin triplet superconductors – in which
electrons of equal spin are paired.

20 More importantly, to simplify our discussion, we will take the electrons to be otherwise non-interacting. In fact,
the presence of a repulsive Coulomb interaction of the electrons plays a crucial role in controlling the properties
of the superconductor. For an in-depth discussion of the role played by repulsive interactions, see A. I. Larkin and
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Now the preliminary discussion above does not explain why an attractive interaction is

so special. Nor does the discussion elucidate the phenomenological consequences of pair

scattering at the Fermi surface. In the following we will address these issues from a number

of different angles. The result will be a heuristic picture of the superconductor that will

guide us in constructing the more rigorous field integral approach below. Mainly for illus-

trative purposes, we begin our discussion with a brief perturbative analysis of Cooper pair

scattering. Proceeding in close analogy to the previous discussion of the RPA, we discover

the dramatic consequences of an attractive interaction on the ground state of the system.

(However, this part of the discussion is an optional (if instructive) element of the develop-

ment of the theory. Readers who did not yet navigate Section 5.3 may choose to skip this

part of the discussion and proceed directly to Section 6.4 where the mean-field picture of

the superconductor is developed.)

Cooper instability

To explore the fate of a Cooper pair under multiple scattering, let us consider the four-point

correlation function

C(q, τ) =
1

L2d

∑
k,k′

〈
ψ̄k+q↑(τ)ψ̄−k↓(τ) ψk′+q↓(0)ψ−k′↑(0)

〉
.

This describes the amplitude of Cooper pair propagation |k+q ↑,−k ↓〉 → |k′+q ↑,−k′ ↓〉
in an imaginary time τ and averaged over all initial and final particle momenta.21 As is

usual with problems whose solution must depend only on time differences, it is convenient

to switch to a frequency representation. With C(q) ≡ C(q, ωm) = T
∫ β

0
dτ e−iωmτC(q, τ),

where ωm denotes a bosonic Matsubara frequency, it is straightforward to verify that C(q) =
T 2

L2d

∑
k,k′

〈
ψ̄k+q↑ψ̄−k↓ψk′+q↓ψ−k′↑

〉
.

To calculate the correlation function, let us draw on the perturbative methods introduced

in Section 5.3. As with the analysis of the RPA, the density of the electron gas will play the

role of a large parameter, i.e. one must expand the correlation function in pair interaction

vertices g and retain only those terms that appear with one free momentum summation

per interaction. Summation over these contributions leads to the ladder diagram series

shown in Fig. 6.5, where the momentum labels of the Green functions are hidden for clarity.

According to the definition of the correlation function, the two Green functions entering the

ladder carry momenta k+q and −k, respectively. Momentum conservation then implies that

the Green functions defining each consecutive rung of the ladder also carry near opposite

momenta p+ q and −p, where p is a summation variable.

A. A. Varlamov, Fluctuation phenomena in superconductors, in Handbook on Superconductivity: Conventional
and Unconventional Superconductors, ed. K.-H. Bennemann and J. B. Ketterson (Springer-Verlag, 2002).

21 As with applications of the path integral discussed previously, information about the real time dynamics of
the pair can be extracted from the analytical continuation τ → it. Further, notice that the “center of mass”
momentum q of a pair 1

Ld

∑
k |k + q ↑,−k ↓〉 can be interpreted as a variable Fourier conjugate to the center

of the pair. (Exercise: Show this by inverse Fourier transform.) An equivalent interpretation of the correlation
function C is that it describes the wandering of the Cooper pair under the influence of scattering.
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C

–p,

Figure 6.5 Two-particle propagator in the presence of an (attractive) interaction. The two Green
function lines defining each rung of the ladder carry momenta p+ q and −p, respectively, where p
is a free summation variable. The vertex of the propagator, defined through the second line, obeys
the Bethe–Salpeter equation defined on the bottom right.

EXERCISE Convince yourself that the ladder diagrams shown in the figure are the only diagrams

that contain one free momentum summation per interaction vertex.

As with the previous discussion in Section 5.3, the central part of the correlation function

is described by a vertex Γ. The diagrammatic definition of that object is shown in the

bottom right part of Fig. 6.5. Translating from diagrammatic to an algebraic formulation,

one obtains the Cooper version of a Bethe–Salpeter equation Γq = g + gT
Ld

∑
p Gp+qG−pΓq,

where we have anticipated that a solution independent of the intermediate momenta can

be found. Solving this equation for Γq, we arrive at an equation structurally similar to

Eq. (5.44):

Γq =
g

1− gT
Ld

∑
p Gp+qG−p

. (6.15)

Drawing on the results of Problem 4.5, the frequency part of the summation over p gives

T

Ld

∑
p

Gp+qG−p =
1

Ld

∑
p

1− nF(ξp+q)− nF(ξ−p)

iωm + ξp+q + ξ−p

=
1

Ld

∑
p

(
1

2
− nF(ξp)

)(
1

iωm + ξp+q + ξ−p
+ (q ↔ −q)

)
,

where, in the last line, we have made use of the symmetry of the energy arguments, ξp = ξ−p.

The summation for non-zero q is left as an instructive exercise in Fermi-surface integration.

However, for the sake of our present argument, it will be sufficient to perform the sum for

zero external momentum q = (0, 0) (i.e. we will probe the fate of spatially homogeneous

and static pair configurations). Using the identity 1
Ld

∑
p F (εp) =

∫
dε ν(ε)F (ε) to replace

the momentum sum by an energy integral, and remembering that the pairing interaction is

limited to a thin shell around the Fermi surface, we then obtain

T

Ld

∑
p

GpG−p =

∫ ωD

−ωD

dε ν(ε)
1− 2nF(ε)

2ε
� ν

∫ ωD

T

dε

ε
= ν ln

(ωD

T

)
, (6.16)
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where we have used the fact that, at energies ε ∼ T , the 1/ε singularity of the integrand is

cut off by the Fermi distribution function. Substitution of this result back into the expression

for the vertex leads to the result

Γ(0,0) �
g

1− gν ln
(
ωD

T

) .
From this, one can read off essential elements of the transition to the superconducting phase.

� We first note that the interaction constant appears in combination with the density of

states, i.e. even a weak interaction can lead to sizeable effects if the density of states is

large enough. From our previous qualitative discussion it should be clear that the scaling

factor ν simply measures the number of final states accessible to the scattering mechanism

depicted in the figure on page 266.

� The net strength of the Cooper pair correlation grows upon increasing the energetic

range ωD of the attractive force or, equivalently, on lowering the temperature. Obviously,

something drastic happens when gν ln
(
ωD

T

)
= 1, i.e. when

T = Tc ≡ ωDexp

[
− 1

gν

]
.

At this critical temperature, the vertex develops a singularity. Since the vertex and the

correlation function are related by multiplication by a number of (non-singular) Green

functions, the same is true for the correlation function itself.

� As we will soon see, Tc marks the transition temperature to the superconducting state.

At and below Tc a perturbative approach based on the Fermi sea of the non-interacting

system as a reference state breaks down. The Cooper instability signals that we will have

to look for an alternative ground state or “mean-field,” i.e. one that accounts for the

strong binding of Cooper pairs.

In the next section, we explore the nature of the superconducting state from a complemen-

tary perspective.

Mean-field theory of superconductivity

The discussion of the previous section suggests that, at the transition, the system develops

an instability towards pair binding, or “condensation.” In the next section we build on

this observation to construct a quantitative approach, based on a Hubbard–Stratonovich

decoupling in the Cooper channel. However, for the moment, let us stay on a more informal

level and assume that the ground state |Ωs〉 of the theory is characterized by the presence

of a macroscopic number of Cooper pairs. More specifically, let us assume that the operator∑
k c−k↓ck↑ acquires a non-vanishing ground state expectation value,

Δ =
g

Ld

∑
k

〈Ωs|c−k↓ck↑|Ωs〉, Δ̄ =
g

Ld

∑
k

〈Ωs|c†k↑c
†
−k↓|Ωs〉, (6.17)
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where we have included the coupling constant of the theory for later convenience. The

assumption that Δ assumes non-zero values (vanishes) below (above) the transition temper-

ature Tc is tantamount to declaring Δ to be the order parameter of the superconducting

transition. However, at the present stage, this statement has the status of a mere presump-

tion; we will have to explore its validity below.

At any rate, the non-vanishing expectation value of Δ looks strange. It clearly implies

that the fermion many-body state |Ωs〉 cannot have a definite number of particles (cf. the

coherent states). However, a better way to think about the problem is to remember the

bosonic nature of the two-fermion pair state |k ↑,−k ↓〉. From this perspective, c†k↑c
†
−k↓

appears as the operator that creates a bosonic excitation. Non-vanishing of its expectation

value implies a condensation phenomenon akin to the condensates discussed in Section 6.3.

Indeed, much of the remainder of this section is devoted to the (semi-phenomenological)

construction of a “bosonic” mean-field picture of the superconductor.

To develop this description, let us substitute

∑
k

c−k+q↓ck↑ =
LdΔ

g
+

∑
k

c−k+q↓ck↑ −
ΔLd

g︸ ︷︷ ︸
small

,

into the microscopic Hamiltonian and retain only those terms that appear as bilinears in the

electron operators. Adding the chemical potential, and setting ξk = εk−μ, the “mean-field”

Hamiltonian takes the form

Ĥ − μN̂ �
∑
k

[
ξkc

†
kσckσ −

(
Δ̄c−k↓ck↑ +Δc†k↑c

†
−k↓

)]
+

Ld|Δ|2
g

,

known (in the Russian literature) as the Bogoliubov or Gor’kov Hamiltonian after its

authors (while the terminology Bogoliubov–de Gennes Hamiltonian has become more

widespread in the Anglo-Saxon literature, reflecting the promotion of the mean-field descrip-

tion by de Gennes).

k1

k2

λkIndeed, although perfectly Hermitian, the Gor’kov Hamil-

tonian does not conserve particle number. Instead, pairs of

particles are born out of, and annihilated into, the vacuum.

To bring the mean-field Hamiltonian to a diagonal form,

we proceed in a manner analogous to that of Section 2.2

(where appeared a Hamiltonian of similar structure, namely

a†a+aa+a†a†). Specifically, let us recast the fermion oper-

ators in a two-component Nambu spinor representation

Ψ†
k =

(
c†k↑, c−k↓

)
, Ψk =

(
ck↑
c†−k↓

)
,
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comprising ↑-creation and ↓-annihilation operators in a single object. It is then straightfor-

ward to show that the Hamiltonian assumes the bilinear form

Ĥ − μN̂ =
∑
k

Ψ†
k

(
ξk −Δ

−Δ̄ −ξk

)
Ψk +

∑
k

ξk +
Ld|Δ|2

g
.

Now, being bilinear in the Nambu operators, the mean-field Hamiltonian can be brought to

a diagonal form by employing the unitary transformation22

χk ≡
(

αk↑
α†
−k↓

)
=

(
cos θk sin θk
sin θk − cos θk

)(
ck↑
c†−k↓

)
≡ UkΨk,

(under which the anti-commutation relations of the new electron operators αkσ are main-

tained – exercise). Note that the operators α†
k↑ involve superpositions of c†k↑ and c−k↓, i.e.

the quasi-particle states created by these operators contain linear combinations of particle

and hole states. Choosing Δ to be real23 and setting tan (2θk) = −Δ/ξk, i.e. cos(2θk) =

ξk/λk, sin(2θk) = −Δ/λk, where

λk = (Δ2 + ξ2k)
1/2, (6.18)

the transformed Hamiltonian takes the form (exercise)

Ĥ − μN̂ =
∑
kσ

λkα
†
kσαkσ +

∑
k

(ξk − λk) +
Δ2Ld

g
. (6.19)

This result shows that the elementary excitations, the Bogoliubov quasi-particles, cre-

ated by α†
kσ, have a minimum energy Δ known as the energy gap. The full dispersion

±λk is shown in the figure above. Due to the energy gap separating filled from empty quasi-

particle states, elementary excitations are difficult to excite at low temperatures, implying

a rigidity of the ground state.

To determine the ground state wavefunction one simply has to identify the vacuum state

of the algebra {αk, α
†
k}, i.e the state that is annihilated by all the quasi-particle annihilation

operators αkσ. This condition is met uniquely by the state

|Ωs〉 ≡
∏
k

αk↑α−k↓|Ω〉 ∼
∏
k

(
cos θk − sin θkc

†
k↑c

†
−k↓

)
|Ω〉,

where |Ω〉 represents the vacuum state of the fermion operator algebra {ck, c†k}, and sin θk =√
(1− ξk/λk)/2. Since the vacuum state of any algebra of canonically conjugate opera-

tors is unique, the state |Ωs〉 must, up to normalization, be the vacuum state. From the

representation given above, it is straightforward to verify that the normalization is unity

(exercise).

22 It is instructive to compare with the previous analysis of Section 2.2 where the bosonic nature of the problem
enforced diagonalization by a non-compact pseudo-unitary transformation.

23 If Δ ≡ |Δ|eiφ is not real, it can always be made so by the global gauge transformation ca → eiφ/2ca, c
†
a →

e−iφ/2c†a. Notice the similarity to the gauge freedom that led to Goldstone mode formation in the previous
section! Indeed, we will see momentarily that the gauge structure of the superconductor has equally far-reaching
consequences.
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Finally, we need to solve Eq. (6.17) self-consistently for the input parameter Δ:

Δ =
g

Ld

∑
k

〈Ωs|c−k↓ck↑|Ωs〉 = − g

Ld

∑
k

sin θk cos θk =
g

2Ld

∑
k

Δ

(Δ2 + ξ2k)
1/2

� gΔ

2

∫ ωD

−ωD

ν(ξ)dξ

(Δ2 + ξ2)1/2
= gΔν sinh−1(ωD/Δ), (6.20)

where we have assumed that the pairing interaction g uniformly extends over an energy

scale ωD (over which the density of states ν is roughly constant). Rearranging this equation

for Δ, we obtain the important relation

Δ =
ωD

sinh(1/gν)

gν�1� 2ωDexp

(
− 1

gν

)
. (6.21)

This is the second time that we have encountered the combination of energy scales on

the right-hand side of the equation. Previously we identified Tc = ωDexp[−(gν)−1] as the

transition temperature at which the Cooper instability takes place. Our current discussion

indicates that Tc and the quasi-particle energy gap Δ at T = 0 coincide. In fact, that

identification might have been anticipated from our discussion above. At temperatures T <

Δ, thermal fluctuations are not capable of exciting quasi-particle states above the ground

state. One thus expects that Tc ∼ Δ separates a low-temperature phase, characterized by the

features of the anomalous pairing ground state, from a “Fermi-liquid-like” high-temperature

phase where free quasi-particle excitations prevail.

In the mean-field approximation, the ground state |Ωs〉 and its quasi-particle excitations

formally diagonalize the BCS Hamiltonian. Before proceeding with the further development

of the theory, let us pause to discuss a number of important properties of these states.

Ground state

sin2 θk cos2 θk

0

In the limit Δ → 0, sin2 θk → θ(μ − εk), and

the ground state collapses to the filled Fermi sea

with chemical potential μ. As Δ becomes non-

zero, states in the vicinity of the Fermi surface

rearrange themselves into a condensate of paired

states. The latter involves the population of

single-particle states with energy εk > μ. (This follows simply from the energy dependence

of the weight function sin θk entering the definition of the ground state – see the figure.)

However, it is straightforward to show that, for any value g > 0, the total energy of the

ground state, E|Ωs〉 ≡ 〈Ωs|Ĥ − μN̂ |Ωs〉 =
∑

k(ξk − λk) + Δ2Ld/g, is lower than the energy

E0 ≡ 2
∑

|k|<pF
ξk of the Fermi sphere when g = 0:

EXERCISE To show that E|Ωs〉 < E0, it is convenient to represent the ground state energy of

the Fermi sea as E0 = limΔ→0 E|Ωs〉. Use this representation (and the solution of the mean-

field equation) to verify that the superconductor ground state energy lies below that of the

uncorrelated Fermi sea. It is also instructive to ask for the minimum value E|Ωs〉 may assume
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upon variation of Δ for fixed g. Show that the solution of the variational equation ∂ΔE|Ωs〉 = 0

leads back to the mean-field equation for Δ discussed above.

Excitations

It is very important to distinguish between quasi-particle states and “excitations.” Quasi-

particle states are the eigenstates of the BCS Hamiltonian. Their energy–momentum relation

is shown in the figure on page 271. Notice that there is a positive– and a negative–energy

branch of quasi-particles. In the limit Δ → 0, the quasi-particles evolve into ordinary

electrons. By contrast, the energy of excitations (as created by the operators α†
k) is always

positive. An excitation can be either the creation of a quasi-particle at positive energy

or the elimination of a quasi-particle (the creation of a quasi-hole) at negative energy.

(In the ground state, all negative-energy quasi-particle states are filled.) As Δ → 0, the

excitation operators evolve into the operator algebra introduced in Eq. (2.21). Notice that

the total number of excitations is equal to the number of quasi-particle states. However,

their density of states (non-vanishing for positive energies only) is twice as large. This is

because the dispersion of excitations is obtained by superimposing the positive branch of the

quasi-particle spectrum on the sign-inverted negative branch. For a particle–hole symmetric

system, the quasi-particle spectrum is invariant under sign inversion, which implies that the

two branches contribute equally to the density of excitations.

After these general remarks we turn to the specific

discussion of the excitations of the BCS superconduc-

tor. According to Eq. (6.19), the excitation spectrum is

gapped, i.e. it takes a minimum energy Δ to create an

excitation above the BCS ground state; the formerly

(g = 0) continuous spectrum has acquired a gap. To

better understand the profile of the spectrum, let us

compute the density of excitations ρ(ε),24 in the vicin-

ity of the Fermi surface, ε ≈ μ:

ρ(ε) =
1

Ld

∑
kσ

δ(ε− λk) =

∫
dξ

1

Ld

∑
kσ

δ(ξ − ξk)︸ ︷︷ ︸
ν(ξ)

δ(ε− λ(ξ))

≈ ν
∑
s=±1

∫ ∞

0

dξ
δ
(
ξ − s[ε2 −Δ2]1/2

)∣∣∂ξ[ξ2 +Δ2]1/2
∣∣ = 2νΘ(ε−Δ)

ε

(ε2 −Δ2)1/2
.

A schematic plot of the BCS quasi-particle density of states is shown in the figure above.

It is apparent that the spectral weight of the quasi-particles has been transferred from

the Fermi surface to the interval [Δ,∞]. The divergence at Δ signals that the majority of

quasi-particle states populate the spectral region just above the gap.

24 To distinguish the density of states of the quasi-particles (ν) from that of the excitations, we denote the latter
by ρ.
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EXERCISE Integrate the result above to confirm that
∫ E

Δ
dε ρ(ε)

E�Δ−→ 2Eν. This demonstrates

that the excitation density of states is indeed twice as large as that of the quasi-particles.

The phenomenological analysis above explains important aspects of the physics of the BCS

superconductor: the instability towards condensation, and the presence of a gap for quasi-

particle excitations above the ground state. Indeed, it would be tempting to take the latter

phenomenon as an explanation for the absence of electric resistivity below the transition

temperature, i.e. if no low-lying quasi-particle excitations are available, should not external

current be able to flow through the system without energy dissipation? Yet that picture

neglects the most important excitation of the system, i.e. the collective phase mode. Above

we made the ad hoc decision to set the phase of the order parameter to zero. However,

as with the superfluid, the phase represents a Goldstone mode and we must expect its

presence to have important consequences. Indeed, it will turn out that the phase mode of the

superconductor – in contrast to its counterpart in the “neutral” superfluid – is responsible

for much of the electromagnetic phenomena displayed by the superconductor.

INFO The discussion above may convey the impression that the amplitude of the supercon-

ducting order parameter is spatially uniform, with a value set by the mean field equation. It is

important to realize, however, that there are superconductor species for which |Δ| exhibits strong
fluctuations in space. Since it is the amplitude of the order parameter that determines the size

of the quasi-particle gap, fluctuations of |Δ| lead to important phenomenological consequences,

especially if there are regions for which |Δ| → 0.

Without question the most important class of superconductors with spatially varying order

parameters are the d-wave superconductors. Firstly, practically all high temperature super-

conductors belong to this family, i.e. d-wave superconductivity is a field of profound interest from

both a fundamental and an applied point of view. Secondly, the physical properties of the d-wave

superconductor differ drastically from those of conventional superconductors. The reason is that

it is “gapless” in the sense that its Brillouin zone contains four distinct points at which the order

parameter vanishes. These “hot spots” are exceptional in that quasi-particles of arbitrarily low

energy coexist with the order parameter condensate. The list of many exotic phenomena induced

by this coexistence – for a detailed discussion of which we refer to the literature – includes

unconventional heat conduction and anomalous Josephson and Meissner effects.

EXERCISE The order parameter of a lattice d-wave superconductor is given by Δk =

Δ0(cos(kxa) − cos(kya)), where k = (kx, ky)
T is a two-dimensional lattice momentum and a

the lattice spacing.25 At two lines in momentum space, kx = ±ky, the order parameter vanishes

and low-energy quasi-particles persist. Assuming that the kinetic energy of the lattice problem

is given by tk = −t(cos(kxa) + cos(kya)), compute the quasi-particle energies of the Bogoliubov

Hamiltonian Ĥ =
∑

k Ψ†
k((tk−μ)σ3+Δkσ1)Ψk. Show that, at four points in the Brillouin zone,

25 The origin of the designation “d-wave” is that it transforms like an l = 2 angular momentum state (sign change
under a 90◦ rotation) under the action of the rotation group. On the same basis, ordinary superconductors
are sometimes called s-wave superconductors. Less frequently occurring are superconductors of p-wave or other
angular momentum symmetry.
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k = (±1,±1)π/2a, the quasi-particle energy vanishes. Linearize the Hamiltonian in momentum

space around one of these “hot spots,” say (+1,+1)π/2a, to show that it assumes the form

Ĥ++ =

(
ta(kx + ky) Δ0a(kx − ky)
Δ0a(kx − ky) −ta(kx + ky)

)
.

Apply a unitary transformation to bring Ĥ++ to the form of a two-dimensional Dirac Hamil-

tonian Ĥ++ → k1σ1 + k2σ2, where k1/2 = kx ∓ ky, and we have rescaled k1 → (Δ0/t)k1 and set

vF = 1. Show that the quasi-particle density of states of this Hamiltonian is given by ν(ε) ∼ |ε|.

From a modern perspective, a comprehensive picture of the superconductor, encompassing

the consequences of Goldstone mode formation, and the BCS structures discussed above,

is most efficiently developed within the field integral approach. It is to this framework that

we now turn.

Superconductivity from the field integral

To investigate the BCS transition within the framework of the coherent state path integral,

we start out from a coordinate representation of the BCS Hamiltonian (6.14),

ĤBCS =

∫
ddr c†σ(r)

[
1

2m
(−i∇− eA)2 + eφ− μ

]
cσ(r)− g

∫
ddr c†↑(r)c

†
↓(r)c↓(r)c↑(r),

where, once again, summation over repeated spin indices is implied. Anticipating the emer-

gence of non-trivial electromagnetic phenomena, we have coupled the single-particle Hamil-

tonian to a vector potential A and a scalar potential φ. The origin and physical conse-

quences of these fields are discussed somewhat later. Expressed in the form of the coherent

state path integral, the corresponding quantum partition function takes the form Z =∫
D(ψ̄, ψ) e−S[ψ̄,ψ],26

S[ψ̄, ψ] =

∫ β

0

dτ

∫
ddr

[
ψ̄σ

(
∂τ + ieφ+

1

2m
(−i∇− eA)2 − μ

)
ψσ − gψ̄↑ψ̄↓ψ↓ψ↑

]
,

(6.22)

where ψ(r, τ) denote Grassmann fields.

INFO In the field theoretical literature, the substitution

∂τ → ∂τ + ieφ, −i∇ → −i∇− eA, (6.23)

is sometimes called a minimal coupling of an electromagnetic field. It is “minimal” in the

sense that only orbital and potential coupling of the field are taken into account. (For exam-

ple, the field–spin interaction is neglected.) At the same time, the potential–vector-potential

coupling is complete enough to endow the theory with a local gauge invariance under U(1)

transformations

ψ → eiθψ, ψ̄ → e−iθψ̄, φ → φ− e−1∂τθ, A → A+ e−1∇θ, (6.24)

26 Notice that the Eucilidean character of the imaginary time theory is responsible for the additional factor of
“i,” i.e. as our φ transforms like a time-derivative under Wick rotation, it is given by (−i)× the conventional
scalar potential.
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where θ = θ(τ,x) is an arbitrary space/time-dependent phase configuration. The minimal cou-

pling introduces the general quantum electrodynamical gauge principle into the theory. This

should be compared with the discussion of the neutral superfluid where only invariance under

global U(1) transformations was required.

In the following, we will often use units wherein e = 1.

As usual the quartic interaction of the fields prevents the partition function from being

evaluated explicitly. Moreover, anticipating the existence of a transition of the electron gas

to a condensed phase in which electrons in the vicinity of the Fermi surface are paired, we

can expect that a perturbative expansion in the coupling constant g will be inadequate.

Motivated by the mean-field theory discussed above, we will instead introduce a bosonic

field Δ to decouple the interaction, which will have the physical significance of the order

parameter. The decoupling is arranged using a Hubbard–Stratonovich transformation in

the Cooper channel (cf. the discussion on page 244)

exp

)
g

∫
dτ ddr ψ̄↑ψ̄↓ψ↓ψ↑

*
=

∫
D(Δ̄,Δ) exp

)
−

∫
dτ ddr

[
1

g
|Δ|2 −

(
Δ̄ψ↓ψ↑ +Δψ̄↑ψ̄↓

)]*
,

where Δ(r, τ) represents a dynamically fluctuating complex field. Reflecting the behavior

of the bilinear ψ↓ψ↑, it obeys the periodic boundary condition, Δ(0) = Δ(β), i.e. Δ is

a bosonic field variable. Were we to take Δ to be homogeneous in space and time, the

quantum Hamiltonian corresponding to the action would coincide with that of the mean-field

Hamiltonian considered in the previous section. Following that analysis (but not making

the a priori assumption Δ(r, τ) = const.) we turn to the Nambu spinor representation

Ψ̄ =
(
ψ̄↑ ψ↓

)
, Ψ =

(
ψ↑
ψ̄↓

)
,

comprising particle and hole degrees of freedom in a single object. Expressed in terms of

the Nambu spinor, the partition function takes the form

Z =

∫
D(ψ̄, ψ)

∫
D(Δ̄,Δ) exp

)
−

∫
dτ ddr

[
1

g
|Δ|2 − Ψ̄Ĝ−1Ψ

]*
,

where

Ĝ−1 =

⎛⎜⎝
[
Ĝ

(p)
0

]−1

Δ

Δ̄
[
Ĝ

(h)
0

]−1

⎞⎟⎠ , (6.25)

is known as the Gor’kov Green function, and [Ĝ
(p)
0 ]−1 = −∂τ−ieφ− 1

2m (−i∇−eA)2+μ,

[Ĝ
(h)
0 ]−1 = −∂τ + ieφ+ 1

2m (+i∇− eA)2 − μ represent the non-interacting Green functions

of the particle and hole respectively.

INFO Computing the Ψ-representation of the action for a general single-particle Hamiltonian

Ĥ, one finds that [Ĝ
(p)
0 ]−1 = −∂τ − Ĥ + μ, [Ĝ

(h)
0 ]−1 = −∂τ + ĤT − μ. (With ∇T = −∇, the

expression above is identified as a special case of the more general form.) This representation is
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actually very revealing: it tells us that the Green function of a hole is obtained from that of the

electron by a sign change Ĥ → −Ĥ (the energy of a hole is the negative of the corresponding

particle energy) followed by transposition −Ĥ → −ĤT , i.e. a quantum time reversal operation

(a hole can be imagined as a particle propagating backwards in time). Noting that p̂T = −p̂

and x̂T = x̂, the pair of Green functions can equivalently be represented through

[Ĝ
(p)
0 ]−1 = −∂τ − Ĥ(x̂, p̂) + μ, [Ĝ

(h)
0 ]−1 = −∂τ + Ĥ(x̂,−p̂)− μ. (6.26)

Bilinear in Ψ, the Gaussian integration over the Grassmann fields can now be performed

straightforwardly, and yields the formal expression (cf. the analogous formula (6.4) for the

normal electron system)

Z =

∫
D(Δ̄,Δ) exp

[
−1

g

∫
dτ ddr |Δ|2 + ln det Ĝ−1

]
. (6.27)

By introducing a Hubbard–Stratonovich decoupling of the local interaction, we have suc-

ceeded in expressing the quantum partition function as a path integral over an auxiliary

bosonic field Δ. Further progress is possible only within some approximation.

Mean-field theory

To identify a suitable “platform” around which the action can be expanded perturba-

tively, we begin by identifying the mean-field configurations of Δ. A variation of the

action with respect to Δ generates the mean-field equation (for the differentiation of the

“tr ln” with respect to Δ we refer to the analogous calculation in Eq. (6.5)), g−1Δ̄(τ,x)−
tr

[
Ĝ(τ,x; τ,x)Eph

12

]
= 0, where Eph

ij is a 2× 2 matrix in Nambu space that takes the value

of unity at position (i, j) and is zero otherwise. Assuming that configurations extremizing

the action will be spatially and temporally homogeneous, i.e Δ(τ,x) ≡ Δ0 = const., and,

temporarily ignoring the dependence of the Green function on the field (φ,A), the equation

simplifies to

1

g
Δ̄0 = tr

⎡⎣(−∂τ + ∇2

2m + μ Δ0

Δ̄0 −∂τ − ∇2

2m − μ

)−1

(τ,x; τ,x)

(
1

0

)⎤⎦
=

T

Ld

∑
p,n

(
iωn − ξp Δ0

Δ̄0 iωn + ξp

)−1

21

=
T

Ld

∑
p,n

Δ̄0

ω2
n + ξ2p + |Δ0|2

,

where, in the second line, we have switched to a frequency–momentum representation and,

as usual, ξp = p2/2m − μ. Rearranging the equation, we arrive at 1
g = T

Ld

∑
p,n

1
ω2

n+λ2
p
,

where λp = (ξ2p+Δ2
0)

1/2 > 0 (cf. Eq. (6.18)). The Matsubara summation can be performed

by means of the summation techniques discussed on page 170 (see also the problem set of

Chapter 4), after which one obtains,

1

g
=

1

Ld

∑
p

1− 2nF(λp)

2λp
=

∫ ωD

−ωD

dξ
1

Ld

∑
p

δ(ξ − ξp)︸ ︷︷ ︸
ν(ξ)

1− 2nF(λ(ξ))

2λ(ξ)
,
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where we have taken into account the fact that the range of the attractive interaction is

limited by ωD. Noting that the integrand is even in ξ, and making use of the identity

1− 2nF(ε) = tanh(ε/2T ), we arrive at the celebrated BCS gap equation

1

gν
=

∫ ωD

0

dξ
tanh(λ(ξ)/2T )

λ(ξ)
, (6.28)

where, as usual, we have assumed that the density of states ν(ξ) � ν is specified by its value

at the Fermi surface. For temperatures T � Δ0, we may approximate tanh(λ/2T ) � 1 and

we arrive back at the T = 0 gap equation (6.20) analyzed above. However, here we wish to be

more ambitious and explore the fate of the gap as the temperature is increased. Intuitively,

one would expect that, for large temperatures, thermal fluctuations will eventually wash out

the gap. On the other hand, we know empirically that the onset of superconductivity has the

character of a second order phase transition (see Chapter 8). Since the gap parameter Δ0

has the status of the order parameter of the transition – an identification to be substantiated

shortly – we must expect that the vanishing of Δ0(T ) occurs in a singular manner (in

analogy to, e.g., the magnetization of a ferromagnet at the Curie temperature). Indeed,

it turns out (see Problem 6.7) that the order parameter vanishes abruptly at the critical

temperature of the BCS transition,

Tc = const.× ωDexp

[
− 1

gν

]
, (6.29)

where the numerical constant is O(1). Notice that this result is consistent with our pertur-

bative analysis above. For temperatures slightly smaller than Tc (see Problem 6.7),

Δ0 = const.×
√
Tc(Tc − T ), (6.30)

scales as the square root of (Tc−T )/Tc, i.e. the vanishing occurs with a diverging derivative,

as is typical for second-order phase transitions. The interpolated temperature profile of

the order parameter is shown in Fig. 6.6. Notice that (again, up to numerical factors) the

critical temperature Tc coincides with the zero-temperature value of the gap Δ0(0). The

square-root profile of the gap function has been accurately confirmed by experiment (see

Fig. 6.6).

Having explored the large-scale profile of the gap function, we next turn our attention to

the vicinity of the superconductor transition, i.e. to temperature regions δT = Tc −T � T .

Ginzburg–Landau theory

In the vicinity of the phase transition, the gap parameter Δ is small (in comparison with the

temperature). This presents the opportunity to perturbatively expand the action (6.27) in

Δ. We will see that the expansion reveals much about the character of the superconducting

transition and the nature of the collective excitations. Further, the expansion will make the

connection to the neutral superfluid (as well as important differences) explicit.

To keep the structure of the theory as transparent as possible, we will continue to ignore

the coupling to the external field. Our task thus reduces to computing the expansion of
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Figure 6.6 Measurements of ultrasonic attenuation in a superconductor provide access to the ratio
Δ(T )/Δ(0). The data here show the comparison of a tin alloy with the predicted square-root depen-
dence of the mean-field theory. (Reprinted with permission from R. W. Morse and M. V. Bohm,
Superconducting energy gap from ultrasonic attenuation measurements, Phys. Rev. 108 (1957),
1094–6. Copyright (1957) by the American Physical Society.)

tr ln Ĝ−1 in powers of Δ. To facilitate the expansion, let us formally define Ĝ−1
0 ≡ Ĝ−1|Δ=0,

and set Δ̂ ≡
(

Δ
Δ̄

)
, so that

tr ln Ĝ−1 = tr ln
[
Ĝ−1
0 (1 + Ĝ0Δ̂)

]
= tr ln Ĝ−1

0︸ ︷︷ ︸
const.

+ tr ln [1 + Ĝ0Δ̂].︸ ︷︷ ︸
−

∑∞
n=0

1
2n tr(Ĝ0Δ̂)2n

Here we have used the relation tr ln [ÂB̂] = tr ln Â+tr ln B̂.27 Further, note that only even

contributions in Δ̂ survive. The constant contribution tr ln Ĝ−1
0 recovers the free energy of

the non-interacting electron gas and, for present purposes, provides an inessential contribu-

tion to the action.

To give this formal expansion some meaning, let us consider the second-order term in

more detail. By substituting the explicit form of Ĝ−1
0 it is straightforward to verify that

−1

2
tr (Ĝ0Δ̂)2 = −tr

(
[Ĝ0]11Δ[Ĝ0]22Δ̄

)
= −

∑
q

T

Ld

∑
p

[Ĝ0,p]11[Ĝ0,p−q]22︸ ︷︷ ︸
− T

Ld

∑
p GpG−p+q

Δ(q)Δ̄(q),

where we have made use of the representation of the composite Green function Ĝ0 in terms

of the single-particle Green function G
(p)
p = Gp and the hole Green function G

(h)
p = −G

(p)
−p =

27 Notice that the relation tr ln [ÂB̂] = tr ln Â + tr ln B̂ applies to non-commutative matrices.
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−G−p (cf. Eq. (6.26)). On combining with the first term in Eq. (6.27), we arrive at the

quadratic action for the order parameter field,

S(2)[Δ, Δ̄] =
∑
q

Γ−1
q |Δ(q)|2, Γ−1

q =
1

g
− T

Ld

∑
p

GpG−p+q. (6.31)

This is our second encounter with the vertex function Γ−1
q : in our perturbative analysis

of the Cooper channel (cf. Eq. (6.15)) we had identified the same expression. To appre-

ciate the connection we should let the dust of our current technical operations settle and

revise the general philosophy of the Hubbard–Stratonovich scheme. The field Δ was intro-

duced to decouple an attractive interaction in the Cooper channel. By analogy with the

field φ used in the development of the RPA approximation to the direct channel, the action

of the field Δ ∼ ψ̄↑ψ̄↓ can be interpreted as the “propagator” of the composite object

ψ̄↑ψ̄↓, i.e. a quadratic contraction ∼ 〈Δ̄Δ〉 describes propagation in the Cooper channel

∼ 〈ψ̄↑ψ̄↓ψ↓ψ↑〉, as described by a four-point correlation function. This connection is made

explicit by comparison of the quadratic action with the direct calculation of the Cooper

four-point function above.

However, in contrast to our discussion in Section 6.4 (where all we could do was to

diagnose an instability as Γ−1
q=0 → 0), we are now in a position to comprehensively explore

the consequences of the symmetry breaking. Indeed, Γ−1
q=0 → 0 corresponds to a sign change

of the quadratic action of the constant order parameter mode Δ(q = 0). In the vicinity of

this point, the constant contribution to the action must scale as ∼ (T −Tc) from which one

may conclude that the action assumes the form

S(2)[Δ, Δ̄] =

∫
dτ ddr

r(T )

2
|Δ|2 +O(∂Δ, ∂τΔ),

where r(T ) ∼ T − Tc and O(∂Δ, ∂τΔ) denotes temporal and spatial gradients whose role

will be discussed shortly.

EXERCISE Use Eq. (6.16) and the expansion

nF(ε, T )− nF(ε, Tc) � (T − Tc)∂T |T=TcnF(ε, T ) = −∂�nF(ε, Tc)(T − Tc)
ε

T
,

to show that r(T ) = νt where t = T−Tc
Tc

defines the reduced temperature.

For temperatures below Tc, the quadratic action becomes unstable and – in direct analogy

with our previous discussion of the superfluid condensate action – we have to turn to

the fourth-order contribution, S(4), to ensure stability of the functional integral (see the

figure below where the upper/lower surface corresponds to temperatures above/below the

transition). At orders n > 2 of the expansion, spatial and temporal gradients can be safely
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neglected (due to the smallness of Δ � T , they will certainly be smaller than the gradient

contributions to S(2)). For Δ = const., it is straightforward to verify that

S(2n) =
1

2n
tr (Ĝ0Δ̂)2n =

(−)n

2n

∑
p

(GpG−p)
n |Δ|2n � ν|Δ|2n

2n

∑
ωl

∫ ωD

−ωD

dξ

(ω2
l + ξ2)n

= const.× ν|Δ|2n
∑
ωl

1

ω2n−1
l

= const.× νT

(
|Δ|
T

)2n

,

S

Im Δ

Re Δ

where “const.” denotes only numerical con-

stant factors. Once again, in the second

equality, we have expressed the Gor’kov Green

function through the respective particle and

hole Green functions, and in the fourth equal-

ity we have noticed that, for ωD � T , the

integral over the energy variable is dominated

by the infrared divergence at small ξ, i.e.∫ ωD

0
dξ (ω2

l + ξ2)−n �
∫∞
ωl

dξ ξ−2n. This esti-

mate tells us that the contributions of higher order to the expansion are (i) positive and

(ii) small in the parameter |Δ|/T � 1. This being so, it is sufficient to retain only the

fourth-order term (to counterbalance the unstable second-order term). We thus arrive at

the effective action for the order parameter,

S[Δ, Δ̄] =

∫
dτ ddr

(
r(T )

2
Δ̄Δ + u(ΔΔ̄)2 +O(∂Δ, ∂τΔ, |Δ|6)

)
, (6.32)

valid in the vicinity of the transition.28 In particular, one may note (see the figure above)

that the dependence of the action on (a constant) Δ mimics closely that of the condensate

amplitude.

INFO It is straightforward to include finite spatial gradients in the derivation of the quadratic

action S(2) (for details see Problem 6.7). The resulting action for static but spatially fluctuating

configurations Δ(r) takes the form

SGL[Δ, Δ̄] = β

∫
ddr

[ r
2
|Δ|2 + c

2
|∂Δ|2 + u|Δ|4

]
, (6.33)

where c ∼ ρ0(vF/T )
2. This result is known as the (classical) Ginzburg–Landau action of

the superconductor. It is termed “classical” because (cf. our remarks on page 255) temporal fluc-

tuations of Δ have been ignored. Notice that the form of the action might have been anticipated

on symmetry grounds alone. Indeed, Eq. (6.33) was proposed by Ginzburg and Landau as an

effective action for superconductivity some years before the advent of the microscopic theory.29

28 Here, the coupling constant u ∼ ρT−3 shows only a weak temperature dependence in the vicinity of the
transition.

29 V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20 (1950), 1064–82.
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A generalization of the action to include temporal fluctuations leads to the time-dependent

Ginzburg–Landau theory, to be discussed below.

Equation (6.32) makes the connection between the superconductor and superfluid explicit

(cf. the condensate action (6.9)). Above Tc, r > 0 and the unique mean-field configuration

extremizing the action (6.32) is given by Δ = 0. However, below the critical temperature,

r < 0 and a configuration with non-vanishing Cooper pair amplitude Δ0 is energetically

favorable:

δS[Δ, Δ̄]

δΔ

∣∣∣∣
Δ=Δ0

= 0 ⇒ Δ̄0

(r
2
+ 2u|Δ0|2

)
= 0 ⇒ |Δ0| =

√
−r

4u
∼

√
Tc(Tc − T ),

cf. the previous estimate Eq. (6.30). As with the superfluid, the mean-field equation deter-

mines only the modulus of the order parameter while the phase remains unspecified. Below

the transition, the symmetry of the action will be broken by the formation of a ground state

with fixed global phase, e.g. Δ0 ∈ R. This entails the formation of a phase-like Goldstone

mode θ, where configurations Δ = e2iθΔ0 explore deviations from the reference ground-

state.30 Pursuing further the parallels with the superfluid, it would be tempting to conjec-

ture that these phase fluctuations have a linear dispersion, i.e. that the system supports

dissipationless supercurrents of charged particles: superconductivity.

However, at this point, we have overstretched the analogies to our previous discussion. In

fact, the argument above ignores the fact that the symmetry broken by the ground state of

the superfluid was a global phase U(1). However, as explained on page 276, the microscopic

action of the superconductor possesses a more structured local gauge U(1) symmetry. As

we will discuss presently, this difference implies drastic phenomenological consequences.

Action of the Goldstone mode

The ramifications of the local gauge symmetry can only be explored in conjunction with

the electromagnetic field (φ,A). We must, therefore, return to the ancestor action (6.27)

where G now represents the full Gor’kov Green function (6.25). For the present, there is no

need to specify the origin of the electromagnetic field; it might represent an external exper-

imental probe, or the background electromagnetic field controlled by the vacuum action,

i.e. SE.M. = 1
4

∫
dτ ddr FμνFμν , where Fμν = ∂μAν − ∂νAμ is the electromagnetic field

tensor.31 However, throughout, we will assume that the field is weak enough not to destroy

the superconductivity, i.e. the mean modulus of the order parameter is still given by the

value Δ0, as described by the analysis of the previous section.

How, then, might an action describing the interplay of the phase degree of freedom and

the electromagnetic field look? Below we will derive such an action explicitly by starting

from the prototype Eq. (6.27). However, for the moment, let us stay on a less rigorous level

30 The motivation for transforming by 2θ is that, under a gauge transformation ψ̄ → eiθψ̄, the composite field
Δ ∼ ψ̄ψ̄ should acquire two phase factors. However, the introduction of that muliplicity factor is, of course,
just a matter of convention; it can always be removed by a rescaling of the field θ.

31 Notice that we are working within the framework of imaginary (Euclidean) time field theory, i.e. the definition
of the field strength tensor does not involve the Minkowski metric (cf. the discussion on page 107).
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and try to determine the structure of the action by symmetry reasoning. In doing so, we

will be guided by a number of principles:

� The phase θ is a Goldstone mode, i.e. the action cannot contain terms that do not vanish

in the limit θ → const.

� We will assume that gradients acting on the phase θ (but not necessarily the magnitude

of the phase) and the electromagnetic potentials are small. That is, we will be content

with determining the structure of the action to lowest order in these quantities.

� By symmetry, the action must not contain terms with an odd number of derivatives or

mixed gradients of the type ∂τθ∇θ. Respecting the character of the microscopic model,

the action must be rotationally invariant.

� The action must be invariant under the local gauge transformation Eq. (6.24).

It may be confirmed that the first three criteria would be satisfied by the trial action

S[θ] =

∫
dτddr

[
c1(∂τθ)

2 + c2(∇θ)2
]
,

where c1 and c2 are constants. However, such an action is clearly not invariant under a

gauge shift of the phase, θ(τ, r) → θ(τ, r) + ϕ(τ, r). It can, however, be endowed with that

quality by minimal substitution of the electromagnetic potential, i.e.32

S[θ,A] =

∫
dτ ddr

[
c1(∂τθ + φ)2 + c2(∇θ −A)2

]
. (6.34)

To second order in gradients, this action uniquely describes the energy cost associated

with phase fluctuations. When combined with the action SE.M. controlling fluctuations of

the field (φ,A), it should provide a general description of the low-energy electromagnetic

properties of the superconductor. Notice, however, that the present line of argument does

not fix the coupling constants c1,2. In particular, one cannot exclude the possibility that

c1 or c2 vanishes (as would be the case, for example, in a non-superconducting system,

cf. the problem set). To determine the values of c1,2, we need either to derive the action

microscopically or to invoke further phenomenological input (see the Info block below).

Either way one obtains c2 = ns/2m and c1 = ν, where we have defined ns as the density of

the Cooper pair condensate. (For a precise definition, see below.) In the following section

we use the action (6.34) as a starting point to discuss the characteristic and remarkable

electromagnetic phenomena displayed by superconductors.

INFO Beginning with coefficient c2, let us briefly discuss the phenomenological derivation

of the coupling constants. The starting point is the observation that the functional derivative,

〈 δS
δA(τ,r)

〉 = 〈j(τ, r)〉, generates the expectation value of the current density operator. This relation

follows quite generally from the fact that a vector potential couples to the action of a system of

charged particles i = 1, . . . , N through the relation

SA ≡
∫

dτ
∑
i

ṙi ·A(ri) =

∫
dτddr

∑
i

δ(r− ri)ṙi ·A(τ, r).

32 To keep the notation simple, we will henceforth set e = 1.
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However, j = δS
δA(τ,r)

=
∑

i δ(r − ri(τ))ṙi(τ) is just the definition of the total particle current

density. Indeed, it is straightforward to verify that, on the microscopic level (cf., e.g., Eq. (6.22)),〈
δS

δA

〉
= − e

2m

〈
ψ̄σ(−i∇−A)ψσ + [(i∇−A)ψ̄σ]ψσ

〉
≡ 〈j〉,

where j is the quantum current density operator. Staying for a moment on the microscopic side

of the theory, let us assume that a certain fraction of the formerly uncorrelated electronic states

participate in the condensate, i.e. one may write j = jn + js, where jn, the current carried by

the normal states of the system, will not be of further concern to us, while js is the “supercur-

rent” carried by the condensate. Let us further assume that those states ψs participating in the

condensate carry a ‘collective’ phase θ with a non-vanishing average, i.e. ψs = eiθψ̃s, where the

states ψ̃s do not carry any structured phase information (the residual phase carried by the local

amplitude ψ̃s tends, on average, to zero). Then, concentrating on the phase information carried

by the condensate and neglecting density fluctuations,〈
δS

δA

〉
� 〈js〉 � −ns

m
〈∇θ −A〉 ,

where ns ≡ ψ̄sψs is the density of the condensate.

Now, let us evaluate the fundamental relation
〈

δS
δA

〉
= 〈j〉 on our trial action with its undeter-

mined coupling constants:

〈j〉 !
=

〈
δS[Ã]

δA

〉
= −2c2〈∇θ −A〉.

Comparison with the phenomenological estimate for the expectation value of the (super)current

operator above leads to the identification c2 = ns/2m. Turning to the coupling constant c1, let

us assume that the electron system has been subjected to a weak external potential perturbation

φ(τ, r). Assuming that the potential fluctuates slowly enough to allow an adiabatic adjustment

of the electron density (i.e. that it acts as a local modulation of the chemical potential), the

particle density of the system would vary as

δn(τ, r) = δn(μ+ φ(τ, r)) ≈ ∂n

∂μ
φ(τ, r) ≈ νφ(τ, r),

where we have approximately33 identified ∂μn with the single-particle density of states ν. The

potential energy corresponding to the charge modulation is given by
∫
ddr φ(τ, r)δn(τ, r) =

∂μn
∫
ddr φ2(τ, r). Comparing this expression with our trial action – which contains the time-

integrated potential – we conclude that c1 = ∂μn = ν.

Despite the integrity of the phenomenological arguments given above, some may feel ill at ease

with all the liberal distribution of “assumes.” To complement this discussion, let us now recover

the phase action using an explicit microscopic derivation. The construction detailed below

represents a typical yet, until now, our most advanced “case study” of a low-energy quantum field

theory. Although formulated for the specific example of the BCS superconductor, many of its

structural sub-units appear in other applications in basically the same form. This “universality”

is our prime motivation for presenting the lengthy construction of the low-energy phase action of

33 For systems with strong inter-particle correlations, the thermodynamic density of states ∂μn = 1

Ld ∂μN

may deviate significantly from the single-particle density of states ν = 1

Ld

∑
a δ(εa − μ).
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the superconductor in some detail. Our starting point is the Gor’kov Green function appearing

under the “tr ln” of the microscopic action (6.27),

Ĝ−1 =

(
−∂τ − iφ− 1

2m
(−i∇−A)2 + μ Δ0e

2iθ

Δ0e
−2iθ −∂τ + iφ+ 1

2m
(−i∇−A)2 − μ

)
,

coupled to the full electromagnetic potential. To simplify the analysis, we have set the modulus

of the order parameter to its constant mean-field value Δ0, i.e. concentrating on the Goldstone

mode, we will neglect massive fluctuations Δ = Δ0+δΔ around the extremum of the free energy.

We next make use of the gauge freedom inherent in the theory to remove the phase dependence

of the order parameter field. To do so, we introduce the unitary matrix Û ≡
&

e−iθ

eiθ

'
, and

transform the Green function as

Ĝ−1 → Û Ĝ−1Û† =

(
−∂τ − iφ̃− 1

2m
(−i∇− Ã)2 + μ Δ0

Δ0 −∂τ + iφ̃+ 1
2m

(−i∇− Ã)2 − μ

)
,

where the transformed electromagnetic potential is given by (exercise) φ̃ = φ+∂τθ, Ã = A−∇θ.

(Reading the transformation in reverse, we conclude that – an important physical fact that should

be remembered – the superconductor order parameter field is a gauge non-invariant quantity.

Under gauge transformations it transforms as Δ → e2iθΔ, as suggested by the definition of

Δ ∼ ψ̄↑ψ̄↓ as a pairing field. This fact implies that the order parameter itself cannot be an

experimentally accessible observable.34) Owing to the unitary invariance of the trace, tr ln Ĝ−1 =

tr ln (Û Ĝ−1Û†), the gauge transformed and the original Green function, respectively, equivalently

represent the theory.

Save for the neglect of massive fluctuations δΔ, our treatment of the theory thus far has been

exact. However, to make further progress, we must resort to some approximations: assuming

that both the electromagnetic potential and spatio-temporal fluctuations of the phase mode are

small, let us expand the action in powers of (φ̃, Ã). In the literature, expansions of this type are

known as gradient expansions, i.e. we are performing an expansion where the gradients ∂τθ,

∇θ and not the phase degree of freedom θ are assumed to be small. (Owing to its Goldstone

mode character, θ can slide freely over the entire interval [0, 2π].)

To facilitate the expansion, it will be useful to represent the 2 × 2 matrix structure of the

Green function through a Pauli matrix expansion:

Ĝ−1 = −σ0∂τ − σ3

(
iφ̃+

1

2m
(−i∇− Ãσ3)

2 − μ

)
+ σ1Δ0

= −σ0∂τ − σ3

(
− 1

2m
∇2 − μ

)
+ σ1Δ0︸ ︷︷ ︸

Ĝ−1
0

− iσ3φ̃+
i

2m
σ0[∇, Ã]+︸ ︷︷ ︸

X̂1

−σ3
1

2m
Ã2︸ ︷︷ ︸

X̂2

,

where we have defined σ0 ≡ 1 as the unit matrix. Expressed in terms of these quantities, the

expansion of the action to second order in the field Ã takes the form

S[Ã] = −tr ln
&
Ĝ−1
0 − X̂1 − X̂2

'
= const.− tr ln

&
1− Ĝ0[X̂1 + X̂2]

'
= const.+ tr

&
Ĝ0X̂1

'
︸ ︷︷ ︸

S(1)[Ã]

+tr

(
Ĝ0X̂2 +

1

2
Ĝ0X̂1G0X̂1

)
︸ ︷︷ ︸

S(2)[Ã]

+ · · · , (6.35)

34 This follows from the fundamental doctrine of electrodynamics that gauge transformations must not cause
observable effects.
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where we have used the fact that X̂1,2 are of first and second order in the field, respectively.

(Structures of this type appear frequently in the construction of low-energy quantum field theories

of many-body systems, i.e., after the introduction of some auxiliary field φ through a suitably

devised Hubbard–Stratonovich transformation, the microscopic Bose/Fermi degrees of freedom

of the theory can be integrated out and one arrives at an action ±tr ln(Ĝ−1
0 + X̂[φ]), where Ĝ

is the non-interacting Green function of the problem and X̂[φ] is an operator depending on the

new field. An expansion of the logarithm to first and second orders in X̂ then leads to structures

similar to those given above.)

Written more explicitly, the first-order action S(1) takes the form (exercise)

S(1)[Ã] =
T

Ld

∑
p

tr
[
Ĝ0,pX̂1(p, p)

]
=

T

Ld

∑
p

tr

[
Ĝ0,p

(
iσ3φ̃0 +

i

m
σ0p · Ã0

)]
,

where the subscripts 0 refer to the zero-momentum components of the fields φ̃ and Ã. Since the

Green function Ĝ0 is even in the momentum, the second contribution ∝ p vanishes by symmetry.

Further (∂τθ)0 = 0 · θ0 = 0, i.e. φ̃0 = φ0 and S(1)[Ã] = iT
Ld

∑
p

&
[Ĝ0,p]11 − [Ĝ0,p]22

'
φ0, where the

indices refer to particle–hole space. To understand the meaning of this expression, notice that

[Ĝ0,p]11 = 〈ψ̄↑,pψ↑,p〉0 gives the expectation value of the spin-up electron density operator on

the background of a fixed-order parameter background. Similarly, −[Ĝ0,p]22 = −〈ψ↓,pψ̄↓,p〉0 =

+〈ψ̄↓,pψ↓,p〉0 gives the spin-down density. Summation over frequencies and momenta recovers

the full electron density: T
Ld

∑
p([Ĝ0,p]11 − [Ĝ0,p]22) =

N
Ld , or

S(1)[Ã] = iNφ0 =
iN

Ld

∫
dτ ddr φ(τ, r).

Thus, the first contribution to our action simply describes the electrostatic coupling of the scalar

potential to the total charge of the electron system. However, as with the Coulomb potential

discussed earlier, the “correct” interpretation of this expression should rather suggest S(1) = 0.

That is, the total electrostatic interaction of the potential with the electron system must be –

by the overall charge neutrality of the system – compensated by an equally strong interaction

with the positive counter charge of the ions (usually excluded for notational convenience).

We thus turn to the discussion of the second-order contribution to the action S(2). The term

containing X̂2 is reminiscent in structure to the S(1) contribution discussed before. Thus, replac-

ing X̂1 by X̂2, we may immediately infer that

tr(Ĝ0X̂2) =
n

2m

∫
dτ

∫
ddrA2(τ, r), (6.36)

where we have defined as n ≡ N/Ld the total particle density. This contribution, known as the

diamagnetic term, derives from the familiar diamagnetic contribution 1
2m

A2 to the electron

Hamiltonian. If it were only the diamagnetic contribution, an external field would lead to an

increase of the energy. However, to obtain the complete picture, we need to include the magnetic

field dependence of the operator X̂1.

Substituting for X̂1, and noting that crossterms ∼ φ̃p · Ã, being odd in momenta, vanish on

integration, one obtains

1

2
tr
&
Ĝ0X̂1Ĝ0X̂1

'
=

T

2Ld

∑
p,q

tr

(
−Ĝ0,pσ3φ̃qĜ0,pσ3φ̃−q +

1

m2
Ĝ0,pσ0p · ÃqĜ0,pσ0p · Ã−q

)
.
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Here, noting that we are already working at the second order of the expansion, the residual

dependence of the Green functions Ĝ0 on the small momentum variable q has been neglected.35

Alluding to its origin, i.e. the paramagnetic operator ∼ 1
2m

[p, Ã]+ of the electron Hamiltonian,

the magnetic contribution to this expression is called the paramagnetic term. Paramagnetic

contributions to the action describe a lowering of the energy in response to external magnetic

fields, i.e. the diamagnetic and the paramagnetic term act in competition.

To proceed, it is convenient to change from an explicit matrix representation of the Gor’kov

Green function to an expansion in terms of Pauli matrices:36

Ĝ0,p = [iσ0ωn − σ3ξp + σ1Δ0]
−1 =

1

ω2
n + ξ2p +Δ2

0

[−iσ0ωn − σ3ξp + σ1Δ0] . (6.37)

On substituting into the equation above, noting that, for any rotationally invariant function

F (p2) (exercise),
∑

p(p · v) (p · v′)F (p2) = v·v′
d

∑
p p2F (p2), one obtains

1

2
tr
&
Ĝ0X̂1Ĝ0X̂1

'
=

T

Ld

∑
p,q

1

(ω2
n + λ2

p)2

(
φ̃qφ̃−q(−ω2

n + λ2
p − 2Δ2

0)−
p2Ãq · Ã−q

3m2
(−ω2

n + λ2
p)

)
,

where, as before, λ2
p = ξ2p + Δ2

0. We now substitute this result together with the diamagnetic

contribution Eq. (6.36) back into the expansion (6.35), partially transform back to real space∑
q fqf−q =

∫
dτ ddr f2(τ, r)2, and arrive at the action

S[Ã] =

∫
dτ ddr

[ T

Ld

∑
p

−ω2
n + λ2

p − 2Δ2
0

(ω2
n + λ2

p)2︸ ︷︷ ︸
c1

φ̃2(τ, r)

+

(
n

2m
− 1

dm2

T

Ld

∑
p

p2(−ω2
n + λ2

p)

(ω2
n + λ2

p)2

)
︸ ︷︷ ︸

c2

Ã2(τ, r)
]
.

This intermediate result identifies the coupling constants c1,2. The last step of the derivation,

i.e. the sum over the “fast” momenta p, is now a relatively straightforward exercise. Beginning

with the frequency summations, one may note that the denominator has two isolated poles of

second order at ωn = ±iλp. Applying the standard summation rules it is then straightforward

to verify that (exercise)

T
∑
n

−ω2
n + λ2

p − 2Δ2
0

(ω2
n + λ2

p)2
= − 1

2λp

(
nF(−λp)

(
Δ0

λp

)2

+ n′
F(−λp)

ξ2p
λp

)
+ (λp ↔ −λp) ≈ − Δ2

0

2λ3
p
,

T
∑
n

−ω2
n + λ2

p

(ω2
n + λ2

p)2
= −β[nF(λp)(1− nF(λp)].

35 i.e. we have set
∑

pq(Ĝpφ̃qĜp+qφ̃−q) ≈ ∑
pq(Ĝpφ̃qĜpφ̃−q).

36 In working with matrix operators it is useful to keep in mind the matrix identity
[v0σ0 + v · σ]−1 = 1

v2
0−v2 [v0σ0 − v · σ], where v = (v0,v) is a four-component vector of coefficients. Other use-

ful identities include (i, j = 1, 2, 3;μ, ν = 1, 2, 3, 4) σ2
i = 1, i �= j, [σi, σj ]+ = 0, σiσj = iεijkσk, trσμ = 2δμ,0.
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Figure 6.7 Plot of the function βnF(
√

ξ2 +Δ2
0)

[
1− nF(

√
ξ2 +Δ2

0)
]
as a function of the dimen-

sionless scales T/Δ0 and ξ/Δ0. For T/Δ0 → 0, the function vanishes (→ perfect diamagnetic
response). For T

Δ
� 1, the function traces out a peak of width ∝ T and total weight

∫
dn(1 −

n) = 1 (→ cancellation of diamagnetic and paramagnetic response). At intermediate temperatures,∫
dn(1− n) < 1, resulting in a partial survival of diamagnetism.

Thus, one obtains the coupling constant of the potential contribution,

c1 = − 1

2Ld

∑
p

Δ2
0

λ3
p

= −ν

2

∫
dξ

Δ2
0

(ξ2 +Δ2
0)

3/2
= −ν,

in accord with the previous estimate. With the magnetic contribution, the situation is more

interesting. Converting the momentum sum to an energy integral, one obtains

c2 =
n

2m
+

νμ

dm

∫
dξ β[nF(λ)(1− nF(λ)],

where we have noted that the integrand is strongly peaked at the Fermi surface, i.e. that the

factor p2 ≈ 2mμ can be removed from under the integral.

This expression illustrates the competition between the diamagnetic and paramagnetic contri-

butions in the magnetic response of the system. At low temperatures, T 	 Δ0, the positivity of

λp = (Δ2
0 + ξ2p)

1/2 ≥ Δ0 implies that nF(λp) ≈ 0, i.e. approximate vanishing of the integral (see

Fig. 6.7). Under these conditions, c2
T
Δ0≈ n

2m
is weighted by the total density of the electron

gas, and the response of the system is governed by the diamagnetic term alone. Indeed, the

diamagnetic response is known to be a hallmark of superconductivity; the superconductor tends

to expel magnetic fields, a phenomenon that culminates in the Meissner effect to be discussed

shortly.
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By contrast, for high temperatures, T � Δ0, the integral extends over energy domains much

larger than Δ0 and we can approximate

−
∫

dξ β[nF(λ)(1− nF(λ)] ≈ −
∫ ∞

0

dξ β[nF(ξ)(1− nF(ξ)]

= −
∫ ∞

0

dξ ∂ξnF(ξ) = nF(0)− nF(∞) = 1,

to obtain37 c2
T�Δ≈ n

2m
− νμ

dm
= 0. The near38 cancellation of dia- and paramagnetic contributions

is typical for the response of normal conducting systems to external magnetic fields.

At intermediate temperatures, the integral over the Fermi functions leads to a partial can-

cellation of the diamagnetic response. It is common to express that fact through the notation

c2 = ns
2m

, where the parameter

ns ≡ n+
2νμ

d

∫
dξ β[nF(λ)(1− nF(λ)],

is known as the superfluid density. Historically, the concept of a “superfluid density” was

introduced prior to the BCS theory, when a phenomenological model known as the two-fluid

model presented the “state-of-the-art” understanding of superconductivity. (Remember that

the experimental discovery of superconductivity preceded its microscopic description by more

than four decades!) The basic picture underlying this approach was that, below the transition,

a fraction of the electron system condenses into a dissipationless superfluid of density ns, while

the rest of the electrons remain in the state of a “normal” Fermi liquid of density nn = n− ns.

This simple model provided a phenomenological explanation of a large number of properties

characteristic of superconductivity, prior to the development of the microscopic BCS theory.

However, notwithstanding its success and its appealing simplicity, the two-fluid notion of a

complete condensation ns
(T→0)−−−−→ n at low temperatures cannot be maintained. Indeed, we have

seen that BCS superconductivity is a Fermi surface phenomenon, i.e. the bulk of the electrons

are oblivious to the existence of an attraction mechanism at energies μ±ωD and, therefore, will

not enter a condensed state. Instead, our microscopic analysis produces a picture more subtle

than the mere superposition of two fluids: as we saw above, the diamagnetic (paramagnetic)

contribution to the response is provided by all quasi-particles (at the Fermi surface). In a normal

metal, or, equivalently, a superconductor at T � Δ0, quasi-particle excitations at the Fermi

surface conspire to cancel the diamagnetic contribution of all other quasi-particles. However,

at T 	 Δ0 the existence of a quasi-particle energy gap at the Fermi surface blocks that com-

pensation mechanism and a net diamagnetic signal remains. The far-reaching phenomenological

consequences of the sustained diamagnetic contribution are discussed in the next section.

37 The last equality follows straightforwardly from the two definitions

ν
n

�
=

2

Ld

∑
p

�
δ(μ − ξp)
Θ(μ − ξp)

�
=

2

(2π)d


d
d
p

�
δ(μ − ξ)
Θ(μ − ξ)

�
.

38 Going beyond second lowest order of perturbation theory in A, a careful analysis of the coupling of a (small)
magnetic field to the orbital degrees of freedom of the Fermi gas shows that the cancellation of diamagnetic
and paramagnetic contributions is not perfect. The total response of the system is described by a weak diamag-
netic contribution, χd, a phenomenon known as Landau diamagnetism. The diamagnetic orbital response is
overcompensated by Pauli paramagnetism, i.e. the three times larger paramagnetic response of the Zeeman-
coupled electron spin, χp = −3χd. For large magnetic fields, the situation changes totally, and more pronounced
effects such as Shubnikov–de Haas oscillations or even the quantum Hall effect are observed.
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Validity of the gradient expansion Before leaving this section let us discuss one last

technical point. Above we have – without much of a justification – expanded the phase action

up to leading order in the gradients ∂τθ and ∇θ. Indeed, why is such a truncation permissible?

This question arises whenever low-energy effective theories are derived from a microscopic parent

theory by expanding in slow fluctuations, and it is worthwhile to address it in a general setting.

Let us suppose we had performed some kind of Hubbard–Stratonovich transformation to describe

a system of interest in terms of an action S[φ]. Let us further assume that the action is invariant

under a shift of the field by a constant, φ(x) → φ(x) + φ0, i.e. that the action depends only on

gradients ∇φ. (To keep the notation simple, we do not explicitly distinguish between spatial and

temporal gradients.) An expansion of the action in the field gradients then leads to a series of

the formal momentum-space structure

S ∼ N
∑
q

[
(l0q)

2φqφ−q + (l0q)
4φqφ−q + · · ·

]
,

where N represents the large parameter of the theory,39 l0 is some microscopic reference scale

of [length] needed to make the action dimensionless, and the ellipses stand for terms of higher

order in q and/or φq. Now, using the fact that only field configurations with S ∼ 1 significantly

contribute to the field integral, we obtain the estimate φq ∼ 1√
N

1
l0q

from the leading-order term

of the action. This means that terms of higher order in the field variable, N(l0qφq)
n>2 ∼ N1−n/2,

are small in inverse powers of the large parameter of the theory and can be neglected. Similarly,

terms like N(l0q)
n>2φqφ−q ∼ (l0q)

n−2. As long as we are interested in large-scale fluctuations

on scales q−1 � l0, these terms, too, can be neglected.

Notice that our justification for neglecting terms of higher order relies on two independent

parameters; large N and the smallness of the scaling factor ql0. If N = 1 but still ql0 	 1,

terms involving two gradients but large powers of the field ∼ q2φn>2
q are no longer negligible.

Conversely, if N � 1 but one is interested in scales ql0 � 1, terms of second order in the field

weighted by a large number of gradients ∼ qn>2φ2
q must be taken into account. An incorrect

treatment of this point has been the source of numerous errors in the published literature!

Meissner effect and Anderson–Higgs mechanism

If you ask a person on the street to give a one-line definition of superconductivity, the

answer will probably be that superconductors are materials showing no electrical resistance.

However, to a physicist, that definition should not be altogether satisfactory. It highlights

only one of many remarkable features of superconductors and does not have any predictive

power. A better – if for most people incomprehensible – attempt at a definition would be

to say that superconductivity arises when the quantum phases of a macroscopically large

number of charged particles get locked into a collective degree of freedom. Indeed, that

is exactly what the action (6.34) tells us: fluctuations of the phase of the condensate are

penalized by a cost that scales with the (superfluid) density of the electron gas. This is to

be contrasted to the situation in a normal metal where the action – the cancellation of the

39 In theories containing a large parameter N , that parameter mostly appears as a constant multiplying all, or
at least several, operators of the action. For example, in the fermionic problems discussed above, where N was
proportional to the density of states at the Fermi surface, the action contained a trace over all momentum
states. The summation over these states then led to an overall factor N multiplying the action.
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diamagnetic and the paramagnetic contribution! – usually does not contain the gradients

of phase-like degrees of freedom. Indeed, the macroscopic phase rigidity of the BCS ground

state wavefunction suffices to explain a large number of non-trivial phenomena related to

superconductivity. To see this, let us consider a simplified version of the action (6.34).

Specifically, let us assume (i) that the temperature is high enough to exclude quantum

fluctuations of the phase, ∂τθ = 0, and (ii) that there are no electric fields acting on our

superconductor φ = 0, ∂τA = 0.

INFO Why do we relate the presence of quantum fluctuations to temperature? Let us

reiterate (cf. the remarks made on page 255) that a temporarily constant field variable acts like a

classical degree of freedom. To understand why large temperatures inhibit temporal fluctuations

superimposed on the classical sector, let us take the phase action of the superconductor as an

example and write

S[θ] = ν

∫ β

0

dτ

∫
ddr (∂τθ)

2 + Scl[θ],

where the first term determines the temporal fluctuation behavior of the phase field, while Scl is

the “classical” contribution to the action, i.e. the contribution independent of time derivatives.

Switching to a frequency representation,

S[θ] = ν
∑
m,q

ω2
mθm,qθ−m,−q + Scl[θ],

from which one can infer that quantum fluctuations, i.e. modes θm �=0, become inessential at

large temperatures. More specifically, modes with non-vanishing Matsubara frequency can be

neglected when the quantum fluctuation energy (density) νω2
m ∝ T 2 exceeds the characteristic

energy scales appearing in Scl[θ].

To understand heuristically the temperature scaling of the fluctuation energy, remember that

the Bose field θ(τ) obeys periodic boundary conditions θ(0) = θ(β). Inspection of Fig. 6.8 then

shows that increasing the temperature, i.e. squeezing of the imaginary time interval [0, β], leads

to a linear increase of the gradients ∂τθ ∝ T . Accordingly, the squared gradient appearing in the

action increases quadratically with T . This mechanism confirms the intuitive expectation that

quantum fluctuations – i.e. fundamentally a low-energy phenomenon – should be damped out at

increasing temperature.

Under these conditions, the action simplifies to

S[A, θ] =
β

2

∫
ddr

[ns

m
(∇θ −A)2 + (∇∧A)2

]
,

where we have explicitly included the action 1
4

∫
dτ

∫
ddr FμνF

μν φ=0,A static
= β

2

∫
ddr (∇ ∧

A)2 = β
2

∫
ddrB2 due to fluctuations of the magnetic field. As pointed out above, the action

is invariant under the gauge transformation A → A + ∇φ, θ → θ + φ. One thus expects

that integration over all realizations of θ – a feasible task since the action is quadratic –
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Figure 6.8 Qualitative picture behind the quadratic ∼ T 2 energy increase of quantum fluctuations.
As the temperature T is increased, the imaginary time interval [0, β = T−1] gets squeezed. The
same happens to the temporal profiles of (quantum) fluctuating modes θ(τ). Consequently, gra-
dients ∂τθ ∝ T increase linearly with temperature, and the energy density ∼ (∂τθ)

2 ∝ T 2 grows
quadratically.

will produce a purely A-dependent, and gauge invariant, action S[A]. The integration over

θ is most transparently formulated in momentum space where the action assumes the form

S[A, θ] =
β

2

∑
q

(ns

m
(iqθq −Aq) · (−iqθ−q −A−q) + (q ∧Aq) · (q ∧A−q)

)
=

β

2

∑
q

(ns

m
[θqq

2θ−q − 2iθqq ·A−q +Aq ·A−q] + (q ∧Aq) · (q ∧A−q)
)
.

The integration over the field components θq is now straightforward and leads to an effective

action for A : e−S[A] ≡
∫
Dθ e−S[A,θ], where

S[A] =
β

2

∑
q

(
ns

m

(
Aq ·A−q − (q ·Aq)(q ·A−q)

q2

)
+ (q ∧Aq) · (q ∧A−q)

)
.

To bring this result into a more transparent form, let us split the vector potential into a

longitudinal and a transverse component:

Aq = Aq − q(q ·Aq)

q2︸ ︷︷ ︸
A⊥

q

+
q(q ·Aq)

q2︸ ︷︷ ︸
A

‖
q

. (6.38)

To motivate this decomposition, notice the following:

� The transverse component alone determines physical quantities, i.e. the magnetic field.

(This follows from the relation Bq = iq ∧Aq and q ∧ q = 0.)

� The transverse component is gauge invariant under transformations Aq → Aq + iqφq

(but (qφq)
⊥ = 0). In the language of longitudinal–transverse components, the Coulomb

gauge corresponds to a configuration where A‖ = 0.

� The terminology “longitudinal component” emphasizes the fact that F
‖
q is the projec-

tion of a vector field Fq onto the argument vector q. Correspondingly, the “transverse

component” is the orthogonal complement of the longitudinal component.
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Applying some elementary rules of vector algebra, it is straightforward to verify that the

effective action can be represented in the simple form

S[A] =
β

2

∑
q

(ns

m
+ q2

)
A⊥

q ·A⊥
−q. (6.39)

At this stage, it is useful to pause and review what has been achieved: (i) starting from

a composite action containing the Goldstone mode θ and the gauge field A, we have arrived

at an action for the gauge field alone. In a sense, the Goldstone mode has been absorbed

into (the gauge degrees of freedom of) A. However, (ii) the coupling to the Goldstone mode

has not left the gauge field unaffected. Indeed, S[A] has acquired a mass term proportional

to the superfluid density, i.e., unlike the vacuum, the action of long-range field fluctuations

Aq→0 no longer vanishes. That modification has serious phenomenological consequences to

be discussed shortly. (iii) The action is manifestly gauge invariant.

INFO The analysis above shows that the spontaneous breaking of a global U(1) symmetry,

and of a local gauge U(1) symmetry lead to very different results. In the former (→ neutral

superfluids), the soft action S[θ] of a phase-like Goldstone mode θ describes various long-range

phenomena, such as supercurrent formation, etc. In the latter case (→ superconductors or,

more generally, charged superfluids), the system is described by a composite action S[A, θ].

The ubiquitous gauge symmetry can then be employed to absorb the Goldstone mode into the

gauge field S[A, θ]
∫
Dθ→ S[A]. The most important effect of the coupling A ↔ θ is that, after

integration over the latter, the former acquires a mass term. One may say that “the photon

(vector potential) field has consumed the Goldstone mode to become massive.” That principal

mechanism was understood in 1964 by Higgs, wherefore it is called the Higgs mechanism

or, crediting Anderson’s pioneering discussion of gauge symmetry breaking in the context of

superconductivity, the Anderson–Higgs mechanism.

Mass generation due to spontaneous gauge symmetry breaking is a very general phenomenon,

i.e. not limited to the relatively simple context of the collective phase of the superconductor.

The Higgs mechanism found perhaps its most significant application in 1967 when Weinberg and

Salam embedded it into their unified theory of electromagnetic and weak interactions in particle

physics. Although this is not a book about elementary particles, the role of the Higgs principle

in the theory of electroweak interactions is of such fundametal importance to our understanding

of the microscopic world that it is irresistible to briefly discuss its implications.40

The standard model of high-energy physics describes the microscopic world in terms of

a few generations of leptonic (electrons, e, electron neutrino, νe, muon, μ, etc.) and hadronic

(the quarks, u, d, s, c, t, b) elementary particles that interact through the quanta of certain

gauge fields. In its original formulation, the model had one severe problem, that is, it did not

know how to attribute mass to these particles. However, this stands in stark contrast to any

kind of experimental observation. In particular, the quanta of the gauge fields of the weak and

strong interactions are known to be extremely heavy, with rest masses of O(102 GeV/c2). In

view of the much lighter masses of typical composite hadrons – the proton weighs 938MeV/c2 –

the mass of the gauge quanta can certainly not be explained in terms of some fictitious fine

structure mechanisms superimposed on the core of the standard model, i.e. a major modification

40 For a pedagogical and much less superficial discussion we refer, e.g., to L. H. Ryder, Quantum Field Theory
(Cambridge University Press, 1996).
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was needed. It is now widely believed that the “true” principle behind mass generation lies in

the (Anderson–) Higgs mechanism, i.e. the spontaneous breakdown of a gauge symmetry.

To sketch the principal idea of Weinberg and Salam, let us concentrate on a leptonic subsector

of the theory, e.g. consider the two-component object

Ψ ≡
(
νe
e

)
,

comprising an electron neutrino and a (left-handed41) electron. Involving a charged particle,

the Lagrangian controlling the dynamics of Ψ will surely possess a local U(1) gauge symmetry.

However, on top of that, Weinberg and Salam proposed a much more far-reaching symmetry

structure. Without going into detail we just mention that, building on principles proposed earlier

(1954) by Yang and Mills, transformations

Ψ(x) → U(x)Ψ(x), U(x) ∈ SU(2), x ∈ R
4,

locally mixing the two components νe and e of the “isospinor” Ψ were introduced as a symmetry

of the model, i.e. in analogy to the local U(1) gauge symmetry of quantum mechanics, it was

postulated that the action S[Ψ] possesses a local gauge symmetry under the group of SU(2)

transformations. In combination with the standard U(1), the theory had thus been endowed

with a composite U(1) × SU(2) gauge structure. Physically, declaring a symmetry between the

electron – interacting through electromagnetic forces – and the neutrino – weak interactions – was

tantamount to a fusion of these types of interaction, i.e. the proposal of a theory of electroweak

interactions.

How can a theory defined through an action S[Ψ] =
∫
dd+1x L(Ψ, ∂μΨ), containing the

isospinor Ψ and its derivatives, be made invariant under non-abelian SU(2) gauge transforma-

tions? Referring for a more systematic discussion to Ryder,42 let us briefly sketch the principal

idea of non–abelian gauge theory. We first notice that a fermion bilinear ∼ Ψ̄∂μΨ is gener-

ally not gauge invariant. Under a mapping Ψ → UΨ it transforms to Ψ̄(∂μ + U−1∂μU)Ψ. E.g.

for U = eiφ ∈ U(1) a “standard” gauge transformation, the extra term U−1∂μU = i∂μφ ∈ iR

would be the ordinary “derivative of a function,” familiar from the gauge structure of quantum

mechanics. More generally, for a non-abelian gauge transformation by an element U ∈ G of a

general group (e.g. G = SU(2)), the gauge term U−1∂μU ∈ g is an element of the Lie algebra g

of the group,43 i.e. the action picks up a matrix-valued extra contribution.

To make the theory invariant, we have to introduce a gauge field, i.e. we generalize from ∂μ

to a covariant derivative ∂μ +Wμ, where Wμ ∈ g. For example, for G = U(1), Wμ ≡ Aμ ∈ R is

the ordinary gauge field of quantum mechanics; for G = SU(2), Wμ =
∑3

a=1 α
μ
a(x)σa ∈ su(2),

etc. Under a gauge transformation, the field Wμ transforms as Wμ → UWμU
−1 − iU−1∂μU ,

i.e. in a way that makes the covariant bilinear, Ψ̄(∂μ + Wμ)Ψ, invariant. For G = U(1), Aμ →
UAμU

−1 −U∂μU
−1 = Aμ − i∂μφ reduces to its familiar form. However, in the non-abelian case,

41 When viewed as a relativistic particle, the electron field has components of left and right chirality, but we shall
not need to discuss that aspect any further.

42 Ryder, Quantum Field Theory.
43 The fact that U−1∂μU ∈ g takes values in the Lie algebra of the gauge group can be proven by geometric

considerations (for which we refer to textbooks of group theory). By way of example, consider an SU(2)-

valued field U(x) = exp(i
∑3

a=1 αa(x)σa). It is straightforward to convince oneself that U−1∂μU is a linear
combination of Pauli matrices with real-valued coefficents, i.e. it takes values in the Lie algebra su(2).



296 Broken symmetry and collective phenomena

the full structure on the right-hand side is needed to obtain invariance. The full action of the

gauge theory then takes the form

S[Ψ,W ] =

∫
dd+1x L(Ψ, (∂μ − iWμ)Ψ) + S[W ],

where the Lagrangian density contains the minimally coupled gauge field, and the action S[W ]

describes the fluctuation behavior of Wμ.
44 Within a fully quantum mechanical setting, both the

“matter field” Ψ and the gauge field Wμ are quantized. The field quanta of the non-abelian gauge

field are described as vector bosons, where the attribute “vector” (somewhat misleadingly)

refers to the higher-dimensional geometry of the field, and “boson” emphasizes the generally

bosonic statistic of a quantum gauge field.

We now have everything in place to turn back to the particular context of the electroweak

interaction. Within the framework of the gauge theory, interactions between the particles e

and νe are mediated by the gauge field Wμ (as with a U(1) theory where interactions between

the electrons can be described in terms of a fluctuating U(1) vector potential, cf. Section 6.2).

Experimental analysis of typical weak interaction processes, such as the elastic collision, e+νe →
e + νe, indicates that the weak interaction forces are extraordinarily short-range, with a decay

profile ∼ exp(−90GeVr). However, according to the pure gauge theory, the propagator of Wμ

should be long-range ∼ r−1. This is the most severe manifestation of the mass problem of the

electroweak theory. In order to be consistent with experiment, a mechanism is needed that makes

the gauge field (very) massive.

Here is where the Higgs mechanism enters the stage. To solve the mass problem, Weinberg

and Salam postulated the existence of a scalar (more precisely, a two-component “iso-scalar”)

bosonic particle, the Higgs boson φ. The action of the Higgs particle – again a postulate – is

of generalized φ4 type, i.e.

S[φ,Wμ] =

∫
dd+1x

[
1

2
(∂μ −Wμ)φ

†(∂μ −Wμ)φ− m2

2
φ†φ+

g

2
(φ†φ)2

]
,

where the minimal coupling to the gauge field provides the theory with local gauge invariance.

The action of the Higgs has been deliberately designed so as to generate spontaneous symmetry

breaking, i.e. the solution of the mean-field equations is given by |φ| = (m
2

2g
)1/2, with undeter-

mined phase. In direct analogy to our discussion of the superconductor above, an integration

over the phase degree of freedom (i.e. the Goldstone mode) then generates a mass term for the

gauge fields. In summary, Weinberg and Salam proposed an explanation of the short-rangeness

of the weak interaction through the presence of an extra particle, i.e. a particle that does not

belong to the standard hadronic or leptonic generations of the standard model.

Since then, the hunt for the Higgs particle has been one of the big challenges for parti-

cle physics. In 1983 vector bosons of the predicted mass were for the first time observed in

experiment45 (see Fig. 6.9), i.e. the existence of a massive gauge structure is now out of the

question. However, the detection of the Higgs turned out to be a more difficult task. In 2000

the N -experiment installed at the LEP (Large Electron Positron Collider) at CERN reported

a “shadowy” Higgs signal in the e−e+ scattering cross-section at the predicted energy interval.

However, at that time, the designated live time of LEP had already expired and one month after

44 Typically, S[W ] will be given by generalization of the field strength tensor
∫
dd+1x FμνF

μν of the abelian
theory, i.e. the curvature tensor on G.

45 G. Arnison et al., Experimental observation of isolated large transverse energy electrons with associated missing
energy at

√
s = 540GeV, Phys. Lett. B 122 (1983), 103–16.
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Figure 6.9 Computer-generated visualization of a scattering process recorded in the N -experiment
at CERN. Hidden somewhere in the “jet” of particles generated as a result of the collision of the
scattering particles should, hopefully, be the Higgs.

the detection of the first suspicious signals the machine was indeed shut down. Unfortunately,

after the closedown of LEP only a few accelerator projects offer the perspective to participate in

the hunt for the Higgs. Presently, with the “Superconducting Super Collider” (SSC) disapproved

by the American Congress, only the Stanford Linear Accelerator reaches the relevant energy

scales. The situation may change when the Large Hadron Collider (LHC) at CERN commences

its work.

In the meantime the collected data recorded at LEP over the past years have been subjected

to critical review. Frustratingly, it turned out that the data reported in 2000 did not pass the test

of a careful re-examination, i.e. presently (2009) there is no direct evidence for a Higgs particle.

In view of the fact that the Higgs generates the mass not only of the vector bosons but of all

particles known to the standard model, much indeed hinges on the question of its existence.

(Some people even call the Higgs the “God particle.”) If it did not exist, our understanding of

the microscopic world would be turned upside down.

To conclude our discussion of BCS superconductivty, let us explore the phenomenological

consequences of mass accumulation due to the Higgs mechanism. To this end, let us vary

the action (6.39) with respect to A (keeping in mind the transversality condition q·A⊥
q = 0,

we henceforth drop the superscript “⊥”), to obtain (ns

m + q2)Aq = 0, or

(ns

m
−∇2

)
A(r) = 0. (6.40)
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Figure 6.10 On the Meissner effect: inside a superconductor (the shaded area), magnetic fields
decay exponentially. Microscopically, an external field existing outside a superconductor–vacuum
interface induces diamagnetic surface currents inside the superconductor. These currents generate
a counter-field that diminishes the external field.

Remembering that B = ∇ ∧ A, multiplication of this equation by ∇∧ produces the first

London equation (ns

m
−∇2

)
B(r) = 0. (6.41)

For ns �= 0, this equation does not have a non-vanishing constant solution, i.e. we conclude

that

A bulk superconductor cannot accommodate a magnetic field.

This phenomenon is known as the Meissner effect. To understand what happens at the

interface between the vacuum threaded by a constant magnetic field B0 and a supercon-

ductor, one can solve the London equation to obtain B(x) ∼ B0exp(−x/λ), where

λ =

√
m

ns
,

is known as the penetration depth and x is the direction perpendicular to the interface

(see Fig. 6.10). The physical mechanism behind the Meissner phenomenon is as follows:

above we saw that the magnetic response of a superconductor is fully diamagnetic. That

is, in response to an external field, diamagnetic screening currents will be generated. The

magnetic field generated by these currents counteracts the unwanted external field. To see

this explicitly, we obtain the current density induced by the field by differentiating the first

term of the action46 with respect to A:

j(r) =
δ

δA(r)

∫
ddr

ns

2m
A2 =

ns

m
A(r), (6.42)

46 Generally, the electrical current density induced by a field is obtained (cf. the remarks made on page 255 )
by differentiating the field/matter part of the action S[A] with respect to the vector potential, i.e. the purely
field-dependent part of the action does not contribute to the current density.
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i.e. the current density is directly proportional toA. This is the second London equation.

Since the vector potential and the magnetic field show the same decay profile (Eq. (6.40) and

(6.41)), the current density also decays exponentially inside the superconductor. However,

in doing so, it annihilates the external field.

INFO To heuristically understand the incompatibility of magnetic fields and supercon-

ductive pairing on a still more microscopic level, consider the real space representation of a

Cooper pair state, 〈r, r|k ↑,−k ↓〉 ∼ e−ikre+ik·r = const. The cancellation of the phases results

from the fact that two electrons propagating with opposite momenta acquire opposite quantum

phases. Thus, the pair state is a slowly fluctuating, and therefore stable, object. However, in the

presence of a magnetic field, the phase factors have to be generalized to

〈r, r|k ↑,−k ↓〉 ∼ e−i
∫
dr·(k−eA)e−i

∫
dr·(−k−eA) ∼ e2ieA·r,

where we assumed that the vector potential varies only slowly across our observation region of

O(|r|), i.e. the Cooper pair amplitude becomes an “incoherent” phase-dependent object. (Exer-

cise: Employ the WKB approximation to convince yourself of the validity of this statement.) On

the microscopic level, the lack of stability of the field-dependent Cooper amplitude is responsible

for the aversion of the superconductor to magnetic fields.
It is interesting to explore how a strong magnetic field eventually

makes its way into the superconductor. To understand the competition

between superconductive ordering and magnetic field energy,

we need to go back to the Ginzburg–Landau action (6.33), i.e. to a

description that involves both phase and amplitude of the order parame-

ter (the latter detecting the presence or absence of a stable condensate).

However, at the time when we derived that action, no attention had been

paid to the electromagnetic properties of the system. Fortunately, after

our general discussion of gauge invariance above, the minimal coupling of the system to the

electromagnetic field is routine work. We simply have to remember that, under a gauge transfor-

mation, Δ → Δe2iφ, i.e. ∇Δ∇Δ̄ → (∇+ 2i∇φ)Δ(∇− 2i∇φ)Δ̄. The gauge invariant extension

of Eq. (6.33) thus reads as

SGL[Δ, Δ̄] = β

∫
ddr

[ r
2
|Δ|2 + c

2
|(∇− 2iA)Δ|2 + g|Δ|4

]
,

where, as usual, A gauges as A → A + ∇φ. To monitor the fate of the order parameter as

|A| ∝ |B| increases, consider the mean-field equation (exercise)[
r + c(−i∇− 2A)2 + 4g|Δ|2

]
Δ = 0.

Here we assume that we are at temperatures below the zero-field superconductor transition, i.e.

r < 0. Superconductive ordering exists when the equation has a non-vanishing solution Δ. Now,

the third contribution on the left-hand side is positive, so a solution can exist only if the first

two terms add to a net negative contribution. This in turn requires the following condition on

the eigenvalues of the minimally coupled operator,

EV(−i∇− 2A)2
!
<

|r|
c
.

Formally, (−i∇−2A)2 is the kinetic energy operator of a particle of mass 1/2 and charge q = 2 in

a uniform magnetic field. Its eigenvalues are the Landau levels, ωc

 
n+ 1

2

!
, n = 0, 1, . . . , familiar

from elementary quantum mechanics. Here, ωc is the cyclotron frequency, ωc = qB/m = 4B.
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Thus, a finite pairing amplitude can be obtained only if |r|/c is larger than the energy of the

lowest Landau level, or

B < Bc2 ≡ |r|
2c

.

For magnetic fields larger than this, the energy needed to expel the field is larger than the

maximum gain of condensation energy S[Δ] and superconductivity breaks down. There are

superconductor materials – superconductors of type II – where the energy criterion opts for

field penetration for fields Bc2 > B > Bc1 lower than the critical field Bc2 specified by the mean-

field criterion above. For these systems, the superconductor and the field “meet a compromise.”

That is, vortex tubes of quantized flux penetrate the superconductor for a field strength smaller

than Bc2 but larger than the critical field strength Bc1.
47 These Abrikosov vortices usually

arrange into a triangular vortex lattice. The figure above (courtesy of U. Hartmann, University

of Sarbrücken) shows an STM image of a vortex lattice in the type II superconductor NbSe2. The

distance between vortex centers is about 50 nm. Each of the vortices in a flux lattice contains

magnetic flux Φ = n
h

where 1/h (or e/h in units where the electron charge is kept track of)

is the magnetic flux quantum. Inside the cores of the Abrikosov vortices, the superconducting

order parameter is suppressed, but outside it still exists. For a discussion of the thermodynamics

of superconductors not showing a mixed phase (superconductors of type I), we refer to the

literature.48

To conclude this section let us discuss the most prominent superconducting phenomenon,

absence of electrical resistivity. Assume we have chosen a gauge where an external

electric field E is represented through E = −i∂τA (i.e. the static component of the potential

vanishes). In this case, a time differentiation of the second London equation (6.42) gives

−i∂τ j = −ins

m ∂τA = ns

mE. Continuing back to real times we conclude that

∂tj =
ns

m
E,

i.e. in the presence of an electric field the current increases linearly at a rate inversely pro-

portional to the carrier mass and proportional to the carrier density. The unbound increase

of current is indicative of ballistic – i.e. dissipationless – motion of the condensate parti-

cles inside the superconductor. Now, an unbound increasing current is clearly unphysical,

i.e. what the relation above really tells us is that a superconductor cannot maintain non-

vanishing field gradients.

EXERCISE Assuming that each particle is subject to Newton’s equation of motion mr̈ = E,

obtain the current–field relation above. How would the relation between field and current change

if the equation of motion contained a friction term (modeling dissipation) mr̈ = −m
τ
ṙ+E?

47 A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Soviet Physics JETP 5,
1174-83 (1957).

48 cf., e.g., L.D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9 - Statistical Physics 2,
(Butterworth–Heinemann, 1981).
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6.5 Field theory of the disordered electron gas

To close the chapter on broken symmetry and collective phenomena, we turn now to a

final, detailed application of the field integral method involving the problem of electrons

propagating in a disordered environment. As well as the importance attached to this gen-

eral area in the recent literature, the quantum disorder problem presents an ideal arena

in which to revise the diagrammatic and field theoretic methods developed in this and

previous chapters. This being so, this section is structured in a manner that reflects the

different techniques and much of our discussion is deliberately cast in the form of problem

assignments. However, this section may be read equally as a complete and coherent text,

depending on taste.

Disorder in metals

No semiconductor or metal of macroscopic49 extent is ever free of imperfections and impuri-

ties. Indeed, the effect of disorder on the phenomenology of metals or semiconductors could

not be more varied: in some cases, disorder plays an essential role (for example, conventional

light bulbs would not function without impurity scattering!), in others the effect is parasitic

(imparting only a “blurring” of otherwise structured experimental data), or it conspires to

give rise to completely unexpected types of electron dynamics (as is the case in the quantum

Hall transition discussed in Chapter 9).

With this in mind, a complete theory of electron transport must, by necessity, include

diagnostic tools to understand whether disorder seriously affects the problem of interest.

Moreover, such a theory should include some analytical machinery to deal with the cases

where the answer is affirmative. What kind of criteria should a successful theory of disor-

dered conductors meet? A fair fraction of those problems where impurity scattering plays an

essential role can be addressed in terms of infinite-order perturbation theory. However, there

are plenty of phenomena – Anderson localization, the quantum Hall effects, the combined

theory of interactions and disorder, to mention just a few – where non-perturbative field

theoretical methods are required. In this section, the foundation of a general approach to

the disordered electron gas, extendable to both perturbative and non-perturbative schemes,

is laid.

However, before doing this, we must first clarify what is meant by a “theory” of the

disordered electron gas. Of course, while the problem may be considered formally as non-

interacting, we will not be able to effect an exact diagonalization of the random Schrödinger

equation for an electron in a metal for a given realization of the impurity potential. (Indeed,

were such a particular solution available, it would not convey much information.) Rather,

one needs to develop a statistical approach wherein the system is described in terms of

a few universal characteristics of the scattering landscape – the strength of the impurity

49 In ultraclean semiconducting devices, electrons may travel up to distances of several microns without expe-
riencing impurity scattering. Even so, the “chaotic” scattering from the typically irregular boundaries of the
system has an equally invasive effect on the charge carrier dynamics.
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potential, the typical range of potential fluctuations, etc. In general, the analysis of generic

properties involves averaging over microscopic realizations of the impurity potential.

INFO In situations where the system is so large that different regions behave as though they

were statistically independent with respect to their microscopic impurity configuration, proper-

ties become self–averaging. In such cases, the configuration average can be subsumed into a

volume average of the individual system. As a rule of thumb, systems which behave in a self-

averaging manner must extend well beyond the phase coherence length ξ – the length scale over

which the quantum propagation remains phase coherent. (A more precise characterization of

ξ is given below.) Now, at low temperatures, ξ(T ) grows rapidly, implying that even systems

of near macroscopic extent (ca. O(1μm) and more) can behave as though they were non-self-

averaging. Systems of this type are often termed mesoscopic,50 where “meso-” alludes to the

fact that such systems are macroscopic in extent yet microscopic in their reflection of quantum

mechanical character. Mesoscopic systems manifest a multitude of unusual quantum phenomena

from localization to strong sample-to-sample fluctuations, some of which will be discussed below.

The experimental and theoretical study of these phenomena is the central theme of mesoscopic

physics.

How might one set about modeling an impurity potential in statistical terms? One might, for

example, propose that a single imperfection at position ri creates a potential Vimp(r− ri).

Assuming that all impurities are, by and large, equivalent, the total perturbation experi-

enced by an electron at point r will then take the form V (r) ≡
∑

i Vimp(r − ri). Within

this framework (which prevails in the older literature) the disorder average amounts to

integrating over the coordinates of the impurities, i.e. 〈· · · 〉dis ≡ L−Nd
∏N

i=1

∫
ddri (· · · ).

The disadvantage of this scheme is that its implementation is not so straightforward, espe-

cially in functional-based approaches. In practice, it is more convenient to think of the

potential V as some function whose statistical properties are described by a probability

measure P [V ]. Averages over the potential are then computed by performing the integral

〈· · · 〉dis =
∫
DV P [V ](· · · ). In most51 applications it is sufficient to implement a Gaussian

distribution (unnormalized), P [V ] = exp
[
− 1

2γ2

∫
ddr ddr′ V (r)K−1(r− r′)V (r′)

]
, where γ

measures the strength of the potential and K describes its spatial correlation profile:

〈V (r)V (r′)〉dis = γ2K(r− r′). (6.43)

Very often one finds that the finite spatial correlation of V is inessential, in which case one

may set K(r) = δ(r), and

P [V ]DV = exp

[
− 1

2γ2

∫
ddr V 2(r)

]
DV. (6.44)

The freedom that one can exercise in modeling the scattering potentials reflects the fact

that, in a multiple scattering process, details of the potential are quickly erased. At any

50 Note that it has, however, become fashionable to label any system of a size of O(1μm) “mesoscopic,” irrespective
of whether or not its behavior is classical.

51 An important class of exceptions is presented by bosonic problems of general type where, for stability reasons,

V (r)
!
> 0, while Gaussian distributed potentials categorically include negative “tails.”
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rate, the short-range Gaussian distribution provides a convenient scheme both in purely

diagrammatic perturbation theory and in functional approaches.

As discussed above, our aim is to average the quantum expectation value of a certain

observable O over the ensemble of disorder. Let us assume that the observable O can

be obtained by differentiation of the (functional) free energy, that is O = − δ
δJ|J=0 lnZ,

where J represents some source field,52 i.e.

〈O〉dis = − δ

δJ

∣∣
J=0

〈lnZ〉dis . (6.45)

This fundamental relation presents a technical challenge: should one first differentiate and

only then average, one would need to compute integrals of the type

−
∫

DV P [V ]
1

Z[V, J = 0]

δ

δJ
|J=0 Z[V, J ].

Due to the appearance of the function V in both the numerator and the denominator,

integrals of this type are largely intractable. The problem is particularly acute in func-

tional approaches where one intends to take the ensemble average at an early stage of the

computation.53

To date, three different approaches have been identified in which the problem with the

denominator can be circumvented: the supersymmetry approach,54 the Keldysh tech-

nique,55 and the replica trick.56 All of these approaches share the feature that they alter

the definition of the functional partition function in such a way that (a) Z[J = 0] = 1

(i.e. the disorder dependence of the denominator disappears), while (b) Eq. (6.45) remains

valid, and (c) the algebraic structure of Z[J ] is left largely unchanged. Since the disorder

appears linearly in the Hamiltonian, point (c) implies that we need to average functionals

with actions linear in the potential V , an enterprise that turns out to be quite feasible.

Let us exemplify this program on the (technically) simplest of the three approaches above,

the replica trick. Consider the Rth power of the partition function, ZR. For integer R one

may think of ZR as the partition function of R identical copies of the original system (see

Fig. 6.11), hence the name “replica” trick. To appreciate the merit of this procedure, one

may note the formal relations

〈O〉 = − δ

δJ
lnZ[J ] = − δ

δJ
lim
R→0

1

R

(
eR lnZ − 1

)
= − δ

δJ
lim
R→0

1

R
ZR.

The last equality tells us that the expectation value of observables can be obtained by

performing computations with the Rth power of Z (instead of its logarithm). Crucially,

expressed in the coherent state representation, the expression for the replicated partition

52 In the jargon of field theory, a source field represents a parameter (function) that, when linearly added to the
exponent of a functional integral, can be used to generate the expectation value of observables by differentiation.
For example, the parameter μ is a source generating expectation values of the particle number: −∂μF = 〈N̂〉.

53 In cases where the disorder can be treated perturbatively, one may first expand in powers of V and only then
average; indeed, this is quite a viable strategy.

54 K. B. Efetov, Supersymmetry method in localisation theory, Sov. Phys. JETP 55 (1982), 514-21.
55 For a review see, e.g., A. Kamenev, Many body theory of non-equilibrium systems in Nanophysics: Coherence

and Transport eds. H. Bouchiat et al. 177-246, (Elsevier, Amsterdam, 2005).
56 S. F. Edwards and P.W. Anderson, Theory of spin glasses, J. Phys. F 5 (1975), 965–74.
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. . .

Z Z Z Z ZR

Figure 6.11 On the idea behind the replica trick; for an explanation, see the main text.

function involves an effective action which is still linear, (e
∫
dV )R = e

∑∫
dV , i.e. ZR will

contain the disorder linearly in the exponent and, therefore, will be comparatively easy to

average. However, the replica-averaging procedure involves one unusual feature – at the end

of the calculation, one must implement the analytic continuation R → 0. More precisely, we

will have to compute a certain function (namely f(R) ≡ δ
δJR

−1〈ZR〉dis) for every integer R

and then analytically continue R → 0. However, there is no guarantee that f(R) is analytic

all the way down to R = 0.57 In other words, the method is poorly founded, which is why

it is called the “replica trick” as opposed to, say, the “replica theory.” However – in view of

its poorly justifiable theoretical standing, quite surprisingly – examples where the replica

trick is known to fail are rare. To some extent, this success is explained by the fact that

the method is exact as long as the disorder is treated perturbatively (a point to be clarified

below). So long as a perturbatively accessible point in the parameter space is not too far

away, the chances are that it will not fail.

INFO The applicability of replica methods is not limited to the theory of disordered electron

systems. Replicated field theories are of potential use whenever it comes to averaging the free

energy functional of a disordered classical or quantum system. The method has been proven

most fruitful (at times also controversial) in the theory of conventional and spin glasses.58

Replica field theory

With this background, we return now to an analysis of the disordered electron system. The

construction of the field integral begins with the representation of the replicated partition

function as a coherent state field integral

ZR[J ] =

∫
D(ψ̄, ψ) exp

[
−

R∑
a=1

S[ψa, ψ̄a, J ]

]
, (6.46)

where ψa, a = 1, . . . , R, denotes the Grassmann field representing partition function number

a, D(ψ̄, ψ) ≡
∏r

a=1 D(ψ̄a, ψa), and S[ψa, ψ̄a, J ] = S0[ψ
a, ψ̄a] + Sint[ψ

a, ψ̄a] + Ss[ψ
a, ψ̄a, J ].

(Notice that the source J is the same for all replicas, i.e. it does not carry an index a.) Here

S0[ψ̄
a, ψa] =

∑
n

∫
ddr ψ̄a

n(r)

(
−iωn − ∇2

2m
− EF + V (r)

)
ψa
n(r), (6.47)

57 This uncertainty reflects disorder-generated correlations between the replicated systems. Since 〈ZR〉dis �=
〈Z〉Rdis, the function we wish to continue is not just a harmless power function.

58 For a review of the industry of replica-based theoretical approaches in these fields we refer to the article by G.
Parisi, Glasses, replicas and all that, in Les Houches – Ecole d’Eté de Physique Théorique, Vol. 77, ed. J.-L.
Barrat et al. (Elsevier, 2004).
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describes the non-interacting part of the disordered electron system (assumed, for simplicity,

to be spinless), Sint specifies the bare particle interaction, and Ss is the source-dependent

part of the action (whose structure we need not specify for the moment). Notice that, before

averaging, the action is “replica diagonal,” i.e. fields ψa and ψb, a �= b, do not interact with

each other.

Before proceeding with this expression, let us make one technical remark on the calcu-

lation of observables. Suppose we were interested in the expectation value of some oper-

ator which, in the non-replicated theory, assumes the form 〈O〉 = −(δ/δJ) lnZ[J ] =

〈O(ψ̄, ψ)〉ψ/〈1〉ψ. Here, J represents some suitably devised source and, in the last equal-

ity, O(ψ̄, ψ) is the coherent state representation of the operator O. The denominator 〈1〉ψ
reminds us of the fact that a quantum thermal average involves an explicit normalization by

the (functional) partition function. Within the replicated formalism, the same expectation

value assumes the form

〈O〉 = − lim
R→0

1

R

δZR[J ]

δJ
= lim

R→0

1

R

R∑
a=1

〈O(ψ̄a, ψa)〉ψ, (6.48)

where the last equality follows from differentiating Eq. (6.46) with respect to the source J .

Assuming that all observables are evaluated as in Eq. (6.48), we no longer need to keep an

explicit reference to the source field J .

Now, let us average the functional (6.46) over the distribution (6.44). A straightforward

application of the Gaussian integral formula (3.19) leads us to the result

〈ZR[J ]〉dis =
∫

D(ψ̄, ψ) exp

⎡⎣− R∑
a=1

Scl[ψ
a, ψ̄a]−

R∑
a,b=1

Sdis[ψ
a, ψb, ψ̄a, ψ̄b]

⎤⎦ ,

where Scl = S
∣∣
V=0

denotes the action of the non-disordered system, and

Sdis[ψ
a, ψb, ψ̄a, ψ̄b] ≡ −γ2

2

∑
mn

∫
ddr ψ̄a

m(r)ψa
m(r)ψ̄b

n(r)ψ
b
n(r), (6.49)

represents an effective quartic interaction generated by the disorder average. Notice the

superficial similarity between Sdis and an attractive short-range “interaction” term. How-

ever, in contrast to a dynamically generated interaction, (a) Sdis does not involve frequency

exchanging processes (the reason being, of course, that the scattering off static impurities is

energy conserving), and (b) it describes interactions between particles of a different replica

index. To understand the physics behind the attractive inter-replica interaction, consider the

potential landscape of a given impurity configuration (see the figure). Irrespective of their

replica indices, all Feynman amplitudes will try to trace out those regions in configuration

space where the potential energy is low, i.e. there will be a tendency to propagate through

the same regions in the potential landscape. (Recall that all replica fields are confronted

with the same potential profile.) On average, this looks as if the replica fields were subject

to an attractive interaction mechanism.
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In summary, one may account for the pres-

ence of quenched or static disorder by (a)

replicating the formalism, (b) representing

observables as in Eq. (6.48), and (c) adding the

replica non-diagonal contribution Eq. (6.49)

to the action. This results in a theory wherein

the disorder no longer appears explicitly.

(Technically, the effective action has become

translationally invariant.) The price to be paid

is that the action now contains the non-linearity

Eq. (6.49). This concludes our formulation of

the quantum disorder problem as a functional integral. In the following section, we develop

some intuition for the effects of disorder which draw on the formalism developed above.

Basic notions of impurity scattering

The most basic time scale characterizing the scattering of electrons from static impurities is

the elastic scattering time τ . (Here the term “elastic” emphasizes that the scattering off

static impurities may lead to the transfer of momentum but not of energy.) In the literature,

the scattering time is often prematurely identified as the typical time of flight between

neighboring impurities. However, this interpretation may be misleading. For example, a

system may be (and often is) polluted by a dense accumulation of very weak scattering

imperfections. In such cases, the scattering time may be parametrically larger than the

time of flight. Similarly, the scattering may be from the shallow Coulomb potential created

by impurities spatially separated from the conductor (a situation generically realized in

semiconductor heterostructures). In such cases, impurity positions are themselves not even

well-defined. How, then, can the scattering time be defined unambiguously? And how does

it relate to the microscopic characteristics of the impurity potential?

To assimilate the general meaning of the scattering time, let us consider the quantum

amplitude U(y,x; t) = 〈y|exp(−iĤt)|x〉 for a particle to propagate from a point x to a point

y in a time t for a particular realization of the disorder potential. One may think of this

amplitude as the sum of all Feynman paths connecting the points x and y. On its journey

along each path, the particle may scatter (see Fig. 6.12), implying that the action of the path

depends sensitively on the particular realization of impurities. For large separations, |x−y|,
the scattering phase becomes a “quasi-random” function of the impurity configuration. The

same applies, of course, to the linear superposition of all paths, the net amplitude U .

Let us now consider the impurity-averaged value of the transition amplitude 〈U(x,y; t)〉dis.
As we are averaging over a superposition of random phases, one may expect that the

disorder average will be translationally invariant and, as a result of the random phase

cancellation, rapidly decaying, 〈U(x,y; t)〉dis ∼ exp(−|x − y|/(2�)). The decay constant �

of the averaged transition amplitude defines the elastic mean free path while the related

time τ ≡ �/vF denotes the elastic scattering time. (We reiterate that only in systems of

dilute strong scattering centers can this scale be identified with the average spacing between
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x y

x y

Figure 6.12 Showing the scattering of an electron off static imperfections. Inset: the corresponding
Feynman diagram.

impurities.) In the following, we develop a quantitative description of this “damping”

process.

Technically, it is most convenient to explore the behavior of the transition amplitude

in the imaginary-time formalism. More specifically, we shall consider the imaginary-time

Green function59 G(x,y; τ) ≡ 〈ψ(x, τ) ψ̄(y, 0)〉ψ, where the averaging is over the Grassmann

action (6.47). (To keep the notation simple, we do not explicitly keep track of the normal-

izing denominator 〈1〉ψ in our notation.) As usual, it will be convenient to perform the

intermediate steps of the computation in frequency–momentum space. We thus represent

the correlation function as

G(x,y; τ) =
T

Ld

∑
ωn,p,p′

e−iωnτ+ip·x−ip′·yGp,p′;ωn
, (6.50)

where ωn is a fermionic Matsubara frequency and G(p,p′;ωn) = 〈ψn,pψ̄np′〉ψ. (Keep in

mind that, prior to the impurity average, the system lacks translational invariance, i.e. the

Green function will depend on two independent momentum arguments.) Following the gen-

eral prescription developed in Section 6.5, the correlation function averaged over a Gaussian

disorder distribution is then given by (cf. Eq. (6.48))

〈Gp,p′,n〉dis = lim
R→0

1

R

R∑
a=1

〈ψa
n,p ψ̄a

n,p〉ψδp,p′ , (6.51)

where ψa is the ath component of the R-fold replicated field and 〈· · · 〉ψ now stands for

the functional average with an action including the interaction term Eq. (6.49). (Exercise:

Consider why the averaged Green function is diagonal in momentum space.) To keep the

discussion simple, we shall ignore dynamical interactions (i.e. Coulomb interaction, etc.)

between the particles and assume that the non-disordered part of the action S[ψa, ψ̄a] =∑
n,p ψ̄a

n,p(−iωn + p2

2m − EF)ψ
a
n,p describes only free fermions.

In the remainder of this section, our objective is to explore the impact of the disorder

generated interaction on the behavior of the Green function by means of diagrammatic

59 Representing the transition amplitude for the creation of a particle at point x followed by an annihilation
process at y, this function generalizes the single-particle transition amplitude U to the presence of a continuum
of particles; while all that has been said above about the disorder-generated attenuation remains valid.
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a a

b b

(a) (b) (c) (d)

Figure 6.13 (a) Impurity scattering vertex, (b) the first-order self-energy diagrams, (c) the second-
order self-energy diagrams, and (d) SCBA self-energy. With the last, the bold line represents the
full Green function while the diagram states that the self-energy is computed neglecting all crossed
lines (cf. the discussion in Section 5.3).

perturbation theory. As mentioned above, since the disorder problem presents a useful arena

to practice the methods developed in the text we will outline the program as a sequence of

assignments while the detailed solution is given below. Following the general arguments of

Section 5.3, the principal object of interest is the impurity-generated self-energy operator

Σ. Let us prepare the analysis of this object by introducing a bit of diagrammatic notation.

We depict the impurity scattering vertex defining the action (6.49) as in Fig. 6.13(a).60

As usual, setting p = (ωn,p), the free-particle Green function G0,p ≡ (iωn − ξp)
−1 will be

denoted by a fine (directed) line. Using this notation, and following the rules of diagrammatic

perturbation theory developed in Chapter 5:

Q1: Consider the self-energy Σ(1) at first order in the impurity scattering (Fig. 6.13(b)).

Show that the “Hartree-type” diagram (right) does not contribute (in the replica limit!).

Compute the real and imaginary parts of the “Fock” (left) contribution to the self-energy.

Show that, in dimensions d ≥ 2, Re Σ actually diverges. Convince yourself (both formally

and heuristically) that this divergence is an artefact of our modeling of the impurity poten-

tial by a δ-correlated function (see Eq. (6.44) and the related discussion). Consider what

could be the reason for the real part of the self-energy not playing a very important role.

Q2: Turning to the second-order contribution Σ(2) (see Fig. 6.13(c)), convince yourself that,

in dimensions d > 1, the diagram with crossed impurity lines is parametrically smaller than

the second contribution. (What is the small parameter of the expansion?)

Q3: This motivates the computation of the self-energy in the self-consistent Born approx-

imation (SCBA) (see Fig. 6.13(d)). Show that the SCBA equation can be approximately

solved by the ansatz Im Σ(ωn) = −sgn(ωn)/2τ , where τ is a constant. Once again, identify

the small parameter of the expansion.

Q4: Put together, one thus obtains the impurity-averaged Green function 〈Gp〉dis = (iωn −
ξp + i sgn(n)/2τ)−1. Fourier transforming this result back to real time/space, justify the

identification of the self-energy with (one half of) the inverse scattering time.

60 In the diagrammatic literature, individual scattering events off the impurity potential V (r) are tradi-
tionally depicted by dashed lines (see Fig. 6.12, inset). Once we average a product of such vertices,
V (r1)V (r2) · · ·V (r2n), over the Gaussian disorder distribution (6.44), the coordinates {ri} become pairwise
identified in all possible combinations. This is usually indicated by connecting the corresponding vertex lines,
i.e. a diagram with 2n dangling bonds becomes a sum of diagrams, each containing n interaction lines. In our
pre-averaged replica field theory, we are using the corresponding interaction vertex from the outset.
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Q5: Why is the replica method exact in perturbation theory?

A1: Unlike the Fock diagram, where all replica indices are locked to the index of the incoming

Green functions, the Hartree diagram contains one free replica summation. This summation

yields an excess factor R that, in the limit R → 0, vanishes. For the same reason, all

diagrams with closed fermion loops (loops connected to the external field amplitudes only

by impurity lines or not at all) do not contribute to the expansion. Technically, the excluded

contributions represent vacuum diagrams,61 i.e. on the level of perturbation theory, the

only62 effect of the replica limit is the elimination of all vacuum processes. We have thus

shown that the replica theory exactly simulates the effect of the normalizing partition

function present in the denominator of the unreplicated theory (cf. the discussion of the

linked cluster theorem in Section 5.1). This proves – all on the level of perturbation theory –

the equivalence of the representations.

The representation of the disorder-generated interaction Eq. (6.49) in momentum space

emphasizes the fact that the impurity scattering exchanges arbitrary momentum, but not

frequency. A straightforward Wick contraction along the lines of our discussion in Section 5.3

then obtains the first-order contribution

Σ(1)
p = γ2

∑
p′

G
(0)
p′,n � γ2

∫
dε

ν(ε)

iωn + EF − ε
� γ2P

∫
dε

ν(ε)

EF − ε
− iπγ2ν sgn (ωn),

where P
∫
stands for the principal value integral. For d ≥ 2, the increase of the DoS ν(ε) as

a function of ε renders the real part of the self-energy formally divergent. This divergence is

an immediate consequence of the unbounded summation over p′ – which is an artefact of the

model.63 In any case, the real part of the self-energy is not of prime interest to us: all that

Re Σpn = const. describes is a frequency- and momentum-independent shift of the energy.

This shift can be absorbed into a redefinition of the chemical potential and will not cause

any observable effects. By contrast, the imaginary part Im Σ
(1)
p,n = −πγ2ν sgn (ωn) describes

the attenuation of the quasi-particle amplitude due to impurity scattering, a mechanism of

great physical significance.

A2: The analysis of the second-order contribution Σ(2) parallels our discussion of the RPA in

Chapter 5: the Green functions Gp are sharply peaked around the Fermi surface |p| = pF.

(Since the Matsubara index n in p = (p, n) is conserved in impurity scattering, we will

not always write it out explicitly.) Representing the diagram with non-crossing lines in

61 To understand this assertion, consider the non-replicated theory prior to the impurity average. Due to the
absence of “real” interactions, any closed fermion loop appearing in the expansion must be a vacuum diagram.
After taking the impurity average, the loop may become connected to the external amplitudes by an impurity
line. However, it remains a vacuum loop and must cancel against the expansion of the normalization denomi-
nator, if we were crazy enough to formulate the numerator–denominator expansion of the theory explicitly.

62 In a connected diagram, all replica indices are locked to the index a of the external field vertices. We thus
obtain (symbolic notation) 〈G〉dis ∼ limR→0

1
R

∑
a〈ψaψ̄a〉 ∝ limR→0

R
R × const. = const. where the factor

of R results from the summation over a and we have used the fact that the correlation function 〈ψaψ̄a〉 is
independent of a (replica symmetry).

63 In reality, the summation will be finite because either (a) there is an underlying lattice structure (i.e. the p′-
summation is limited to the Brillouin zone) or (b) the kernel K(r) describing the profile of the impurity potential
varies on scales large in comparison with the Fermi wavelength. In this latter case, its Fourier transform has
to be added to the definition of the scattering vertex above. The presence of this function then limits the
p′-summation to values |p′ − p| < ξ−1 � pF.



310 Broken symmetry and collective phenomena

momentum space, one obtains Σ
(2)
n.c. ∼

∑
p1,p2

[G
(0)
p1 ]

2G
(0)
p2 , restricting both momenta to the

Fermi surface, i.e. |p1|, |p2| � pF. By contrast, the contribution with crossed lines takes

the form Σ
(2)
c. ∼

∑
p1,p2

G
(0)
p1 G

(0)
p2 G

(0)
p2+p−p1

. Since all three momentum arguments have to

be tuned to values close to pF, only one summation runs freely over the Fermi surface. To

estimate the relative weight of the two contributions, we need to know the width of the

“shell” centered around the Fermi surface in which the Green functions assume sizeable

values. Since |G| = [(EF−p2/2m)2+(ImG−1)2]−1, the width of the Lorenzian profile is set

by ImG−1. As long as we are working with the bare Green function, Im [G(0)]−1 = ωn ∝ T

is proportional to the temperature. However, a more physical approach is to anticipate

that impurity scattering will broaden the width Im [G(0)]−1 ∼ τ−1 to a constant value (to

be identified momentarily as the inverse scattering time). Then, the relative weight of the

two diagrams can be estimated as p
2(d−1)
F /(pF(vFτ)

−1)d−1 = (pF�)
d−1, where � = vFτ is

the elastic mean-free path, and the numerator and denominator estimate the volume in

momentum space accessible to the p1,2 summations in the two diagrams. The important

message to be taken away from this discussion is that, for weak disorder pF � �−1 (which

we have assumed throughout), and in dimensions d > 1, scattering processes with crossed

impurity lines are negligible. Under these conditions, we are entitled to evaluate the self-

energy (and, for that matter, all other observables) within the self-consistent Born, or

non-crossing, approximation, i.e. an approximation that neglects processes with crossed

“interaction” lines.

A3: Drawing on the analogous discussion in Section 5.3, the SCBA for the self-energy is

given by the diagram shown in Fig. 6.13(d). The corresponding analytical expression takes

the form (cf. Eq. (5.40))

Σp,n = γ2L−d
∑
p′

1

iωn + EF − p′2/2m− Σp′,n
. (6.52)

Guided by our results obtained in the first order of perturbation theory, we may seek a

solution of (the imaginary part of) this equation by the ansatz Im Σp,n = − 1
2τ sgn(ωn).

Substitution of this expression into the SCBA equation gives

− 1

2τ
sgn(ωn) � γ2Im

∫
dε

ν(ε)

iωn + EF − ε+ i
2τ sgn(ωn)

� −πγ2ν sgn (ωn),

where we have assumed that EFτ � 1. We have thus arrived at the identification of τ−1 =

2πνγ2 as the elastic scattering rate. (In the literature, the potential strength γ2 = 1/(2πντ)

is usually defined through the scattering time, i.e. the parameter γ2 is expressed through τ

from the outset.) Summarizing, we have obtained the important result

〈Gp〉dis =
1

iωn + EF − p2

2m + i
2τ sgn(ωn)

. (6.53)

A4: To compute the inverse Fourier transform of Eq. (6.50) one may trade the frequency

summation for a complex contour integral. Taking account of the fact that the Green

function has a cut along the entire real frequency axis (the non-analyticity of sgn(ωn) →
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sgn(Im z) at Re z = 0), we chose the integration contour as shown in the figure. This leads

us to the representation

〈G(x,y; τ)〉dis =
∑
p

∫
dε

2π
e−ετ (1− nF(ε))e

ip·(x−y)

× Im
1

EF + ε− p2

2m + i
2τ

.

Here, we are using 1 − nF instead of nF as a pole function because

e−zτ (1− nF(z)) is finite for large |z|, whereas e−zτnF(z) is not. It is

now a straightforward matter to compute this expression by first (a)

integrating out the angular degrees of freedom of p followed by (b) a

contour integration over p (cf. the analogous calculation of the clean

Green function in the exercise at the end of section 5.1). However, as

we require only the asymptotic effect of the damping, we may follow

a more efficient route: the essential effect of the damping term is to shift the poles of

the p-integration from the real axis into the complex plane. Equating the Green function

denominator to zero and neglecting the parameter ε (ε � EF as long as the time parameter

τ � E−1
F is not extremely small), we find that the poles are located at p = pF ± i

2� . The

essential effect of this shift is that the exponentials exp(ip|x−y|) have to be evaluated at the

residues exp(ipF|x−y| − |x−y|/(2�)). Consequently, the disorder averaged Green function

is related to the Green function of the clean system Gcl by the exponential damping factor

which we had surmised above,

〈G(x,y; τ)〉dis = Gcl(x,y; τ)e
−|x−y|/2�.

A5: We refer to the discussion in A1.

This completes our discussion of the impurity-averaged single-particle Green function

〈G(x,y; τ)〉dis. The latter has been shown to be short-range on the scale of the elastic mean

free path �. In the following section, we shall see that, by contrast, the impurity-averaged

two-particle Green function acquires long-range correlations which encode the modes of

density relaxation and provide a means to explore mechanisms of quantum interference

which characterize the mesoscopic regime.

Diffusion

How do local fluctuations in the electron density δρ̂(τ, r) ≡ ρ̂(τ, r) − 〈τ̂ , ρ(r)〉 relax in

a disordered environment?64 In a classical disordered system, this relaxation mechanism

would be diffusive. Below, we shall see that the same characteristic behavior survives in the

quantum picture. Formally, this is achieved by exploring the correlation function D(τ, r) ≡

64 Notice that the brackets 〈· · · 〉 represent the quantum average, and not yet the disorder average.
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〈〈δρ̂(τ, r)δρ̂(0, 0)〉〉dis, i.e. a function that describes how δρ̂(τ, r) changes in response to a

density fluctuation at (r = 0, τ = 0).

EXERCISE In a real time formulation, how is the correlation function D related to the quantum

transmission probability density?

INFO The diffusive relaxation process described by the function D extends over distances

much larger than the decay length of the average single-particle Green function, �. To iden-

tify the mechanism that underlies the stability of the four-point function, think of D(τ, r) =

〈〈ψ̄(τ, r)ψ(0, 0)〉 〈ψ(τ, r)ψ̄(0, 0)〉〉dis as the product of the amplitudes for (a) the annihilation of a

particle at space-time coordinate (0, 0) followed by particle creation at (τ, r) and (b) the creation

of a particle at (0, 0) followed by its annihilation at (τ, r).65 The annihilation process initiat-

ing (a) may be interpreted alternatively as the creation of a hole, i.e. the composite process D

describes the joint propagation of a particle and a hole amplitude through the medium (which

explains why D is sometimes called the particle–hole propagator).

Now, against this background, let us temporarily switch to a real time description τ → it

and draw on the intuition afforded by the consideration of Feynman amplitudes. Specifically,

let us consider the particle propagator as the sum of all Feynman paths α connecting 0 and r

(see Fig. 6.14). Similarly, the hole amplitude corresponds to a path-sum over all paths where

each path β is weighted by the negative of its classical action.66 We thus have the symbolic

representation

D ∼
∫

dε dε′
∑
αβ

AαA
∗
βexp

[
i

�
(Sα(ε)− Sβ(ε

′))
]
,

where the notation emphasizes that the electron and hole have different energies ε, ε′. As with

the single-particle propagator, the strong sensitivity of the actions Sα,β on the impurity potential

implies that generic contributions (α, β) to the path double sum vanish upon impurity averaging.

However, the “diagonal” contribution (α, α) to the sum,Ddiag ∼
∑

α |Aα|2exp( i
�
(Sα(ε)−Sα(ε

′))),
depends only weakly on the impurity potential, and will likely survive the averaging procedure.

A glance at Fig. 6.14 (b) suggests that the diagonal contribution to D is but an elaborate

quantum description of classical diffusion: two quantum amplitudes locally tied together, and

propagating in a stochastic environment, should be capable of interpretation as a classically

diffusive probability density. Indeed, this interpretation is corroborated by the fact that, upon

approaching the classical limit � → 0, the dominance of the diagonal approximation becomes

more pronounced.

However, notice that, beyond the straightforward diagonal configuration, there are other con-

tributions to the double path sum that are likely to be impervious to configurational averaging.

For example, the two paths depicted in Fig. 6.14 (c) are globally different but locally paired. The

former attribute tells us that we are dealing with a fundamentally non-classical contribution to

the correlation function, and the latter that the action difference Sα − Sβ will be small. Indeed,

65 To understand the positioning of the quantum-thermal averaging brackets, consider the definition of D in terms
of the operators δρ̂, and take into account the fact that, of the two possible Wick contractions, one gets canceled
due to the subtraction of 〈ρ̂〉.

66 Heuristically, the inversion of the sign of the action accounts for the fact that a hole is a “missing” electron.
More formally, it follows from the fact that the hole amplitude is obtained by complex conjugation of the
particle amplitude.
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(a) (b) (c)

Figure 6.14 (a) A generic pair of Feynman paths contributing to the density–density correlation
function prior to averaging. (b) Particle and hole propagating along the same path in configuration
space – the “diffuson.” (c) A non-classical contribution to the path sum.

we shall see that processes like the one shown here lie at the root of the observed quantum

phenomena that characterize the physics of disordered media.

Below, we apply concepts very similar to those developed in Section 5.3 to understand the

spatial long-range character of the four-point function. Further, we wish to elucidate the

diffusive character of this correlation function.

Q1: Before turning to explicit computations, let us derive two exact relations obeyed by

the Fourier transform Dq,ωm : Show that limq→0 Dq,0 = L−d∂μN and D0,ωm = 0, where

N = 〈N̂〉ψ denotes the number of particles in the system and, as usual, μ ↔ EF represents

the chemical potential. Explain the origin of these two sum rules.

Q2: Represent the four-point function in a momentum–frequency form similar in structure

to that of the correlation function C(4) introduced in Eq. (5.41). (Hint: It is convenient to

represent the correlation function as D(x) = δ2μ(x)μ(0)〈lnZ〉dis|μ(x)=μ, where x ≡ (τ, r), and

μ(x) = μ(τ, r) is the generalization of the chemical potential to a space-time-dependent

source field.)

Q3: To compute the two-particle correlation function, one may apply concepts similar to

those introduced in Section 5.3. In doing so, we will benefit from two major simplifications.

Assuming that (pF�)
−1 � 1, we will work to leading order in this parameter (pF� � 1

plays a role similar to that of the large parameter N in Section 5.3). Secondly, we may

make use of the fact that the momentum q Fourier conjugate to the argument |r| � � is

much smaller than the Fermi momentum. Show that, under these conditions, the irreducible

vertex, Γ0,q,p,p′ = (2πντ)−1δωn,ω′
n
, collapses to (the Fourier representation of) a single

impurity vertex. (Since all field amplitudes that contribute in the replica limit carry the

same replica index a, one may drop the replica structure from the notation.) Write down

the Bethe–Salpeter equation for the full vertex.

Q4: Solve the Bethe–Salpeter equation to leading order in (pF�)
−1 (note |q|� � 1). (Hint:

Notice that the two cases ωn · ωn+m < 0 and ωn · ωn+m > 0 behave in radically differ-
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Figure 6.15 Maximally crossed contribution to the irreducible vertex. Second line: the correspond-
ing Bethe–Salpeter equation. In all diagrams, the upper (lower) Green functions carry frequency
ωn+m (ωn).

ent manners.) Use your result for the irreducible vertex to compute the density–density

correlation function.

Q5: Referring to Fig. 6.14(c), the diagram suggests that a particle–hole pair propagating

along the same path in a disordered medium may split up, propagate along a closed loop

in opposite directions, and later recombine. Provided that the action for traversal of a

scattering path in the medium does not depend on the direction of propagation, one may

expect the classical action difference of the composite process to be small.67 How would these

processes – known as cooperon-modes, or just cooperons68 in the literature – manifest

themselves in the present formalism? The cooperon describes a process wherein the two

constituent partners propagate with near opposite momenta. Indeed, it turns out that,

for p1 � −p2, the irreducible vertex contains a second contribution (besides the isolated

impurity line) of more complex structure: a sum over diagrams with “maximally crossed”

impurity lines (see Fig. 6.15). This diagram, too, contains one Fermi sphere summation

per impurity line. The most economic way to see this is to imagine the lower of the two

fermion propagators twisted by 180◦ (the second diagram in the figure). Superficially, it now

resembles the previously explored vertex. The important difference, however, is that the

arrows marking the fermion propagators now point in the same direction, i.e. as compared

with the particle–hole mode discussed above, the relative sense of traversal of the impurity

sequence became reversed.

Compute the cooperon contribution to the irreducible vertex. Discuss what would happen

if the system was exposed to an external magnetic field. In spite of its structural similarity

to the “diffuson mode” identified in Q4, why does the insertion of a single cooperon into

the diffusive correlation function not give rise to a large correction?

67 Formally, the directional invariance of the action requires that the system is invariant under time-reversal.
Time-reversal symmetry would be lost, for example, if the system were subject to an external magnetic field.
In this case, the classical probability for propagation along a path depends on the sense of traversal.

68 The origin of the terminology “cooperon” is that these modes describe the dynamics of a two-particle process
where the two constituents propagate in opposite direction (in analogy to the opposite momenta of the two
electrons of a Cooper pair).
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A1: The functional expectation value of the particle number is given by 〈N〉 =∫
dτ ddr 〈ρ̂(r, τ)〉ψ =

∫
ddr 〈ρ̂ωm=0(r)〉ψ. Differentiating this expression with respect to μ,

and noting that the chemical potential couples to the action through μ
∫
ddr

∫
dτ ρ̂(r, τ),

one obtains69

∂μ〈N〉 =

∫
ddr ddr′ [〈ρ̂0(r)ρ̂0(r′)〉ψ − 〈ρ̂0(r)〉ψ〈ρ̂0(r′)〉ψ]

=

∫
ddr ddr′ Dωn=0(r− r′) = Ld lim

q→0
Dq,0.

Particle number conservation demands that
∫
ddr 〈δρ̂(r, τ)〉ψ = 0 at all times. Consequently,∫

ddr D(r, τ) = 0 or, equivalently, Dq=0,ωm = 0.

A2: It is straightforward to verify that the two-fold μ-differentiation suggested above

yields the correlation function D. Now, let us employ the replica formulation 〈lnZ〉dis =

limR→0
1
R 〈ZR − 1〉. Differentiating the right-hand side of this equation, one obtains

D(x) = lim
R→0

1

R
〈ψ̄a(x)ψa(x)ψ̄b(0)ψb(0)〉ψ.

To avoid the vanishing of this expression in the limit R → 0, we need to connect operators

ψ̄a and ψb (ψ̄b and ψa) by fermion lines (thus enforcing a = b – otherwise the two-fold

summation over a and b would produce an excessive factor R which would result in the

vanishing of the expression in the replica limit). We thus obtain a structure similar to that

discussed in Section 5.3 (cf. Fig. 6.16): two propagators connecting the points x and 0,

where the role of the wavy interaction line of Section 5.3 is now played by the “interaction”

generated by the impurity correlator 〈V V 〉.
As in Section 5.3, it will be convenient to formulate the diagrammatic analysis of

the correlation function in momentum space. We thus substitute the Fourier decomposi-

tion ψa(x) = (T/Ld)1/2
∑

p e
−ip·xψa

p into the definition of D, make use of the fact that

〈ψ̄a
p1
ψa
p1+qψ̄

a
p2+q′ψ

a
p2
〉 ∝ δqq′ (momentum conservation in the averaged theory), and obtain

D(x) = T
Ld

∑
q e

iq·xDq, where Dq = T
Ld limR→0 R

−1
∑

p1p2
〈ψ̄a

p1
ψa
p1+qψ̄

a
p2+qψ

a
p2
〉ψ. The

impurity interaction is static, implying that the fermion frequency is conserved along each

propagator: ωn′ = ωn, i.e.

Dq =
T

Ld
lim
R→0

1

R

∑
ωn

∑
p1p2

〈ψ̄a
p1,ωn

ψa
p1+q,ωn+m

ψ̄a
p2+q,ωn+m

ψa
p2,ωn

〉ψ. (6.54)

A3: Only diagrams that contain one free summation over the Fermi surface per impurity

line contribute to leading order in (pF�)
−1. (Formally, this is because each impurity line

contributes a factor γ2 ∼ (ντ)−1 and the phase volume of a momentum summation over the

Fermi surface is needed to compensate the density of states factor ν in the denominator.)

As in our discussion of the self-energy, this implies that diagrams with crossed impurity

lines do not contribute to the irreducible vertex. (The only irreducible contribution without

69 From the expressions above it is, in fact, not quite clear why we set first ωn = 0 and only then q = 0. That this
is the correct order of limits can be seen by generalizing μ → μ(r) to a smoothly varying static field, evaluating
the corresponding functional derivatives δ/δμ(r), and setting μ = const. at the end of the calculation.



316 Broken symmetry and collective phenomena
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Figure 6.16 Diagrammatic expansion of the diffuson mode.

crossings is the single impurity line.) Consequently, the diagrammatic expansion of the

correlation function assumes a form shown in Fig. 6.16. The Bethe–Salpeter equation for

the impurity vertex (shaded in the figure) reads

Γp1,p2,q =
1

2πLdντ
+

1

2πLdντ

∑
p

Gp+q,n+mGp,nΓp,p2,q, (6.55)

where the Gs denote the impurity-averaged single-particle Green functions evaluated in the

SCBA and discussed in the previous section.

A4: The correlation function D contains a summation over frequency. Assuming that ωm >

0, let us organize the sum as D = D++ + D+− + D−−, where D++, D+−, and D−−

denote, respectively, the contributions where {ωn, ωn+m} > 0, {ωn+m > 0, ωn < 0}, and
{ωn, ωn+m} < 0. We begin by considering the most interesting term D+−. Introducing the

notation G±
p ≡ (EF − p2/2m ± i/2τ)−1, one may expand the integrand appearing in the

Bethe–Salpeter equation to leading order in the small70 energies ωn, ωn+m and q · p/m,

and obtain

Gp+qGp = G+
pG

−
p

(
1− iG+

pωn+m − iG−
pωn + (G+

pq · p/m)2 + · · ·
)
, (6.56)

where a term linear in q has been omitted as it will vanish upon integration over the angular

coordinates of p. We next make the assumption (to be checked self-consistently) that, for

small q, the vertex Γ = Γq does not depend on the “fast” momenta p,p′. The integration

over p – now decoupled from the vertex – can then be made with the help of two auxiliary

identities:71
∫
ddp f(|p|)(v · p)2 = v2

d

∫
ddp f(|p|)p2 and

L−d
∑
p

[
G+

p

]n++1 [
G−

p

]n−+1
= 2πin−−n+

(n+ + n−)!
n+! n−!

ντn++n−+1.

70 The inequality ωnωn+m < 0 implies that |n| < |m|. Thus |ωn|, |ωm| � τ−1, where it is assumed that the
frequencies we are probing are much smaller than the scattering rate.

71 This can be checked by writing v · p = vipi and using the symmetry of the integrand under the operations
pi → −pi and pi → pj .
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The last identity is proven by converting the momentum sum into an integral, which is

then performed by contour integration (exercise). Substituting the expansion (6.56), and

employing the two auxiliary identities, one arrives at the relation

Γq =
1

2πντ

(
L−d + 2πντ

[
1− τωm − q2

τ2v2F
d

]
Γq

)
.

Solving this equation for Γq, we obtain our final result for the vertex,

Γq =
1

2πντ2Ld

1

ωm +Dq2
,

where D = vF�/d defines the diffusion constant of a dirty metal.

A few remarks about this result are in order. Firstly, one may note that the absence

of (q, ωm)-independent constants in the denominator results from a cancellation of two

terms in the vertex equation. (We have met with a similar cancellation in our discussion of

the vertex of the generalized φ4-theory in Chapter 5.) Thanks to this cancellation, Γ(r, τ)

becomes a long-range object. Later, we will identify the absence of damping or mass-like

terms in the denominator as a consequence of a fundamental symmetry in the problem.

Secondly, one may note that Γ is a solution of the diffusion equation (∂τ −D∇2)Γ(τ, r) =

(2πLdτ2)−1δd(r)δ(τ) (exercise), describing the manner in which a distribution initially cen-

tered at x = 0 spreads out in time. Alluding to this analogy, the vertex Γ has become known

as the diffuson. However, more important than the terminology is the fact that we have

succeeded in making the connection between particle–hole propagation in a dirty medium

and classical diffusive processes quantitative.

To finalize our calculation of the four-point function we need only add external Green

functions to the vertex (see Fig. 6.16), add the first diagram (the empty bubble) shown

in the figure, and integrate over the momenta p1,p2. Expanding the corresponding Green

functions to zeroth order in q, ωn, ωn+m (cf. Eq. (6.56)) and using the auxiliary identity

above, one obtains

D+−
q = −T

∑
−ωm<ωn<0

(
2πντ +

(2πντ)2

2πντ2
1

ωm +Dq2

)
� − νωm

ωm +Dq2
,

where, in the first equality, the factors 2πντ stem from the momentum integration over

pairs of Green functions, and the second equality holds under the presumed conditions

ωm, Dq2 � τ−1. (The overall minus sign comes from the fact that we are computing a

closed fermion loop.)

To complete the analysis, we need to compute the expressions D++/−−. The analysis of

these objects is fairly simple inasmuch as the vertex actually collapses to a single impurity

line. Since the two Green functions over which the sum in Eq. (6.55) is performed now have

imaginary parts of the same sign, the contour integration over |p| gives zero. Similarly, the

placement of the residual single-impurity line vertex into the second diagram of Fig. 6.16

leads to a vanishing contribution. Since the sum over |p1|, |p2| extends over Green functions

with imaginary parts of the same sign, one would be tempted to say that, for the same

reasons, the empty bubble diagram ought to vanish. However, this is not the case: the tricky
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point is that, with regard to the first diagram, one must keep an eye on the frequency sum-

mation. Considering D++, all other diagrams correspond to frequency sums
∑

ωn>0 F (ωn),

where F (ωn)
n�1∼ n−k≥4. However, the first diagram leads to an expression with only k = 2.

This means that, after the frequency summation, one obtains a p-dependent expression that

does not converge quickly enough to qualify for a safe contour integration procedure.72 To

be specific:

D++
q � − T

Ld

∑
p

∑
ωn>0

1

(iωn − ξp + i
2τ )

2
=

1

2πiLd

∑
p

∫ ∞

−∞

dε nF(ε)

(ε− ξp + i
2τ )

2

� − 1

2πiLd

∑
p

1

ε− ξp + i
2τ

,

where, as usual, ξp = p2/2m − EF and the frequency summation has been performed by

integrating over the real axis and closing in the upper complex half plane, and in the last

equality we have approximated nF(ε) � Θ(−ε). Similarly, an analogous computation obtains

D−− = (D++)∗, i.e.

D++ +D−− =
i

2πLd

∑
p

1

ε− ξp + i
2τ

+ c.c. = − 1

π

∫
dε Im

ν(ε)

EF − ε+ i/2τ
� ν.

Combining everything, we arrive at the final result,

Dq = D++
q +D+−

q +D−−
q = ν

(
1− |ωm|

|ωm|+Dq2

)
= ν

Dq2

|ωm|+Dq2
.

(Here we have used the fact that the result does not change under sign inversion of ωm.

Enthusiastic readers may wish to check this claim.) Summarizing, we have thus found that

the density–density correlation function assumes the form

D(r, τ) =
T

Ld

∑
q,ωm

eiq·r+iωmτ νDq2

|ωm|+Dq2
.

This result makes the diffusive character of the density–density correlation function mani-

fest. Notice also that Dq obeys the two limiting conditions discussed in (A1). (Indeed, for

a non-interacting fermion system, ν = L−d∂μN .)

A5: Let us now consider the irreducible vertex in a sector in momentum space where the sum

of the upper incoming momentum, p1, and lower incoming momentum, −p1 + q, is small.

(Momentum conservation then implies that the upper outgoing momentum, p2, and lower

outgoing momentum, −p2 + q, also sum to the small offset q.) Further, let us assume that

the Matsubara frequencies ωn and ωn+m carried by the upper and lower propagators are of

opposite signs. Now, imagine the lower line is turned around in such a way that the diagram

assumes the form of a ladder structure (still it remains “irreducible” because the notion of

72 Indeed, the |p|-summation only approximately extends over the entire real axis. We are thus well advised to
do the frequency summation (which has true semi-infinite support) prior to the momentum summation.
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irreducibility has been defined for fermion lines of opposite orientation). The corresponding

Bethe–Salpeter equation takes the form

ΓC
q =

1

2πντLd
+

1

2πντLd

∑
p

G−p+q,n1+mG−p,n1Γ
C
q ,

where ΓC is the cooperon contribution to the irreducible vertex, and we have assumed that,

for small external momenta, ΓC is independent of the “fast” momenta. In the absence of

an external magnetic field, G−p = Gp is even, i.e. the Bethe–Salpeter equation coincides

exactly with Eq. (6.55) for the diffusion mode considered above. Consequently, we may infer

that

ΓC
q,ωm

=
1

2πντLd

1

|ωm|+Dq2
.

However, in the presence of a magnetic field, the inversion symmetry is lost. Let us, for

a moment, assume that the vector potential A representing the magnetic field depends

only weakly on its spatial coordinate. Neglecting commutators between the momenta and

the vector potential, and defining Gp(A) = (iωn + EF − (p +A)2/2m + i/2τ sgn(ωn))
−1,

(e = c = 1), one may then shift the fast momentum to obtain Gp+q(A)G−p(A) =

Gp+q(A)Gp(−A)
p→p−A−−−−−→ Gp+q(2A)Gp(0) = Gp+q−2A(0)Gp(0). In this way, one may

see that the magnetic field can be absorbed into a redefinition of the momentum difference

q. In the presence of an external magnetic field, the cooperon then acquires the form

ΓC
q̂ =

1

2πντLd

1

|ωm|+D(q+ 2A)2
.

The notation here emphasizes that the simplified argument above generalizes to fields with

arbitrary (yet smooth on the scale of the microscopic mean free path) space dependence. In

that case, ΓC is defined as the solution of the equation (|ωm|+D(−i∇r +2A)2)Γ(r, ωm) =

(2πντLd)−1δd(r) (a formal solution of which is given by the right-hand side of the definition

above). Crucially, the presence of the vector potential spoils the singularity of the cooperon

mode in the limit q, ωm → 0. In other words, the magnetic field turns the cooperon into an

exponentially decaying mode, as expected from our qualitative discussion above.

To conclude this section, let us discuss the role of the cooperon mode within the larger

framework of the “quantum diffusive” process. Neglecting the cooperon, we had identified

the density–density correlation function – formally computed as a ladder sequence where

each rung was given by the trivial single impurity line irreducible vertex – with a classical

diffusive process. However, we have seen that coherent loop excursions traversed in opposite

directions give rise to quantum corrections to this picture. Formally, these excursions were

described by maximally crossed corrections to the irreducible vertex. We saw that, in the

absence of external fields, these corrections quantitatively resembled the diffusive form of

the (leading-order) particle–hole mode. (This could have been anticipated from Fig. 6.14(c).

Although the impurity sequence is now traversed in an opposite sense, the cooperon excur-

sion provides a diffusive contribution.) Does this formal similarity imply that the cooperon

modes give a large O(1) correction to the leading classical term? To understand why it
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does not, we have to, once again, consider the phase space structure of the fast integration

momenta.

The diffusion mode is computed for an overall conserved small momentum difference

between the upper and lower momenta. On the other hand, the cooperon mode requires

the momentum sum of the upper incoming and lower outgoing momenta to be small. These

two conditions have to be reconciled. It is straightforward to see that this leads to the loss

of Fermi-sphere integration volume. In other words, the cooperon gives rise to a singular

(in Dq2 + |ωm|) correction to the diffusion mode. However, this correction is weighted by a

small factor ∼ (pF�)
d−1.

The reader may wonder why we left the cooperon mode calculation with the semi-

quantitative arguments above. The reason is that the actual embedding of the cooperon

mode into the density–density correlation function, i.e. the solution of the Bethe–Salpeter

equation for the full vertex in the presence of a cooperon-corrected irreducible vertex, is a

tricky business. It requires a fair amount of diagrammatic skill to obtain the correct result

(notably one that fulfills the conservation laws discussed in A1). In the following section,

we will see that this task is much more efficiently tackled by functional methods, a feature

not uncommon in the field-theoretic environment.

Further, one may wonder what happens when the external momenta are tuned to zero.

Eventually, the singularity of the cooperon mode will seriously compete with its small

prefactor, so that qualitative corrections to classical diffusion must be expected. Indeed,

it turns out that a proliferation of cooperon corrections leads to a slowing down of the

diffusive propagation of electron densities. In a way, the cooperon describes the tendency

of an electron’s quantum amplitude to constructively self-interfere at the point of origin of

the closed loop. Through an accumulation of such processes, the electron may eventually

get stuck or localized. Qualitatively, this is the origin of the phenomenon of Anderson

localization in metals. We shall return to this phenomenon from a more field-theoretical

perspective below.

Mean-field theory and spontaneous symmetry breaking

Previously, we have seen that the Green function of the disordered electron gas contains a

complex self-energy describing the damping of quasi-particle amplitudes by impurity scat-

tering. Further, we have found that the more complex four-point function is a long-range

object whose behavior is governed by soft modes of density relaxation: the diffuson and

cooperon modes. The existence of the latter was intimately tied to the time-reversal invari-

ance properties of the system. In concluding, we had anticipated that a complete theory

of the weakly disordered conductor should be able to describe the embedding of diffuson

and cooperon modes into structures of higher complexity. It also became quite clear that

the construction of a diagrammatic approach to the problem would be a formidable task;

rather one should aim to find a formulation wherein the diffuson and cooperon modes (in

contrast to individual fermion Green functions) appear as fundamental degrees of freedom.

Such considerations call for a field-theoretical construction. In this section, we utilize the

machinery of the present chapter to construct the low-energy field theory of the disordered
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Figure 6.17 The three different low-momentum channels of the impurity vertex: exchange, Cooper,
and direct.

electron gas. In doing so, we establish contact with our previous results obtained from

the diagrammatic perturbation theory, and we understand the phenomenon of soft mode

formation in the disordered electron system from a wider perspective.

As usual, our starting point is the replicated action of the non-interacting disordered

electron gas derived in Section 6.5:

S[ψ, ψ̄] =

∫
dτ ddr ψ̄

(
∂τ − EF − ∇2

2m
+ V

)
ψ

〈··· 〉V→
∫

dτ ddr ψ̄

(
∂τ − EF − ∇2

2m

)
ψ

+
1

4πντ

∫
dτ dτ ′ ddr (ψ̄ψ)(τ) (ψ̄ψ)(τ ′), (6.57)

where the fields ψ = {ψa} carry a replica index a = 1, . . . , R, and V denotes the disorder

potential. The last term is generated by the ensemble averaging, where we have assumed

that the potential is δ-correlated and expressed its strength through the scattering time

τ . (For clarity, wherever possible, we will avoid spelling out the spatial argument r of the

fields.) Of course, our master strategy will be to decouple the disorder-generated interaction

by a Hubbard–Stratonovich transformation. However, before doing so, we need to decide

which of the three low-momentum channels of the interaction vertex to keep (see Fig. 6.17).

The first contribution (termed the “exchange channel” in our general discussion in Sec-

tion 6.1) appeared as a principal building block in our diagrammatic discussion of the

diffuson mode above; this contribution should surely be retained. Similarly, the second dia-

gram (the Cooper channel) played an important role in the computation of the maximally

crossed diagram and must be retained. The third diagram (the “direct channel”) describes

the scattering off impurities at low momentum transfer. There is no reason why such pro-

cesses should play a distinguished role, so we will ignore this channel.

Following the general discussion of Section 6.1, we should be prepared to introduce two

different Hubbard–Stratonovich fields, one for each impurity vertex. There is, however,

an ingenious trick whereby the number of required Hubbard–Stratonovich fields can be

reduced to one. The idea is to exploit the fact that the diffuson and the cooperon mode are

linked to each other by the symmetry operation of time-reversal. (Recall that the cooperon

mode described the traversal of an impurity path in a chronologically reversed order.)

In the quantum mechanics of spinless particles (for the straightforward extension of the

present discussion to particles with spin, we refer to Efetov73) the anti-unitary operation

73 K. B. Efetov, Supersymmetry and the theory of disordered metals, Adv. Phys. 32 (1983), 53–127.
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of time-reversal T maps operators X̂ onto their transposes X̂ → T X̂ ≡ X̂T .74 Notice

that T p̂ = −p̂, i.e. T induces the momentum reversal distinguishing the diffuson and the

cooperon vertex above. This latter observation suggests that one should consider a version

of the theory “symmetrized” under time-reversal. Within the symmetrized description, the

diffuson and the cooperon vertex should, in some sense, merge into a unified object. The

practical implementation of this idea goes as follows.

Let us return to the action prior to averaging and write

S[ψ̄, ψ] = −
∫

dτ ddr ψ̄Ĝ−1ψ = −1

2

∫
dτ ddr

[
ψ̄Ĝ−1ψ + (ψ̄Ĝ−1ψ)T

]
= −1

2

∫
dτ ddr

[
ψ̄Ĝ−1ψ − ψT Ĝ−1 |∂τ→−∂τ ψ̄T

]
≡ −1

2

∫
dτ ddr Ψ̄Ĝ−1Ψ̂.

Here, Ĝ−1 = −∂τ−Ĥ+EF and, in the second equality, we have used the fact that ψ̄Ĝ−1ψ =

(ψ̄Ĝ−1ψ)T (simply because it is a number). In the third equality, we have expressed the

transpose in terms of its constituents and used the fact that (Ĝ−1)T = Ĝ−1 |∂τ→−∂τ (time-

reversal symmetry!).75 (The overall minus sign comes from the permutation of the Grass-

mann components of ψ.) Finally, we have defined

Ψ(τ) ≡
(

ψ(τ)

ψ̄T (−τ)

)
, Ψ̄(τ) ≡ (ψ̄(τ),−ψT (−τ)),

to condense the action into a single bilinear form.76 Notice that the enlarged fields Ψ̄ and

Ψ are no longer independent of each other; they are connected by the symmetry operation

Ψ̄(τ) = −ΨT (−τ)(iσtr
2 ), (6.58)

where σtr
i represents Pauli matrices acting in the newly introduced “time-reversal space.”

Involving a transposition operation, Eq. (6.58) signals the fact that the fields Ψ and Ψ̄

resemble “real” rather than “complex” fields (the quotes are used because we are dealing

with Grassmann fields).

Being now symmetrized, an average of the field integral over the Gaussian distributed

impurity potential gives

S[Ψ] =
1

2

∫
dτ ddr Ψ̄

(
∂τ − EF − ∇2

2m

)
Ψ+

1

16πντ

∫
dτ dτ ′ ddr (Ψ̄Ψ)(τ)(Ψ̄Ψ)(τ ′).

Cast in this form, we are now in a position to implement the usual programme to construct

the low-energy field theory of the quantum disordered system:

Q1: Introduce a Hubbard–Stratonovich transformation to decouple the quartic interaction

induced by the impurity average. Note that the corresponding Hubbard–Stratonovich fieldQ

74 A more precise formulation is that there exists a representation (typically, the coordinate representation)
wherein time-reversal amounts to transposition.

75 Note that, under time-reversal, the sign of the time-derivative is reversed:
∫
dτ (ψ̄∂τψ)T = − ∫

dτ (∂τψ
T )ψ̄T =

− ∫
dτ ψT (−∂τ )ψ̄

T .
76 Notice that the temporal minus sign in the fields ψT and ψ̄T is introduced to remove the unwanted sign

multiplying ∂τ in [Ĝ−1]T . Physically, it emphasizes the time-like character of the transformation.
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must be matrix-valued – identify the set of indices on which the fields depend. Finally,

integrate out the fermions to determine the dependence of the effective action on the field Q.

Q2: Starting with the effective action for Q, derive the corresponding mean-field equations.

(Hint: You will find it convenient to switch to a frequency–momentum representation before

varying the action.)

Q3: The mean-field equations can be solved by a simple matrix-diagonal ansatz, i.e. Q ≡ Λ.

Motivate your ansatz and solve the equations. How does the result relate to the SCBA

discussed in section 6.5?

Q4: Assuming that the frequency contribution to the action ∼ Ψ̄nωnΨn is negligibly small,

identify the global continuous symmetries of the problem, i.e. explore what happens if the

fermion fields are transformed as Ψ → T Ψ, Ψ̄ → Ψ̄T̄ , where the matrices T and T̄ are

constant in space and must be chosen so as to respect the relation (6.58). Show that the

diagonal solution of the mean-field equations derived in Q3 breaks the full symmetry of the

problem. Identify the manifold of Goldstone modes of the problem.

A1: To effect a Hubbard–Stratonovich decoupling of the action, we must first isolate the

Cooper and exchange contributions to the interaction vertex:

Sdis �
1

16πντ

∫
dτ dτ ′ ddr

(
Ψ̄(1)(τ)Ψ(2)(τ)Ψ̄(1)(τ ′)Ψ(2)(τ ′)

+Ψ̄(1)(τ)Ψ(2)(τ)Ψ̄(2)(τ ′)Ψ(1)(τ ′)
)
,

where the convention is that two fields carrying the same upper index form a slowly varying

bilinear. Now, thanks to the symmetry Eq. (6.58), the two contributions to the action are

identical. Indeed,

Ψ̄(1)Ψ(2) = (Ψ̄(1)Ψ(2))T = −Ψ(2)T Ψ̄(1)T = Ψ(2)T (iσtr
2 ) (iσ

tr
2 )Ψ̄

(1)T = Ψ̄(2)Ψ(1),

where in the last equality we have used the symmetry. Thus, we may focus on the decou-

pling of the single term Sdis = (8πντ)−1
∫
dτ dτ ′ ddr Ψ̄(1)(τ)Ψ(2)(τ)Ψ̄(2)(τ ′)Ψ(1)(τ ′). To

make further progress with this expression, let us introduce a composite index α ≡ (a, σ)

comprising the replica index a and an index σ = 1, 2 labeling components in time-reversal

space. Using this notation,

Sdis =
1

8πντ

∫
dτ dτ ′ ddr Ψ̄(1)α(τ)Ψ(2)α(τ)Ψ̄(2)β(τ ′)Ψ(1)β(τ ′)

= − 1

8πντ

∫
dτ dτ ′ ddrΨ(1)β(τ ′)Ψ̄(1)α(τ)Ψ(2)α(τ)Ψ̄(2)β(τ ′).

To decouple the interaction, let us introduce an infinite-dimensional, hermitian, matrix

field Q = {Qαβ(r; τ, τ ′)}, slowly fluctuating in space and of the same structure as the dyadic

product ΨΨ̄ ≡ {Ψα(τ)Ψ̄β(τ ′)}, i.e. Q = (iσtr
2 )Q

T (iσtr
2 )

−1. One may then multiply the

action by77
∫
DQ exp[−(πν/8τ)

∫
ddr trQ2] and perform a shift Q → Q + iΨ(1)Ψ̄(1)/πν.

77 Here, trQ2 ≡ ∫
dτ dτ ′ Qαβ(τ, τ ′)Q∗βα(τ ′, τ) and Hermiticity of Q is assumed to ensure the existence of the

integral.
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This generates the identity

e−Sdis[Ψ̄,Ψ] =

∫
DQ exp

[
−πν

8τ

∫
ddr trQ2 − i

4τ

∫
ddr Ψ̄QΨ

]
,

where we have made use of the fact that tr (QΨΨ̄) = −Ψ̄QΨ = −
∫
dτ dτ ′ Ψ̄α(τ)×

Qαβ(τ, τ ′)Ψβ(τ ′) and the superscripts (1) have been dropped. Combining terms, we arrive

at the preliminary result78

Z =

∫
DΨ DQ exp

[
− πν

8τ

∫
ddr trQ2 − 1

2

∫
dτ ddr Ψ̄

−Ĝ−1[Q]︷ ︸︸ ︷(
∂τ − EF − ∇2

2m
− i

2τ
Q

)
Ψ

]
=

∫
DQ exp

[
−πν

8τ

∫
ddr trQ2 +

1

2
tr ln Ĝ−1[Q]

]
. (6.59)

A2: Fourier transforming the field Q(τ, τ ′) in its time arguments one obtains a matrix

Q = {Qnn′}, where n, n′ index fermionic Matsubara frequencies. The frequency/momentum

version of the action then assumes the form

S[Q] =
πνLd

8τ

∑
q

trQ(q)Q(−q)− 1

2
tr ln Ĝ−1[Q],

where Ĝ−1[Q] ≡ (iω̂ − ξp + iQ/2τ)−1, ω̂ is the diagonal operator of Matsubara frequencies

and all indices (including momentum indices) not written out explicitly are traced over.

Varying the action with respect to the matrix Q, i.e. Q → Q+ δQ, and requiring vanishing

of contributions linear in δQ, one obtains the equation∑
q

tr

[(
πνLdQ(q)− i

∑
p

Ĝ[Q]p,p+q

)
δQ(−q)

]
= 0.

Holding for any matrix δQ, this equation is equivalent to the matrix mean-field equation

πνQ(q)− i
Ld

∑
p Ĝ[Q]p,p+q = 0.

A3: To seek solutions of the mean-field equation, let us apply the simplest ansatz, Q ≡ Λ,

where the Λ is diagonal in time-reversal and replica spaces, spatially uniform, and diagonal in

Matsubara space. When this is substituted into the mean-field equation, the latter assumes

the form

πνΛ =
i

Ld

∑
p

1

iωn − ξp + i
2τΛ

, (6.60)

reminiscent of the SCBA Eq. (6.52) for the average Green function (the identification

iΛ/2τ = −Σ understood). Drawing on the earlier discussion, one may identify the solution

Λn = −2iτΣn = sgn(ωn) (where Σn = −i sgn(ωn)/2τ).

78 Notice the prefactor 1/2 generated by the Grassmann integration, i.e.
∫
DΨ exp[− 1

2 Ψ̄Ĝ−1Ψ] ∝ det Ĝ−1/2 =

exp[ 12 tr ln Ĝ−1] arises because the components of Ψ̄ and Ψ are not independent. (To see this, assume that Ĝ
is diagonalized and count the number of independent Grassmann integration variables.)
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A4: In the mean-field approximation, Ĝ becomes equivalent to the impurity-averaged Green

function discussed in Section 6.5. But, clearly, this can not be the end of the story! We have

seen in Section 6.5 that impurity scattering leads to diffusive phenomena that reach far

beyond the damping of single-particle amplitudes. How are such structures reflected in the

field theory? To identify the diffusion modes, one must return to consider the symmetries

of the theory (having in mind that symmetries tend to generate long-range low-energy exci-

tations). We thus go back to our initial action −
∫
dΨ̄Ĝ−1[V ]Ψ and explore what happens

as we transform Ψ → Ψ′ ≡ T Ψ, and Ψ̄ → Ψ̄′ ≡ Ψ̄T̄ , where T and T̄ are matrices, constant

in real space. Of course we require that the fundamental relation (6.58) be preserved under

this transformation. This leads to the condition T̄ = (iσtr
2 )T

T (iσtr
2 )

−1. Moreover, T should

be a symmetry of the problem, i.e. we require that T̄ Ĝ−1[V ]T � Ĝ−1[V ]T̄ T = G−1[V ] or

T̄ = T−1. Here, we have used the fact that, owing to its constancy, T commutes with the (dis-

ordered) Hamiltonian. Nevertheless, T̄G−1[V ] � Ĝ−1[V ]T̄ holds only approximately since,

for a transformation Tnn′ of a general frequency structure, [T, ω̂] �= 0. However, for transfor-

mations of physical interest (fluctuating slowly in time), this lack of commutativity is not

of much concern. Combining the two conditions above, we find that T = (iσtr
2 )T

T (iσtr
2 )

−1,

which is the defining relation of the unitary symplectic group Sp(2 ·R ·(2M)). Here, we have

assumed that [−ωmax, ωmax] = [−2πMT, 2πMT ] is the range of 2M Matsubara frequencies

over which the lack of commutativity of the symmetry group and the frequency operator

can safely be neglected.

With this background, we may note that the diagonal solution of the mean-field equa-

tions breaks the symmetry above. Indeed, the fact that T is a symmetry implies that, not

only Λ, but any configuration Q ≡ TΛT−1, solves the mean-field equation (6.60). The sym-

metry is broken, inasmuch as only a subgroup of transformations T0 ∈ K ⊂ Sp(4RM),

T0ΛT
−1
0 = Λ, leaves the diagonal saddle-point invariant. (It may be helpful to think of

Λ as some kind of spin, Sp(4RM), the analog of the rotation group, and K the group

of rotations around the spin axis.) The invariance group K is easily identified. Projected

onto the positive/negative frequency range, the diagonal solution Λ
∣∣
ωn>/<0

∝ ±1 is equal

to the unit operator, i.e. transformations not mixing positive and negative frequencies

will leave the saddle-point invariant. This means that the invariance subgroup is given by

Sp(2RM) × Sp(2RM) ⊂ Sp(4RM) where the two factors are the invariance groups of the

positive/negative frequency range. Following our general line of argument on page 257 we

may conclude that the Goldstone mode manifold of the present problem is the coset space

Sp(4RM)/(Sp(2RM) × Sp(2RM)). The elements of this space are conveniently parame-

terized as Q = TΛT−1, where T = exp[W ] and the generators W anti-commute with Λ,

[W,Λ]+ = 0.79 This condition is met by setting

W =

(
B

−B†

)
, (6.61)

79 Generators commuting with Λ need not be taken into account inasmuch as they do not affect the diagonal
saddle-point (or span the group K).
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where the block structure is in Matsubara frequency space (positive/negative fre-

quencies) and B are 2MR-dimensional matrix fields. The anti-Hermitian connection

between the two blocks follows from the condition Q† = Q ⇔ W † = −W . Notice that

(iσtr
2 ) e

W (iσtr
2 )

−1 = e−W implies a second condition B = (iσtr
2 )B

T (iσtr
2 )

−1. As one last

technical remark – of crucial importance for all that follows – let us notice that the matrices

Q obey the nonlinear constraint Q2 = 1. (This follows from the fact that Q2 = (TΛT−1)2

and Λ2
n = sgn2(ωn) = 1.) Field theories on manifolds with nonlinear constraints are

generally called nonlinear σ-models.80 In the next section, we proceed to construct the

low-energy action of the nonlinear σ-model of the disordered electron gas.

Low-energy field theory

In the previous section we constructed the backbone of a field-theoretical approach to the

disordered electron gas, ran into a scenario of spontaneous symmetry breaking, and identi-

fied the corresponding Goldstone mode manifold as Sp(4RM)/(Sp(2RM)× Sp(2RM)). In

the following, we now proceed to construct the low-energy action of the Goldstone mode

degrees of freedom. Our second objective is to understand the connections to the diagram-

matic approach introduced above. Finally, we wish to develop an efficient theoretical formal-

ism, powerful enough to cope with the nonlinear proliferation of diffuson- and cooperon-type

soft modes that govern the physics of disordered conductors at low temperatures.

Our target is a low-energy action of the elements Q = TΛT−1 ∈ Sp(4RM)/(Sp(2RM)×
Sp(2RM)) of the Goldstone mode manifold. The action of this nonlinear σ-model can be

constructed by substituting the slowly fluctuating matrix configuration Q = {Qα,α′
nn′ (r)}

into the action (6.59) and expanding in (a) gradients and (b) the small symmetry breaking

induced by the lack of commutativity of the “rotation matrices” T and the frequency oper-

ator ω̂ – a program which is instructive to follow.81 However, in the present section we shall

pursue a more symmetry-oriented (but only slightly less rigorous) strategy of constructing

the action.

Q1: Using only symmetry arguments, identify the minimal (lowest number of derivatives)

action Sfl[Q] measuring the cost of spatial fluctuations of the Q field. What is the structure

of the action Sω[Q] accounting for the non-commutativity of Q and the frequency operator?

Q2: Our analysis so far has left the values of the two coupling constants of the theory unde-

termined. As we do not wish to perform an explicit gradient expansion, the only way to

determine their values is to compare the predictions of the field-theoretical approach with

those of another formalism. Indeed, we have seen in Section 6.5 that the long-range behavior

of the density–density correlation function is governed by specific types of soft modes: dif-

fusons and cooperons. We also saw that, at low frequency scales, these modes were prone to

80 Other representatives of this family of field theories will be met in Chapters 8 and 9.
81 A yet more systematic approach would be to decompose the full field manifold Q = Qgs +Qm into a Goldstone

mode configuration Qgs = TΛT−1 and a massive contribution Qm and to integrate over the latter in the second
order of perturbation theory. However, it can be shown that, in the present case, the contribution of the massive
modes is inessential, i.e. we may work with the pure Goldstone theory from the outset.
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“interact” with each other. (A cooperon insertion into the diffuson mode can be interpreted

as some kind of “self-energy” of the diffuson propagator.) Comparing this picture with the

structure of the field theory, it is evident that the elementary diffusons/cooperons must

be the Goldstone modes of the σ-model. “Interactions” between diffusons and cooperons

appear when we expand the theory to higher than quadratic order in the generators B.

Expand the action (6.62) to second order in the generators B defined in Eq. (6.61).

Comparing the structure of the quadratic action with that of the diffuson mode, fix the

ratio of the coupling constants cfl and cω.

Q3: Having determined the ratio of the two coupling constants, one may now complete

the analysis by fixing the absolute value of cω. We do so by introducing a source term

S[Ψ] → S[Ψ]− 1
2Ld

∑
p,n Ψ̄p,nκnΨp,n such that differentiation

lim
R→0

1

R
Im

δ

δκn

∣∣∣∣
κ=0

ZR = Im
1

2Ld

∫
ddr 〈Ψ̄nΨn〉 = − 1

Ld
Im

∑
p

Gp,n = −πν sgn(ωn),

gives the density of states. Use the source κ̂ = {κnδnn′} to determine the coupling con-

stant cω.

A1: As long as we ignore the symmetry breaking due to the frequency operator, the action

is symmetric under transformations Q → T̃QT̃−1, where T̃ ∈ Sp(4RM) is an element of

the symmetry group. This requirement uniquely identifies Sfl[Q] = cfl
∫
ddr tr (∇Q)2 as

the dominant (lowest number of derivatives) contribution to the fluctuation action. The

dominant operator describing the explicit breaking of the global symmetry will surely be

of first order in ω̂: Sω[Q] ∼
∫
ddr tr(ω̂F [Q]), where F is some function. Since Q2 = 1, only

terms linear in Q contribute to the expansion of F and we may set Sω[Q] = cω
∫
ddr tr(ω̂Q).

Summarizing, one may deduce that the soft mode action acquires the form

S[Q] =

∫
ddr tr

[
cfl(∇Q)2 + cω ω̂Q

]
. (6.62)

As with other nonlinear σ-models, the innocent appearance of the action above is somewhat

deceptive: we need to remember that the field Q = eWΛe−W is a nonlinear object. An

expansion of it in terms of the generators W will generate “interaction operators” ∼ Wn of

arbitrary (even) order in n. The analysis of these interactions is a highly non-trivial task!

A2: Substituting Q = eWΛe−W [W,Λ]+=0
= e2WΛ = (1 + 2W + 2W 2 + · · · ) Λ into the action,

one obtains

S(2)[W ] =

∫
ddr tr

[
−4cfl(∇W )2 + 2cω Λω̂W 2

]
.

One may now express the matrices W in terms of the off-diagonal blocks B and arrive at

S(2)[B,B†] =

∫
ddr tr

[
8cfl∂iB∂iB

† − 2cωω̂(P+BB† − P−B†B)
]

=
∑

q,n>0,n′<0

Bαα′
q,nn′

(
8cflq

2 − 2cω|ωn − ωn′ |
)
B†α′α

−q,n′n.
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Here, P+/− is a projector onto the space of positive/negative Matsubara frequencies. In

the second line, α = (a, σ) is the composite replica/time-reversal index introduced above.

Importantly, the propagator of the B-field describes a mode of diffusive dynamics formed by

the joint propagation of two states with (a) the Matsubara frequencies ωn > 0 and ωn′ < 0

and (b) the momentum difference q. The analogy to our previous diagrammatic analysis of

such processes is made complete by choosing 8cfl = cD, −2cω = c, or

S(2)[B,B†] = c
∑

q,n>0,n′<0

Bαα′
q,nn′

(
Dq2 + |ωn − ωn′ |

)
B†α′α

−q,n′n,

where c is an, as yet, undetermined global coupling constant.

Before continuing, it is worthwhile taking a brief look at the time-reversal structure of

the theory. Recalling that Qσσ′ ∼ ΨσΨ̄σ′
, one may conclude that Goldstone modes B with

an index structure (σσ′) describe the joint propagation of a fermion propagating forwards

in time (σ = 1) (or time-reversed [σ = 2]) with a hole propagator moving forwards in time

(σ′ = 1) (or time reversed [σ′ = 2]). Put differently, modes Bσσ′
off-diagonal in time-reversal

space (σ �= σ′) represent cooperon modes, while modes Bσσ reflect the diffuson modes.

In the absence of magnetic fields, the actions of these two modes are identical (rotational

invariance of the action in time-reversal space). However, had we included a magnetic field,

this invariance would be lost.

A3: Noting that the addition of the source to the action amounts to a shift ω̂ → ω̂− iκ̂/Ld,

one may conclude that the low-energy action changes to Sω[Q] → cω
∫
ddr tr [(ω̂−iκ̂/Ld)Q].

Differentiation of the Q-functional thus gives

−πν sgn(ωn)
!
= lim

R→0

1

R
Im

δ

δκn

∣∣∣∣
κ=0

ZR = lim
R→0

1

R
Im i

cω
Ld

∫
ddr〈trQnn〉 = 2cω sgn(ωn) + · · · ,

where the ellipsis represents contributions arising from terms of higher order in the gener-

ators B. (In fact, one can show that all of these terms vanish in the replica limit.) Thus,

cω = −πν/2 and one obtains the low-energy action of the nonlinear σ-model,

S[Q] = πν
2

∫
ddr tr

[
D
4 (∇Q)2 − ω̂Q

]
. (6.63)

In applications, one is often interested in situations involving an external electromag-

netic field. How would such a field affect the structure of the action (6.63)? Although this

question can be answered by microscopic calculation, a more time-efficient strategy is to

require that the action S[Q] be gauge invariant. Under a gauge transformation, ψ → eiφψ,

the fields Ψ enlarged by a time-reversal structure transform as (exercise) Ψ → eiΦΨ, where

Φ = diag(φ(τ),−φ(−τ)) (matrix structure in time-reversal space). This in turn implies that

the fields Q ∼ ΨΨ̄ transform as Q → eiΦQe−iΦ. Invariance under such transformations is

ensured (exercise) if we generalize the action according to

S[Q] =
πν

2

∫
ddr tr

[
D

4
((∇− i[A, ])Q)

2 − (ω̂ + V )Q

]
, (6.64)

where the vector potential A and scalar potential V transform in the standard manner

A → A + ∇Φ and V → V + ∂τΦ. This way of coupling a gauge potential to an effective
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action – to be discussed in more general terms in the next chapter – is known as minimal

substitution.

6.6 Summary and outlook

This concludes our preliminary discussion of functional mean-field methods. We have learned

how the integration over microscopic quantum fields can be traded for an integration over

degrees of freedom adjusted to the low-energy characteristics of the system. We found that

the functional dependence of the action on the new coordinates is usually highly nonlinear –

the notorious “trace logarithms” – and has to be dealt with by some kind of stationary

phase analysis. While a first principles solution of the mean-field equations is often not

possible, all applications discussed in this chapter shared the feature that solutions could be

found by an “educated guess.” Importantly, we realized that these solutions did not always

display the full symmetry of the action.

INFO However, it is important to realize that our discussion has excluded a number of problem

classes with complex mean-field structure. For example, for certain lattice systems with

discrete translational symmetry, the optimal mean-field solution shows staggering, i.e. changes

sign under translation by one lattice spacing. Deceptively, these configurations usually exist in

parallel to a solution that displays the full symmetry of the problem, but is of higher energy

(and therefore unphysical), i.e. the “true solution” is camouflaged by the existence of an inferior

but “more symmetric” solution.82 Then, there are systems where the existence of meaningful

stationary phase configurations is excluded by structural elements, such as frustration.

Other systems, notably glasses (cf. the remarks on page 115), do possess an entire contin-

uum of mean-field configurations, i.e. there is a macroscopic number of (metastable) extremal

configurations that are very close in energy space but may be very far from each other in config-

uration space. (For example, two such configurations may differ by a restructuring of the atomic

configuration of a glass at remote places.) The dynamics of such systems is governed by the

process of aging, i.e. transitions between different metastable extremal configurations on very

long timescales (witness the apparent rigidity of window glass!). It goes without saying that the

“mean-field configurations” of glassy systems are irregular and not amenable to straightforward

analytic calculation.

Finally, even systems possessing a spatially homogeneous mean-field configuration may host

other solutions of physical significance. Indeed, we have encountered a scenario of this type

already in Chapter 3 above. Exploring quantum double-well tunneling, we observed that the

imaginary time Euler–Lagrange equations of a particle in a doubly degenerate harmonic well (↔
the “mean-field equations”) had a metastable constant solution (↔ the constant mean-field).

However, in addition to that, we found instantons, i.e. temporally structured solutions of the

mean-field equations. Superficially, it seemed that, due to their non-vanishing action, instantons

are irrelevant. However, for sufficiently long times, the energetic inferiority of the single instanton

was over-compensated by statistical aspects, i.e. the fact that a continuum of instantons entered

the partition function with approximately equal weight. In the language of statistical mechanics:

82 When dealing with problems whose lattice structure carries physical significance, it is therefore a good idea to
try a number of different ansätze, i.e. trial solutions that transform differently under translation by a unit cell.



330 Broken symmetry and collective phenomena

the large entropy associated with instanton configurations outweighed the finite energy (or,

more precisely, action) to be paid for a single instanton. Later we will see that entropy/energy

competitions of this type are realized in many other contexts of quantum and statistical field

theory. For example, the phase actions of the BCS superconductor or the superfluid possess

(approximate) extremal configurations wherein the phase winds around an integer multiple of

2π as a fixed reference point in space is encircled (vortices). While the energy of an individual

vortex solution may be high, the entropy corresponding to the choice of its center eventually, for

sufficiently large temperatures, dominates and leads to a proliferation of vortices in the system

(↔ the analog of the instanton gas). For a more qualified discussion of topologically non-trivial

mean-field configurations we refer to Chapter 9.

Finally, we have explored a number of different applications showing the way low-energy

effective actions describing fluctuations on top of a reference mean-field can be derived and

evaluated. In cases where the mean-field breaks a continuous symmetry, these actions were

partially soft, i.e. contained Goldstone modes. We saw that the presence of a Goldstone

mode has a dominant effect on the observable physical properties of a system.

As exemplified above, the theoretical machinery developed thus far enables us to tackle

already highly non-trivial problems. However, to make the functional integral a universally

applicable tool, two important gaps have yet to be filled. Firstly, we have so far mostly

been content with discussing general structures of condensed matter theory (i.e. much of

the discussion has been limited to general manipulations on the level of the effective action.)

However, in applications, one is typically interested in comparison with experimentally

accessible data, i.e. we still need to provide links relating the field integral formalism to

observables of experimental significance. Secondly, our discussion of the fluctuation behav-

ior of field theories has been quite limited. That is, we have typically expanded an action to

second order in what we believed was the “physically relevant” degree of freedom and com-

puted the corresponding determinants. However, we also saw that some problems contain

anharmonicities of profound significance. For example, the quartic term in φ4-theory led

to UV singularities whose nature remained largely obscure. We must, therefore, (i) develop

criteria indicating in what circumstances a model can safely be limited to second order and,

(ii) in cases where it cannot, learn how to deal with its anharmonic content. Beginning

with the first, these two topics (which are not quite as unrelated as one might think) are

discussed in Chapters 7 and 8.
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6.7 Problems

Peierls instability

Rudolph E. Peierls 1907–95
Born in Germany, Peierls did fun-
damental work during the early
years of quantum mechanics. He
also studied the physics of lattice
vibrations (phonons) and is cred-
ited with the development of the
concept of the “hole” in condensed matter. In col-
laboration with Otto Frisch, Peierls was the first to
realize that an atom bomb based on 235U would be
feasible, and was engaged in the Manhattan Project.
(Image c© University of Cambridge, Cavendish Lab-
oratory.)

Previously, in Problem 2.4 we have seen

that the half-filled one-dimensional lattice

system is unstable towards the formation

of a commensurate periodic lattice dis-

tortion. In fact, at zero temperature, a

one-dimensional crystal comprising elec-

trons and ions is always unstable against

the formation of a lattice distortion which

transforms the system to a dielectric. The

aim of this problem is to study the nature

of the lattice instability known as a Peierls

distortion.

The starting point of the theory is the Euclidean action for a one-dimensional gas of elec-

trons,

Sel[ψ, ψ̄] =

∫
dτ

∫
dx ψ̄

(
∂τ − 1

2m
∂2
x − μ

)
ψ.

(Here, for simplicity, we take the electrons to be spinless.) Starting with a classical field

theory of the lattice dynamics, the Euclidean action of the system of ions is given by

Sph[u] =
ρ

2

∫
dτ

∫
dx

0
(∂τu)

2 + c2(∂xu)
2
1
,

where u(τ, x) denotes the scalar bosonic displacement field. Finally, to complete the theory,

we suppose that the electron system is coupled to the distortion of the underlying lattice.

In principle, one could try to derive a “realistic” model of the coupling. However, since we

are interested in the general stability of the system, we will consider a phenomenological

coupling which engages the fields in the lowest order compatible with the symmetry of

the interaction (for more details, see Problem 4.5). To this end, we introduce “Fröhlich’s

deformation potential approximation,” wherein the coupling is taken to be proportional to

the gradient of the deformation ∂xu,

Sel−ph[ψ, ψ̄, u] = g

∫
dτ

∫
dx ψ̄ψ ∂xu.

The full Euclidean action S = Sel + Sph + Sel−ph represents an interacting theory. As such,

an explicit and exact evaluation of the coherent state path integral is not feasible. Instead,

we will develop an analysis in which the coupling will be treated perturbatively. In doing

so, we will be able to explore the stability of the lattice system.

(a) As a first step, integrate out the fermionic degrees of freedom ψ and thereby obtain

an effective action for the displacement field u. Assuming that the electron–phonon
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coupling constant g is small, expand the action up to second order in u. You will find

that the coefficient of u2 involves the density–density response function χ(q, ωm).

(b) In general, when seeking a saddle-point of the effective action, the first guess would

be a homogeneous displacement field, u0(x, τ) ≡ u0. Here, u0 = 0 is such a solution.

However, it is not necessarily the best solution. Show that the static solution u0(x, τ) ≡
u0 cos(2kFx+ϕ) is energetically favorable (i.e. S[u = u0 cos(2kFx+ϕ)]< S[u = 0]) below

a certain critical temperature Tc. Thus, at low temperatures, the system is instable

towards the formation of a static sinusoidal lattice distortion. Use the approximation

χ(2kF, 0) � ln(βωD)/4πvF, where ωD is the Debye frequency, to determine the transition

temperature Tc.

Answer:

(a) Integrating out the electron degrees of freedom ψ, one obtains∫
D[ψ̄, ψ]e−Sel−Sel−ph = det

[
∂τ − ∂2

x

2m
− μ+ g(∂xu)

]
.

Thus, the effective action for the displacement field u reads Seff [u] = Sph[u] −
tr ln

[
∂τ − (∂2

x/2m)− μ+ g(∂xu)
]
. While the bare phonon action is diagonal in

frequency–momentum representation, the “tr ln” is not. Thus, the evaluation of the

second term requires more care. Defining the bare Green function of the electron

system G−1
0 = ∂τ − ∂2

x/2m − μ, an expansion up to second order in the coupling

g gives tr ln[G−1
0 + g(∂xu)] � tr lnG−1

0 − (g2/2)
∑

ωm,q q
2χ(q, ωm)|uωm,q|2, where

χ(q, ωm) = −T
L

∑
pωn

G0,p,ωnG0,p+q,ωn+ωm and we note that the linear term of the

expansion vanishes by symmetry. Thus, to quadratic order in the displacement field,

the effective action assumes the form

Seff [u] �
∑
q;ωm

[
ρ

2
(ω2

m + c2q2)− g2

2
q2χ(q, ωm)

]
|uωm,q|2.

(b) In the presence of the static periodic modulation, uωm,q = πu0[e
iϕδ(q−2kF)+e−iϕδ(q+

2kF)]δ(ωm) the action takes the value Seff = 4π2u2
0k

2
F[ρc

2 − g2χ(2kF, 0)]. Thus, not-

ing that S[u = const.] = 0, the transition is realized when ρc2 < 4π2g2 χ(2kF, 0).

Substituting the expression for χ, one obtains the relation for the critical temperature

Tc: ρc
2 = g2

4πvF
ln(ωD/Tc) i.e. at temperatures T < Tc = ωD e−4π2vFρc

2/g2

, the system

becomes unstable against the formation of a periodic modulation of the lattice with a

wavelength of π/kF.

Temperature profile of the BCS gap

The following question concerns an exploration of the functional dependence of the BCS gap on tem-

perature. In particular, we wish to understand its singular vanishing at the transition temperature (this

being a hallmark of a second-order phase transition).
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Consider the BCS gap equation (6.28),

1

gν
=

∫ ωD/2T

0

dx
tanh(x2 + κ2)1/2

(x2 + κ2)1/2
,

where we have introduced a dimensionless integration variable and κ ≡ Δ/2T . In spite of its

innocent appearance, the temperature dependence of this equation is not straightforward to

infer. Referring for a quantitative discussion to Abrikosov et al.,83 we here restrict ourselves

to exploring the gap profile in the vicinity of the transition temperature.

(a) To determine the value of Tc, we proceed somewhat indirectly assuming that this is

determined through the condition Δ(Tc) = 0. Use this criterion to obtain Eq. (6.29) for

the critical temperature. (You may assume the hierarchy of energy scales ωD � Tc ∼
Δ0 � Δ(T � Tc), where Δ0 = Δ(T = 0).)

(b) Now, let us derive the approximate profile Eq. (6.30) of the gap for temperatures T

slightly smaller than Tc. To this end, add to and subtract from the right-hand side of

the gap equation the integral
∫
dx tanh x

x . Then expand to leading order in the small

parameters δT/Tc and Δ/Tc, where δT = Tc − T > 0.

Answer:

(a) For Δ = 0, λ(ξ) = (ξ2 +Δ2)1/2 = |ξ| and Eq. (6.28) assumes the form

1

gν
=

∫ ωD/2Tc

0

dx
tanhx

x
,

where we have introduced x ≡ ξ/2Tc as a dimensionless integration variable. The dom-

inant contribution to the integral comes from the region x � 1, where tanhx � 1. As a

result, one obtains 1/gν � ln(ωD/2Tc). Solving for Tc, we arrive at Eq. (6.29).

(b) Adding and subtracting the integral given above, we have

1

gν
=

∫ ωD/2T

0

dx

[
tanh(x2 + κ2)1/2

(x2 + κ2)1/2
− tanhx

x

]
+

∫ ωD/2T

0

dx
tanhx

x
.

Arguing as in (a), the second integral can be estimated as ln(ωD/2T ) ≈ ln(ωD/2Tc) +

(δT/Tc) = (1/gν) + (δT/Tc), where we have expanded to linear order in δT . Thus,

−δT

Tc
≈

∫ ωD/2T

0

dx

[
tanh(x2 + κ2)1/2

(x2 + κ2)1/2
− tanhx

x

]
.

Now, the remaining integral can be split into a “low-energy region” 0 ≤ x ≤ 1, and a

“high-energy region” 1 < x < ωD/2T . Using the small-x expansion, tanhx � x− x3/3,

we find that the first region gives a contribution ∼ κ2. With tanhx
x>1≈ 1, the second

region contributes a term O(κ2) which, however, is approximately independent of the

83 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical
Physics (Dover Publications, 1975).
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large-energy cut-off ωD/2T . Altogether, we obtain δT/Tc ≈ const. × κ2 ≈ const. ×
(Δ2

0/T
2
c ) from which one obtains Eq. (6.30).

Fluctuation contribution to the Ginzburg–Landau action of the superconductor

In this short problem we derive the energy cost corresponding to large-scale spatial fluctuations of the

order parameter of a BCS superconductor. The problem mainly serves technical training purposes.

Consider the second-order contribution to the Ginzburg–Landau action of the BCS super-

conductor Eq. (6.31). In Problem 4.5 we have seen that the frequency summation involved

in the definition of the integral kernel evaluates to

χc(ωn,q) ≡ − T

Ld

∑
m,p

Gp(iωm)G−p+q(−iωm + iωn) =
1

Ld

∑
p

1− nF(ξp)− nF(ξ−p+q)

iωn − ξp − ξ−p+q
.

Expand χc(0,q) to second order in q. (Hints: You may trade the momentum summation for

an integral, and linearize the dispersion: ξp+q � ξp+p·q/m (think why is this a permissible

simplification). You may note the identity
∫
dεε−1∂2

εnF(ε) = cT−2 (where the numerical

constant c = 7ζ(3)/2π2 and ζ(x) =
∑∞

n=1 n
x defines the ζ-function).)

Answer:
Using the fact that ξp = ξ−p,

χc(0,q) = −
∫

ddp

(2π)d
1− nF(ξp+q/2)− nF(ξp−q/2)

ξp+q/2 + ξp−q/2

� −
∫

ddp

(2π)d
1− 2nF(ξp)− ∂2

ξnF(ξp)
(q·p)2
4m2

2ξp

= χc(0, 0)− νμq2

12m

∫
dε ε−1∂2

εnF(ε) = χc(0, 0)− c

24

νv2F
T 2

q2,

where c is a numerical constant and in the second equality we have used the fact that, for

ξ = O(T ), p2/2m � μ. Substituting this expansion into the quadratic action, we obtain the

gradient term in Eq. (6.33).

Coulomb blockade

Technological advances have made it possible to manufacture small metallic or semiconducting devices

of extension 1μm and less. At low temperatures, the physics of these so-called quantum dots is

predominantly influenced by charging effects. In this problem, we explore the impact of charging on the

most basic characteristic of a quantum dot, the tunneling DoS.

Consider a quantum dot weakly84 connected to an outside environment (see Fig. 6.18 for

a semiconductor realization of such a setup). The addition of an electron to, or subtrac-

84 By “weak” we mean that the conductance of all external leads attached to the system is such that g < g0,
where g0 = e2/h � (25.8 kΩ)−1 is the quantum unit of conductance.
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GaAS(a) (b)AlxGa1–xAs
1 μm

Figure 6.18 (a) Schematic picture of a confined two-dimensional electron gas (a quantum dot)
formed at the interface between a GaAs and an AlGaAs layer. (b) Electron microscopic image of
the “real” device. (Source: Courtesy of C. M. Marcus.)

tion of one from, the device incurs an energy cost of order EC = e2/2C, where C is the

capacitance of the system. This energy cost is offset by an external gate potential. The dis-

creteness of this charging energy leads to a plethora of observable physical phenomena.

The most basic of these is a strong suppression of the DoS at the Fermi surface.

For a non-interacting system, the single-particle DoS is defined as ρ(ε) = tr(δ(ε− Ĥ)) =

− 1
π Im tr(Ĝ(ε + i0)) = − 1

π Im tr(Ĝn)|iωn→ε+i0, where Ĝ(z) = (z − Ĥ)−1 is the Green

function. The tunneling DoS generalizes this definition to the interacting case: ν(ε) =

− 1
π Im tr(Ĝn)|iωn→ε+i0, where the Green function Ĝn is defined85 as the Fourier transform

of the coherent state path integral,

Gαβ(τ) = Z−1

∫
D(ψ, ψ̄) e−S[ψ̄,ψ]ψ̄β(τ)ψα(0), (6.65)

where Z =
∫
D(ψ, ψ̄) e−S[ψ̄,ψ], and the indices α, β enumerate the eigenstates of the single-

particle contribution to the Hamiltonian. Having an irregular structure, the eigenstates of

the single-particle Hamiltonian are unknown. The simplest prototype Hamiltonian describ-

ing the joint effects of single particle dynamics and charging reads as Ĥ = Ĥ0+EC(N̂−N0)
2,

where Ĥ0 =
∑

α εαa
†
αaα, N̂ =

∑
α a†αaα is the number operator and N0 represents the pre-

ferred number of particles (as set by the gate voltage). The action controlling the behavior

of the Green function (6.65) is thus given by

S[ψ̄α, ψα] =

∫ β

0

dτ

⎧⎨⎩∑
α

ψ̄α(∂τ + εα − μ)ψα + EC

(∑
α

ψ̄αψα −N0

)2
⎫⎬⎭ . (6.66)

(a) Introducing a bosonic field variable V (τ), decouple the interaction by means of a

Hubbard–Stratonovich transformation. Bring the functional representation of the Green

85 The terminology of “tunneling” DoS is motivated by the fact that ν(ε) is an important building block in the
calculation of tunneling currents. (Recall the “Golden Rule”: tunneling rates are obtained by multiplication of
transition probabilities with state densities.)
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function into the form Gα(τ) = Z−1
∫
DV e−S[V ]Z [V ]G

[V ]
α (τ), where Gα is the diagonal

element of the Green function (the representation above implies that all off-diagonal

elements vanish), Z [V ] is the partition function, and G
[V ]
α represents the Green function

of the non-interacting system subject to an imaginary time-dependent potential iV (τ).

(b) Represent the field V as a sum over Matsubara components, V (τ) =
∑

ωm �=0 e
−iωmτVm+

2πkT + Ṽ0, where k ∈ Z and Ṽ0 ∈ [0, 2πT ] (i.e. 2πkT + Ṽ0 is but a complicated represen-

tation of the zeroth Matsubara mode). Show that all but the static component Ṽ0 can

be removed from the action S by a gauge transformation. Why can not Ṽ0 be gauged,

too? Explore the transformation behavior of the Green function and integrate over the

non-zero mode components Vm �=0.

(c) Making use of the relation
∑∞

k=1
cos(kx)

k2 = π2

6 − π|x|
2 + x2

4 + · · · , perform the Matsub-

ara summation,
∑

ωm �=0. Show that the Green function can be expressed as G(τ) =

F (τ)G̃(τ), where the function F (τ) = exp(−EC(τ − β−1τ2)) is obtained by integra-

tion over the dynamical components of V , while G̃ is a non-interacting Green function

averaged over the static component V0.

(d) The remaining integration over the static component Ṽ0 is achieved by the stationary

phase method. Neglecting the weak dependence of the non-interacting Green function

on Ṽ0, derive and interpret the saddle-point equation. Approximate the functional by

its value at the saddle-point (i.e. neglect quadratic fluctuations around the saddle-point

value for Ṽ0). As a result, obtain a representation G(τ) = F (τ)G0(τ) where G0 is a

non-interacting Green function evaluated at a renormalized chemical potential.

(e) Assuming EC � T , compute an approximation of the Fourier transform of F (τ). Use

your result to obtain the zero-temperature DoS.86 (You may approximate Matsubara

sums by integrals.)

Answer:

(a) Using the identity e−EC

∫
dτ (

∑
α ψ̄αψα−N0)

2

=
∫
DV e

− ∫ (
V 2

4EC
−iN0V+i

∑
α ψ̄αV ψα

)
, the

quantum partition function takes the form

Z =

∫
D(ψ̄, ψ)

∫
DV e−S[V ]−∫

dτ
∑

α ψ̄α(∂τ+εα−μ+iV )ψα−SJ [ψ̄,ψ],

where S[V ] =
∫
dτ

(
V 2

4EC
− iN0V

)
. Thus,

Gα(τ) = Z−1

∫
DV e−S[V ]

∫
D(ψ̄, ψ) e−

∫
dτ

∑
α ψ̄α(∂τ+εα−μ+iV )ψα ψ̄α(τ)ψα(0)

= Z−1

∫
DV e−S[V ]Z [V ]G[V ]

α (τ),

where G[V ] is obtained from a non-interacting theory with action S[V ] ≡ S|μ→μ−iV .

86 For a more elaborate analysis of finite-temperature corrections, we refer to A. Kamenev and Y. Gefen, Zero
bias anomaly in finite-size systems, Phys. Rev. B 54 (1996), 5428–37.



6.7 Problems 337

(b) The gauge transformation removing much of the time-dependent potential from the “tr

ln” is defined by

ψ̄α(τ) −→ ψ̄α(τ) e
i
∫ τ dτ ′ (V (τ ′)−Ṽ0); ψα(τ) −→ e−i

∫ τ dτ ′ (V (τ ′)−Ṽ0)ψα(τ).

The zero-mode offset Ṽ0 has to be excluded from the transformation to preserve the

time periodicity of the gauge factor (i.e. to make sure that the transformed field respects

the time-antiperiodicity required of a Grassmann field). Substitution of the transformed

field leads to (i) removal of the dynamic V -components from the action, S[V ] → S[Ṽ0],

and (ii) the appearance of a gauge factor multiplying the pre-exponential terms. We

thus obtain

G(τ) =
1

Z

∫
DVD(ψ̄, ψ) e−S[V ]e−

∫
dτ

∑
α ψ̄α[∂τ−μ+iṼ0+εα]ψα

×ei
∫ τ
0

dτ ′ (V (τ ′)−Ṽ0)ψ̄α(τ)ψα(0)

=
1

Z

∫
DV e−S[V ]ei

∫ τ
0

dτ ′ (V (τ ′)−Ṽ0)Z [Ṽ0]G[Ṽ0]
α (τ)

=
F (τ)

Z

∫
dṼ0 e

− β
4EC

Ṽ 2
0 +iβN0Ṽ0Z [Ṽ0]G[Ṽ0]

α (τ),

where we have omitted the 2πkT contribution to the zero mode (as it does not play

much of a role in the context of this problem – for the physical meaning of the integers

k see Chapter 9), the function

F (τ) =
∏
n�=0

∫
dVn e

− β
4EC

VnV−n+
Vn
ωn

(exp(iωnτ)−1)
=

∏
n�=0

e
− 2ECT

ω2
n

(1−exp(−iωnτ))
,

and in the second equality we have performed the Gaussian integral over Vn�=0.

(c) Using the formulae given above, the Matsubara summation gives

−2ECT
∑
n�=0

1

ω2
n

(1− exp(−iωnτ)) = −EC(|τ | − β−1τ2),

i.e. F (τ) = exp[−EC(|τ | − β−1τ2)], and Gα(τ) = F (τ)G̃α(τ), where

G̃α(τ) = Z−1

∫
dṼ0 e

− β
4EC

Ṽ 2
0 +iβN0Ṽ0Z [Ṽ0]G[Ṽ0]

α (τ).

(d) Defining a Ṽ0-dependent free energy by Z [Ṽ0] = exp(−βF [Ṽ0]), noting that Ṽ0 shifts

the chemical potential, F [Ṽ0](μ) = F (μ − iṼ0), and neglecting the Ṽ0-dependence of

G[Ṽ0] � G, we obtain the saddle-point equation

0 =
∂

∂Ṽ0

(
1

4EC
Ṽ 2
0 − iN0Ṽ0 − F (μ− iṼ0)

)
=

1

2EC
Ṽ0 − iN0 + i〈N̂〉μ−iṼ0

,

where in the second equality we have used the fact that ∂
∂Ṽ0

F (μ − iṼ0) = −i∂μF (μ −
iṼ0) = −i〈N̂〉μ−iṼ0

. Substituting the solution of the saddle-point equation V̄0 =

2iEC(N0 − 〈N̂〉μ−iV̄0
) amounts to replacing the chemical potential μ by an effective

chemical potential μ̄ = μ + 2EC(N0 − 〈N̂〉μ̄). As a preliminary result we thus obtain
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Gα(τ) = F (τ)G0αβ , where the non-interacting Green function is evaluated at the renor-

malized chemical potential. (In passing we note that the condition for the applicability

of the saddle-point approximation reads as (Exercise: Why?) 1/(2EC)− ∂μ〈N̂〉μ̄ � β.)

(e) For EC � T , the dominant contribution to the Fourier transform of F (τ) comes from

the boundary regions of the imaginary time interval, τ � β and β− τ � β. Linearizing

the exponent of F in these regions we obtain

Fm =

∫ β

0

dτ eiωmτF (τ) �
∫ ∞

0

dτ
(
eiωmτ + e−iωmτ

)
e−ECτ =

2EC

E2
C + ω2

m

.

Using the fact that G0nα = (iωn − ξα)
−1, where ξα = εα − μ̄, we then obtain

Gnα = T
∑
m

FmG0(n−m)α � 1

2π

∫
dω

1

iωn − iω − ξα

2EC

E2
C + ω2

=
1

iωn − EC sgn(ξα)− ξα
.

From this result we obtain the DoS

ν(ε) =
∑
α

δ(ε− EC sgn(ξα)− ξα) =

∫
dω ν0 (ω)δ(ε− EC sgn(ω)− ω)

= ν0(ε− EC sgn(ε))Θ(|ε| − EC),

where ν0 is the DoS of the non-interacting systems. Due to the large charging energy,

the single-particle DoS vanishes in a window of width 2EC centered around the Fermi

energy: the Coulomb blockade. Particles of energy ε > EC larger than the charging

threshold are free to enter the dot. However, in doing so they lose an amount EC of

(charging) energy, which explains the energy shift in the factor ν0.

Action of a tunnel junction

In the previous problem, we considered the physics of a perfectly isolated quantum dot. However, in

practice (see, e.g., the dot depicted in the last problem) the system is usually connected to an external

environment by some leads. It is the purpose of this problem to derive an effective action accounting

for the joint effect of charging and the coupling to an environment.

Consider a quantum dot connected to an external lead (it is straightforward to generalize

to the presence of several leads). For simplicity, we model the latter as an ideal wave-guide,

i.e. the eigenstates ψa are plane waves whose detailed structure we need not specify. The

composite system is described by an action S[ψα, ψ̄α, ψa, ψ̄a] = Sdot[ψα, ψ̄α]+Slead[ψa, ψ̄a]+

ST[ψα, ψ̄α, ψa, ψ̄a], where Sdot[ψα, ψ̄α] is given by Eq. (6.66),

Slead[ψ̄a, ψa] =
∑
a

∫ β

0

dτ ψ̄a(∂τ + εa − μ)ψa,

and the coupling between dot and lead is described by

ST[ψα, ψ̄α, ψa, ψ̄a] =
∑
aα

∫
dτ ψ̄αTαaψa + h.c.
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Throughout we will assume that the coupling is sufficiently weak that contributions of

O(T 4) to the effective action are negligibly small – the “tunneling approximation.”

(a) Proceeding as in the previous problem, decouple the charging interaction by a Hubbard–

Stratonovich transformation. Integrate out the fermions and subject the problem to

the same gauge transformation as used above to remove the dynamical contents of the

Hubbard–Stratonovich field V . You will observe that the gauge phase transforms the

coupling matrices T .

(b) Expand the action to leading (i.e. second) order in the coupling matrix elements Tαa.

(You may ignore the integration over the static component of the Hubbard–Stratonovich

field; as discussed above, it leads to merely a shift of the chemical potential.) Assuming

that the single-particle DoS of dot and lead do not vary significantly on the energy scales

at which the field V fluctuates, determine the dependence of the tunneling term on the

gauge phase φ(τ) ≡
∫ τ

dτ ′(V (τ ′)− Ṽ0) and identify its coupling constant as the Golden

Rule tunneling rate 4gT .
87 (To obtain a finite result, you will need to regularize the

action by subtracting from the tunneling action Stun[φ] the constant Stun[0].) Expressing

the charging action Sc[V ] in terms of the gauge phase V = φ̇+ Ṽ0 (and neglecting the

constant offset Ṽ0), the complete dissipative tunneling action takes the form

S[φ] =

∫
dτ

(
φ̇2

4EC
− iN0φ̇

)
− gT

∫
dτdτ ′

sin2((φ(τ)− φ(τ ′))/2)
sin2(πT (τ − τ ′))

. (6.67)

INFO The action (6.67) was first derived by Ambegaokar, Eckern, and Schön.88 Crudely,

its behavior mirrors that of the quantum dynamics of a particle on a ring with kinetic energy

∼ φ̇2/EC and subject to a dissipative damping mechanism of strength ∼ gT . Physically, the

latter describes the dissipation of the energy stored in dynamical voltage fluctuations V ∼ φ̇ into

the microscopic degrees of freedom of the quasi-particle continuum.

In the absence of dissipation, the action describes the ballistic motion of a quantum point

particle on a ring. The ring topology reflects the 2π-periodicity of the quantum phase, which in

turn relates to the quantization of charge (recall that charge and phase are canonically conjugate).

It is, thus, no surprise that the periodicity of the φ-dynamics is the main source of charge

quantization phenomena in the AES approach. For strong (gT > 1) dissipation, the particle

begins to forget that it actually moves on a ring (i.e. full traversals of the ring get increasingly less

likely). This damping manifests itself in a massive suppression of charge quantization phenomena.

Indeed, for increasing coupling between lead and dot, the charge on the latter begins to fluctuate

and is no longer effectively quantized. For a detailed account of the physical phenomena relating

to the crossover from weak to strong charge quantization, we refer to one of several reviews.89

87 We denote the tunneling rate by gT because (see Problem 7.6.3) it is but (four times) the classical conductance
of the tunneling barrier, measured in units of the conductance quantum e2/h.

88 U. Eckern, G. Schön, and V. Ambegaokar, Quantum dynamics of a superconducting tunnel junction, Phys.
Rev. B 30 (1984), 6419–31.

89 See, e.g., I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Quantum effects in coulomb blockade, Phys. Rep.
358 (2002), 309-440.
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Answer:

(a) Decoupling the action and integrating over the fermionic degrees of freedom, one obtains

the functional Z = exp(−Seff [V ]), where

Seff = Sc − tr ln

[
∂τ − μ+ iV + ε̂d T

T † ∂τ − μ+ ε̂l

]
= Sc − tr ln

[
∂τ − μ+ iV0 + ε̂d Teiφ

e−iφT † ∂τ − μ+ ε̂l

]
(6.68)

Here, as in the previous problem, Sc[V ] =
∫
dτ( V 2

4EC
− iN0V ), ε̂d = {εαδαα′} and εl =

{εaδaa′} contain the single-particle energies of dot and lead, respectively, the matrix

structure is in dot/lead space, and φ(τ) =
∫
dτ ′ (V (τ ′) − V0). In passing from the first

to the second equality we have subjected the argument of the “tr ln” to the unitary

transformation (gauge transformation) described by the matrix diag(eiφ, 1) (with the

block structure in dot–lead space).

(b) Expanding the “tr ln” to second order in T , and regularizing by subtracting the constant

Stun[0], we obtain

Stun[φ] = |T |2
∑
αa

∑
n

[∑
m

Gα,n(e
iφ)mGa,n+m(e−iφ)−m −Gα,nGa,n

]
+ Stun[0], (6.69)

where Gα/a,n = (iωn− ε̂α/a+μ)−1 are the Green functions of dot and lead, respectively,

and the constant Stun[0] will be omitted throughout. Approximating the Green functions

by ∑
α/a

Gα/a,n = −
∫

dε ρd/l(ε+ μ)
iωn + ε

ω2
n + ε2

� −πiρd,lsgn(ωn), (6.70)

where ρd,l ≡ ρd,l(μ) is the density of states at energy μ, we arrive at the result

Stun[φ] =
gT
2

∑
n,m

(−sgn(ωn)sgn(ωn+m) + 1)(eiφ)m(e−iφ)−m

=
gT
2πT

∑
m

|ωm|(eiφ)m(e−iφ)−m, (6.71)

where we note that
∑

m(eiφ)m(e−iφ)−m = 1, gT = 2π2ρlρd|T |2 is proportional to the

Golden Rule tunneling rate between dot and lead, and the appearance of a term ∼ |ωm|
is a clear signature of a dissipative damping mechanism. Using the fact that the Fourier

transform of |ωm| is given by (cf. Eq. (3.44)) πT sin−2(πTτ), the tunneling action can

be cast in a time-representation as

Stun[φ] = −gT
2

∫
dτ dτ ′

eiφ(τ)−iφ(τ ′)

sin2(πT (τ − τ ′))

= gT

∫
dτ dτ ′

sin2((φ(τ)− φ(τ ′))/2)
sin2(πT (τ − τ ′))

+ const.



6.7 Problems 341

We finally add the charging action to obtain the result Eq. (6.67).

Josephson junction

Building on the results obtained in the previous problem, here we derive an effective action of a Josephson

junction – a system comprising two superconductors separated by an insulating or normal conducting

interface region. The problem includes a preliminary discussion of the physics of the Josephson junction,

notably its current–voltage characteristics. In Chapter 8, renormalization group methods will be applied

to explore in detail the phenomenology of the system.

Consider two superconducting quantum dots separated by a tunneling barrier. Generalizing

the model discussed in the last two problems, we describe each dot by an action

Si[ψ̄i
α, ψ

i
α, φi] =

∫ β

0

dτ

{∑
α

ψ̄i
α(∂τ + ξiασ3 + eiφi(τ)σ3Δσ1)ψ

i
α

8
, i = 1, 2,

where ψi
α = (ψi

α↑, ψ̄
i
α↓)

T are Nambu spinors, σi Pauli matrices in particle–hole space, and

φi the phase of the order parameter on dot i. Noting that two dots form a capacitor, we

assume the presence of a “capacitive interaction”

Sint =
EC

4

∫
dτ (N̂1 − N̂2)

2,

where N̂i =
∑

α ψ̄i
ασ3ψ

i
α is the charge operator on dot i, and 1/2EC the capacitance of the

system. Finally, the tunneling between the two dots is described by the action

ST[ψα, ψ̄α] =
∑
αβ

∫
dτ ψ̄1

α(Tαβσ3)ψ
2
β + h.c.,

where Tαβ = 〈α|T̂ |β〉 denotes the tunneling matrix elements between the single-particle

states |α〉 and |β〉. Now, were it not for the presence of the superconducting order parameter,

the low-energy physics of the system would again be described by the effective action (6.67).

EXERCISE Convince yourself of the validity of this statement, i.e. check that the dot–dot system

can be treated along the same lines as the dot–lead system considered above and trace the phase

dependence of the various contributions to the action.

(a) Turning to the superconducting case, show that, at an intermediate stage, the action is

given by

Seff [V, φ]

= Sc[V ]− tr ln

[
∂τ + (ξ̂1 + i(φ̇1 + V )/2)σ3 +Δσ1 e−i(φ1−φ2)σ3/2T

T †ei(φ1−φ2)σ3/2 ∂τ + (ξ̂2 + i(φ̇2 − V )/2)σ3 +Δσ1

]
,

where ξ̂i, i = 1, 2, comprise the single-particle energies of the system, and Sc[V ] =

(1/4EC)
∫
dτ V 2 is the charging action. At zeroth order in T , expand the action to

second order in the combinations φ̇i±V . Vary your result with respect to φ̇1,2 to obtain
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the Josephson condition φ̇1 = −φ̇2 ≡ −φ̇ and V = φ̇. Neglecting the effect of these

massive quadratic fluctuations, we will rigidly impose this condition throughout. (Hint:

You may assume that the characteristic frequencies ωm carried by both the fields φi

and the voltage V are much smaller than those of the bare Green function. Use this

assumption to keep your analysis on a schematic level, i.e. try to argue in general terms

rather than performing the expansion in great detail.)

(b) Expanding the action to second order in T (i.e. the leading order) and using the Joseph-

son conditions, show that S = Sc + Stun, where

Stun[φ] = |T |2
∑

αα′ωmωn

tr
(
G1,αωn(e

iσ3φ)mG2,α′ωn+ωm(e−iσ3φ)−m − (φ ↔ 0)
)
,

Giαωn = (iωn− ξiασ3− Δ̂σ1)
−1 is the bare Gor’kov Green function, and we again regu-

larize the tunneling action by subtracting Stun[φ = 0]. Denoting the block diagonal/off-

diagonal contributions to the Green function by Gi,d/o, respectively, the tunneling action

splits into two contributions, (symbolically) tr(G1de
iφσ3G2de

−iφσ3+G1oe
iφσ3G2oe

−iφσ3).

Show that, up to small corrections of O(ωn/Δ), the diagonal terms vanish and interpret

this result. (Hint: Compare with the discussion of the previous problem.)

(c) Turning to the particle/hole off-diagonal sector, show that

Stun[Δ, φ] = γ

∫ β

0

dτ cos(2φ(τ)), γ = |T |2(πρ)2Δ.

Combining everything, one obtains the action of the Josephson junction,

S[φ] =
1

4EC

∫
dτ φ̇2 + γ

∫
dτ cos(2φ(τ)) + ΓSdiss[φ]. (6.72)

While our analysis above suggests that the coefficient of the dissipative term should be

zero (on account of the absence of low-energy quasi-particle states which might act as a

dissipative sink of energy), voltage fluctuations in “real” Josephson junctions do seem

to be dissipatively damped, even at low fluctuation frequencies. Although there is no

obvious explanation of this phenomenon, it is common to account for the empirically

observed loss of energy by adding a dissipation term to the action.

(d) Finally, explore the current–voltage characteristics of the non-dissipative junction. To

this end, perform a Hubbard–Stratonovich transformation on the quadratic charging

interaction. What is the physical meaning of the Hubbard–Stratonovich auxiliary field?

Interpret the action as the Hamiltonian action of a conjugate variable pair and com-

pute the equations of motion. Show that the Josephson current flowing between the

superconductors is given by

I = −2γ sin(2φ). (6.73)

According to this equation, a finite-order parameter phase difference causes the flow of

a static current, carried by Cooper pairs tunneling coherently across the barrier: the

DC Josephson effect. Application of a finite voltage difference or, equivalently, the

presence of a finite charging energy, render the phase φ̇ = V dynamical. For a static
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voltage difference, φ increases uniformly in time and the current across the barrier

behaves as time-oscillatory: the AC Josephson effect. Finally, if the voltage difference

becomes very large, V � Δ, the Fourier spectrum of φ contains frequencies |ωm| > Δ

(think about it). At these frequencies, phase variations have the capacity to create quasi-

particle excitations which in turn may tunnel incoherently across the barrier (thereby

paying a price in condensate energy but benefiting from the voltage drop). The tunneling

of independent quasi-particles is described by the dissipative term in the action (which,

we recall, is negligible only at frequencies |ωm| < Δ).

Answer:

(a) The given result is proven by decoupling the capacitive interaction by a field V and

integrating out the fermions. We next subject the “tr ln” to the gauge transformation

(symbolic notation)

tr ln

(
Ĝ−1

1 T

T † Ĝ−1
2

)
→ tr ln

[(
e−iφ1σ3/2

e−iφ2σ3/2

)(
Ĝ−1

1 T

T † Ĝ−1
2

)(
eiφ1σ3/2

eiφ2σ3/2

)]
.

This removes the phase dependence from the order parameters of the Green functions.

At the same time, the tunneling matrices become phase-dependent and the diagonal

terms of the Green functions acquire a contribution iφ̇i, as indicated in the formula

above.

An expansion of the T = 0 action to second order in φi and V gives an expression of

the structure

S[φi, V ] =
∑
i=1,2

∫
dτ dτ ′ (φ̇i − (−)iV )(τ)F (τ − τ ′)(φ̇i − (−)iV )(τ ′)

= C

∫
dτ (φ̇i − (−)iV )2(τ) + · · · ,

where the time dependence of the integral kernel F is determined by the bare Green

function. Assuming that this fluctuates rapidly, we may expand as indicated in the sec-

ond equality, where the ellipsis represents higher-order derivatives acting on the slow

fields φi, V and the constant C must be positive on stability grounds. A straightfor-

ward variation of the quadratic integral with respect to φi and V gives the Josephson

conditions.

(b) Decoupling the interaction operators by two Hubbard–Stratonovich fields Vi = φ̇i and

integrating out the fermions, we obtain

Seff [φ] =
∑
i

Sc[φi]− tr ln

[
∂τ − (ξ̂1 − iφ̇1)σ3 −Δσ1 Tσ3

T †σ3 ∂τ − (ξ̂2 − iφ̇2)σ3 −Δσ1

]

=
∑
i

Sc[φi]− tr ln

[
Ĝ−1

1 Te−iΔφσ3

eiΔφσ3T † Ĝ−1
2

]
,
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where ξ̂i denotes the matrix of energies of the two dots. An expansion to leading order

in the off-diagonal blocks obtains the preliminary action Stun[φ].

Substituting the diagonal contribution to the Green function (Ĝi,d)n = (−iωn −
ξ̂iσ3)/(ω

2
n + ξ̂2i +Δ2) into the tunneling action and comparing with Eq. (6.69), we find

that the sum Eq. (6.70) becomes replaced by∑
a

(Gi,d)a,ωn =

∫
dε ρi(ε+ μ)

−iωn − εσ3

ω2
n + ε2 +Δ2

� −iπρi
ωn

(ω2
n +Δ2)1/2

.

Comparing with Eq. (6.71), we obtain∑
n

(
− ωn

(ω2
n +Δ2)1/2

ωn+m

(ω2
n+m +Δ2)1/2

+ 1

)
�

{
|ωm|/πT, |ωm| � Δ,

0 +O(ωm/Δ), |ωm| � Δ,

instead of a global factor |ωm|/2πT . The physical interpretation of this result is that

only high-frequency (ω > Δ) fluctuations of the voltage field V = φ̇ have the capacity to

overcome the superconductor gap and dissipate their energy by creating quasi-particle

excitations. In contrast, low-frequency fluctuations do not suffer from dissipative damp-

ing.

(c) Substituting the off-diagonal term (Go,i)n(τ) = −Δσ1/(ω
2
n+ ξ̂2i +Δ2) into the tunneling

action and neglecting contributions of O(|ωm|/Δ), we find

Stun[φ1] � |T |2
∑
n,m

∑
αα′

Δ

ω2
n + ξ2α +Δ2

Δ

ω2
n + ξ2α′ +Δ2

tr
(
σ1(e

iσ3φ)mσ1(e
−iσ3φ)−m

)
=

|T |2(πρ)2Δ
2T

∑
m

tr
(
σ1(e

iσ3φ)mσ1(e
−iσ3φ)−m

)
= |T |2(πρ)2Δ

∫
dτ cos(2φ(τ)).

(d) Think of the non-dissipative Josephson action as the action of a point particle with

kinetic energy ∼ E−1
C φ̇2 and potential energy cos(2φ). In this language, passage to the

Hubbard–Stratonovich decoupled action

S[φ,N ] = EC

∫
dτ N2 + γ

∫
dτ cos(2φ(τ)) + i

∫
dτ Nφ̇,

amounts to a transition from the Lagrangian to the Hamiltonian picture. The notation

emphasizes that the momentum conjugate to the phase variable is the number operator

of the system. (More precisely, N measures the difference of the charge carried by the

two superconductors; the total charge of the system is conserved.) Varying the action,

we obtain the Hamilton equations

φ̇ = i2ECN, Ṅ = 2iγ sin(2φ).

Now, I = i∂τN is the current flowing from one dot to the other, i.e. the second relation

gives the Josephson current Eq. (6.73). The first relation states that, for a finite charging

energy, mismatches in the charge induce time variations in the phase. By virtue of the

Josephson relation, such time variations are equivalent to a finite voltage drop.
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Field theory of the BCS to BEC crossover

As we have seen in the main text, the formation of the superconducting and Bose–Einstein condensates –

the macroscopic occupation of a single quantum state – is characterized by two paradigms.

� In the BCS theory, the transition from a normal to a superconducting phase of electrons involves

a pairing instability which takes place at a temperature Tc 	 εF where the Fermi energy εF sets

the degeneracy scale. In particular, the formation of Cooper pairs and their condensation occur

simultaneously at the transition temperature.

� Similarly, the transition of a Bose gas to a Bose–Einstein condensate (BEC) phase occurs at a

temperature Tc comparable to the degeneracy temperature – in the bosonic system, the temperature

at which the thermal length hv/kBT becomes comparable to the typical particle separation. However,

the bosonic particles participating in the condensate are invariably molecules or composites involving

an even number of elementary fermionic degrees of freedom, e.g. 4He, Rb atoms, etc. Usually, the

corresponding dissociation temperature of the particles into their fermionic constituents Tdis is greatly

in excess of the BEC transition temperature Tc – the condensate forms out of preformed bosons.

The separation of the energy scales Tdis and Tc means that systems which undergo a BCS or BEC

transition can be neatly classified. However, in some systems (such as fermionic atom condensates),

the transition temperature can be comparable to (or even tuned through) the molecular dissociation

temperature. Such systems have the capacity to manifest a BEC to BCS crossover. The aim of this

extended problem is to develop a field theory to describe the crossover.

Sir Anthony J. Leggett 1938–
Co-recipient of the 2003 Nobel
Prize in Physics (with Alexei A.
Abrikosov and Vitaly L. Ginzburg)
“for pioneering contributions to
the theory of superconductors and
superfluids.” He has made impor-
tant contributions to the theory
of normal and superfluid helium liquids and other
strongly coupled superfluids, macroscopic dissipative
quantum systems, and the use of condensed sys-
tems to test the foundations of quantum mechanics.
(Image c© The Nobel Foundation.)

Although the study of the BEC to

BCS crossover has a long history, the

modern perspective on the subject

can be traced back to the seminal

work90 of Anthony Leggett. In this

early work, it was shown that the

smooth crossover from a BCS to a

BEC state could be described within

the framework of a single variational

wavefunction. In the following, we

will develop a field theory to explore

the crossover in the framework of the

original Hamiltonian considered by Leggett.91

90 See, e.g., A. J. Leggett, Modern Trends in the Theory of Condensed Matter, A. Pekalski and R. Przystawa,
eds. (Springer-Verlag, 1980) as well as the later work by P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys.
59 (1985), 195–211. See also the related work by Keldysh and collaborators from the 1960s on the closely related
problem of exciton condensation phenomena.

91 Our analysis will follow closely that described in M. Randeria, Crossover from BCS theory to Bose–Einstein
condensation, in Bose–Einstein Condensation, A. Griffin, D. W. Snoke, and S. Stringari eds. (Cambridge
University Press, 1985).
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Consider the Hamiltonian of a three-dimensional gas of spinful fermionic particles inter-

acting through an attractive local (i.e. contact) pairwise interaction,

Ĥ − μN̂ =
∑
kσ

ξkc
†
kσckσ − gL3

∫
d3r c†↑c

†
↓c↓c↑,

where ξk = εk − μ, εk = k2/2m, and the parameter g characterizes the strength of the

interaction.

(a) Starting with the coherent state path integral formulation of the quantum partition

function, introduce a Hubbard–Stratonovich field, decoupling the pair interaction and,

integrating out the fermionic degrees of freedom, obtain an effective action involving

the pairing field Δ. (Select only the pairing channel in the decoupling.)

(b) Varying the action with respect to Δ, show that the transition temperature is determined

by the saddle-point equation

1

g
=

∑
k

tanh(ξk/2Tc)

2ξk
.

An inspection of the momentum summation will confirm the presence of a high-energy

(UV) divergence. In the conventional BCS theory of the superconductor discussed in the

main text, one may recall that this high-energy divergence was regularized by a physical

cut-off derived from the pairing mechanism itself – the phonon exchange mechanism

imposed a cut-off at the Debye frequency ωD � μ, the highest phonon energy allowed

by the crystal lattice, which restricted the range of the momentum sum to an energy

shell around the Fermi level. In the present case, the UV divergence reflects a pathology

of the contact interaction. Had one chosen a more physical pair potential g(r − r′)
involving both a magnitude g and a range b, the momentum sum would have involved

a soft cut-off at the momentum scale |k| ∼ 1/b (exercise). Equivalently, to implement

the physical cut-off, one may replace the bare coupling constant g by the low-energy

limit of the two-body T-matrix (in the absence of the surrounding medium). In three

dimensions, this translates to the regularization92

m

4πa
= −1

g
+

∑
k

1

2εk
,

where a denotes the s-wave scattering length. As a function of the (positive) bare

interaction g, 1/a increases monotonically from−∞ for a very weak attraction to +∞ for

a very strong attraction. Beyond the threshold 1/a = 0, the two-body system develops

a bound state with a size a and binding energy EB = 1/ma2. Therefore, one can

identify the ratio of the typical particle separation and scattering length 1/kFa as the

92 To understand this result, one may note that, for an isolated two-body scattering involving a potential V , the
scattering T-matrix obeys the Lippmann–Schwinger equation T̂ = V̂ +V̂ Ĝ0T̂ , where Ĝ0 denotes the bare Green
function of the free particles. Applied to the potential V (r) = −gLdδ(r), the diagonal k = 0 component of the
T-matrix, which translates to the physical scattering length a, can be obtained from the self-consistent solution
of the equation as T (0, 0) = 4πa/m = [−(1/g) +

∑
k(1/2εk)]

−1.
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dimensionless coupling constant where kF and εF denote the Fermi wavevector and

energy of the non-interacting system.

With this interpretation, the saddle-point equation acquires the regularized form

− m

4πa
=

∑
k

[
tanh(ξk/2Tc)

2ξk
− 1

2εk

]
.

When combined with the equation for the particle density n(μ, T ) = − 1
L3

∂F
∂μ �∑

k [1− tanh (ξk/2T )], valid in the mean-field approximation, this presents an equation

for Tc and μ.

(c) In the weak coupling BCS limit, 1/kFa → −∞, show that the chemical potential is fixed

by the density such that μ � εF and, making use of the identity∫ ∞

0

dz z1/2
[
tanh((z − 1)/2t)

2(z − 1)
− 1

2z

]
= ln

(
8γ

πe2t

)
,

where γ = eC and C denotes Euler’s constant, show that the saddle-point equation

translates to the condition

Tc =
8γ

πe2
εFexp

[
π

2kF|a|

]
.

(d) In the strong coupling limit 1/kFa → +∞, the roles of the saddle-point equation

and number density are reversed. The former now fixes the chemical potential μ < 0

while, superficially, the latter determines Tc. In particular, making use of the identity,∫∞
0

dz z1/2
[

1
2(z+1) −

1
2z

]
= −π

2 , show that

μ = −EB

2
=

1

2ma2
, Tc �

EB

2 ln
(

EB

εF

)3/2
.

In fact, the apparent divergence of the transition temperature Tc in the strong coupling

limit is a pathology of the mean-field analysis. The inferred value of Tc represents the

dissociation energy of the pairs Tdis rather than the temperature scale at which coherence

is established. To understand why, we have to turn to the analysis of fluctuations.

EXERCISE Enthusiasts may enjoy exploring the saddle-point analysis of the condensed

phase at zero temperature when the order parameter Δ acquires a non-zero expectation

value. These results may be compared with the variational analysis based on the ground

state wavefunction |g.s.〉 =
�

k(uk + vkc
†
k↑c

†
−k↓)|Ω〉 described in Leggett’s original work.

Note that, in the low-density limit, the variational parameter vk describes the bound state

wavefunction of a single pair.

(e) Developing the action to quartic order in Δ show that the Ginzburg–Landau expansion

of the action takes the form

S =
F0

T
+

∑
q

Π(q)|Δ(q)|2 +
∫

ddr
u

4
|Δ(r)|4 + · · · ,
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where F0 denotes the free energy of the non-interacting Fermi gas,

Π(q) =
∑
k

[
1− nf (ξk)− nF(ξk+q)

iωm − ξk − ξk+q
+

1

2εk

]
− m

4πa
,

denotes the pairing susceptibility, and u is a positive constant. In the weak coupling

limit 1/kFa → −∞, confirm that the gradient expansion of the susceptibility leads

to the Ginzburg–Landau expansion discussed in Section 6.4. Conversely, in the strong

coupling limit 1/kFa → +∞, show that

Π(q) � π

2

ν(εF)√
2εFEB

(−iωm − 2μ+ ωB(q)) ,

where ωB = −EB+q2/4m. Absorbing the prefactor into an overall rescaling of the field

Δ, the corresponding action can now be recognized as that of a weakly interacting Bose

gas of composite particles with a mass 2 × m and density n/2 – cf. Section 6.3. The

failure of the mean-field theory to infer the correct value of Tc now becomes clear. In

the mean-field description, it is assumed that, at temperatures T > Tc, particles exist as

unbound fermions. However, the action above shows that, for temperatures only slightly

in excess of Tc, the particles already exist as bound pairs. The bulk transition takes

place when these bound pairs condense.

Once identified as a weakly interacting Bose gas, one can immediately deduce that,

in the strong coupling limit, Tc becomes independent of the scattering length and varies

with density as

Tc =

(
n

2ζ(3/2)

)2/3
π

m
.

INFO BEC–BCS transition in fermionic alkali atomic gases and cold exciton liquids:

As mentioned above, in the majority of condensed matter systems the dissociation energy Tdis is

well separated from the transition temperature Tc, and the majority of condensates can be neatly

classified as being of BCS or BEC type. However, two systems which present the opportunity to

explore crossover phenomena have been the subject of considerable interest in the experimental

and theoretical literature.

At low temperatures a “quasi-equilibrium” degenerate gas of electrons and holes forms a two-

component plasma.93 At low densities, the constituent electrons and holes can bind to form

neutral composite objects known as excitons. Comprising an electron and hole, these objects

transform as bosons and, as such, have the capacity to undergo BEC. At high densities, the

electrons and holes become unbound and exist as a two-component plasma. Yet, by exploiting

the Coulomb interaction, at low enough temperatures the electrons and holes can condense into a

collective BCS-like phase – the exciton insulator in which a quasi-particle energy gap develops at

the Fermi surface. Leaving aside the capacity for other phases to develop (namely electron–hole

droplets or molecules), the particle density can be used as a parameter to mediate a crossover

between a BEC and a BCS-like phase. (In fact, a careful study of the free energy at mean-field

93 Here the term “quasi-equilibrium” is used to acknowledge the fact that, in a conventional direct band-gap
semiconductor, an electron–hole plasma can lower its energy by recombination. If the recombination rate is
slower than the equilibration time, an electron–hole plasma may, in principle, acquire a quasi-equilibrium
distribution.
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shows the crossover to occur via a phase transition of high order. Whether the weak transition is

smeared into a crossover by thermal fluctuations remains unclear.) To date, experimentalists have

been unable to defeat the problems posed by fast radiative and Auger-assisted recombination

processes to unambiguously realize such a condensate.94

A second example of a BEC to BCS crossover is presented by the atomic condensates. As

mentioned in the text, the realization of BEC in atom condensates is now almost routine. Lately,

there have been considerable efforts targeted at realizing BCS-like condensates of fermionic atoms

such as 6Li and 40K. Yet, it being charge neutral, the experimental identification of a BCS phase

presents considerable difficulties – a feature shared by the electron–hole condensate. As a result

experimentalists have used “Feshbach resonance” phenomena to tune the atomic pair interaction

from weak to strong coupling, whence the atoms exist as tightly bound pairs. By monitoring the

dynamics of BEC formation, attempts have been made to infer the properties of the ephemeral

BCS-like phase.95

Answer:

(a) Referring to Section 6.4, a decoupling of the pair interaction by a field Δ gives the

partition function

Z =

∫
D(Δ̄,Δ) exp

[
−1

g

∫
dτ

∫
ddr |Δ|2 + ln det Ĝ−1

]
,

where

Ĝ−1 =

(
−∂τ − ξk Δ

Δ̄ −∂τ + ξk

)
,

denotes the matrix Gor’kov Green function.

(b) Once again referring to Section 6.4, a variation of the action with respect to Δ gives the

saddle-point equation

Δ̄(r, τ)

g
− tr

[
Ĝ(r, τ ; r, τ)Eph

12

]
= 0.

In particular, for Δ → 0, an integration over the Matsubara frequencies leads to the

required saddle-point equation.

(c) Firstly, in the weak coupling limit, we have that Tc � μ. Therefore, to leading order,

one may note that μ � εF. Then, in this approximation, applying the regularisation

procedure outlined in the question, the saddle-point equation takes the form

− m

4πa
=

∫ ∞

0

dε ν(ε)

[
tanh[(ε− εF)/2Tc]

2(ε− εF)
− 1

2ε

]
,

94 For a general review of the field, we refer to Griffin, Snoke, and Stringari, eds., Bose–Einstein Condensation.
95 For a review of this general field, we refer to, e.g., M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and

R. Walser, Resonance superfluidity in a quantum degenerate Fermi gas, Phys. Rev. Lett. 87 (2001), 120406.
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where ν(ε) = m3/2
√
ε/
√
2π2 denotes the three-dimensional density of states. Making use

of the given identity, and noting that m/4πaν(εF) = π/2kFa, one obtains the required

estimate for Tc.

(d) In the strong coupling limit, one expects a bound state to develop in advance of the

transition. In the limit of low density εF → 0, the appearance of the bound state is

signaled by the chemical potential reversing sign. For Tc � |μ|, the saddle-point equation
becomes largely temperature-independent and acquires the form

− m

4πa
=

∫
dε ν(ε)

[
1

2(ε+ |μ|) −
1

2ε

]
.

Making use of the given identity, one obtains the required formula for the chemical

potential. In the low-density limit, the latter asymptotes to (one half of) the bound state

energy EB. Then, when μ is substituted into the equation for the particle number, one

obtains

n � 2

∫ ∞

0

dε ν(ε) exp

[
−ε+ EB/2

T

]
.

When equated with the expression for the number density, n =
∫ εF
0

dε ν(ε), a rearrange-

ment of the equation obtains the required estimate for Tc. As mentioned in the question,

here one must interpret Tc as the dissociation temperature, which may be – and, in

the physical context, usually is – greatly in excess of the Bose-Einstein condensation

temperature.

(e) When properly regularized, the expansion of the action to second order follows directly

the procedure outlined in Section 6.4. In the weak coupling limit, the chemical poten-

tial asymptotes to the Fermi energy of the non-interacting system, εF. Here the gra-

dient expansion of the pair susceptibility Π(q) is strictly equivalent to that discussed

in Section 6.4. By contrast, the strong coupling expansion requires further consider-

ation. In this case, one may expect μ < 0. For temperatures T � |μ|, noting that

ξk+q/2 + ξk−q/2 = 2(εk − μ) + q2/4m one obtains

Π(q) �
∑
k

[
1

iωm − 2(εk − μ)− q2/4m
+

1

2εk

]
− m

4πa
.

Then, making use of the identity proposed in part (d), one obtains

Π(q) =
π

2

ν(εF)√
2εF

√
−2μ+

q2

4m
− iωm − m

4πa
.

Expanding the argument of the square root in deviations from the bound state energy

EB, one obtains the required gradient expansion.

Metallic magnetism

Previously we have seen that the functional field integral provides a convenient framework in which

a perturbation theory of the weakly interacting electron gas can be developed. By trading the field
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operators of the electrons for the dressed photon field φ, the diagrammatic series that comprises the

RPA can be organized into a systematic expansion of the action in the charge, e. However, we have

also seen that interactions can have a more striking effect on the electron liquid, initiating transitions to

new electron phases. In the following, we will explore the transition of the electron gas to an itinerant

magnetic phase – the Stoner transition.96

Historically, the Stoner transition has assumed a special place in the theoretical literature.

Developments in statistical mechanics through the 1950s and 1960s highlighted the impor-

tance of fluctuation phenomena in the classification and phenomenology of classical phase

transitions (for more details, see Chapter 8). In the vicinity of a continuous classical phase

transition, the collective properties of a thermodynamic system are characterized by a set of

universal critical exponents. In the quantum mechanical system, a phase transition can be

tuned by a change of an external parameter even at zero temperature – a “quantum phase

transition.” In a seminal work, it was proposed by John Hertz97 that the region surrounding

a quantum critical point was itself characterized by quantum critical phenomena. In

this context, the problem of metallic magnetism presents a useful prototype – and the one

used by Hertz to exemplify the phenomenology of quantum criticality. Lately, the class of

heavy fermion materials has provided a rich experimental arena in which quantum critical

phenomena have been observed and explored. In the following, we develop a low-energy

theory of the interacting electron system and discuss the nature of the mean-field transition

to the itinerant ferromagnetic phase. Later, following our discussion of the renormalization

group methods in Chapter 8, we use the low-energy theory as a platform to discuss the

general phenomenology of quantum criticality (see Problem 8.8.2).

Our starting point is the lattice Hamiltonian for a non-interacting electron gas perturbed

by a local “on-site” Hubbard interaction, Ĥ = Ĥ0 + ĤU where

Ĥ0 =
∑
pσ

εpc
†
pσcpσ, ĤU = U

N∑
i

n̂i↑n̂i↓.

Here, the sum runs over the N lattice sites i and, as usual, n̂iσ = c†iσciσ denotes the number

operator for spin σ on site i. The electron dispersion relation εp (a function of the lattice

geometry) as well as the dimensionality is, for the present, left unspecified.

As we have seen in Chapter 2, the phase diagram of the lattice Hubbard Hamiltonian is

rich, exhibiting a range of correlated ground states depending sensitively on the density and

strength of interaction. In the lattice system, commensurability effects can initiate charge

or spin density wave instabilities while, at large U , the electron system can freeze into

an insulating antiferromagnetic Mott–Hubbard state. Conversely, in the following, we will

show that, at low densities, the system may assume an itinerant (i.e. mobile) spin-polarized

phase, the Stoner ferromagnet.

The capacity of the interacting electron system to form a ferromagnetic phase reflects

the competition between the kinetic and interaction potential energies. Being forbidden

96 E. C. Stoner, Ferromagnetism, Rep. Prog. Phys. 11 (1947), 43-112.
97 J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976), 1165–84.
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by the Pauli exclusion principle to occupy the same site, electrons of the same spin can

escape the local Hubbard interaction. However, the same exclusion principle requires the

system to occupy higher-lying single-particle states, raising the kinetic energy. When the

total reduction in potential energy outweighs the increase in kinetic energy, a transition to

a spin-polarized or ferromagnetic phase is induced.

Once again, to facilitate the construction of a low-energy field theory of the magnetic

transition, it is helpful to effect a Hubbard–Stratonovich decoupling of the Hubbard interac-

tion. For this purpose it is convenient to first separate the interaction into channels sensitive

to the charge and spin densities, i.e.

ĤU =
U

4

∑
i

(n̂i↑ + n̂i↓)2 −
U

4

∑
i

(n̂i↑ − n̂i↓)2.

Since we expect that fluctuations in the charge density channel will have little effect on

the thermodynamic properties of the low-density system, we can therefore neglect their

influence on the interaction, setting ĤU � −U
∑

i(Ŝ
z
i )

2, where Ŝz
i = (n̂i↑ − n̂i↓)/2.

EXERCISE Here, for simplicity, we have isolated a component of the Hubbard interaction which

couples to the spin degrees of freedom but violates the spin symmetry of the original interaction.

How could the local interaction be recast in a manner which makes the spin symmetry explicit

while isolating the coupling to the spin degrees of freedom?

(a) Making use of the coherent state path integral, express the quantum partition function

of the interacting system as a functional field integral. Decoupling the local quartic

interaction by the introduction of a local scalar magnetization field mi(τ), integrate out

the fermionic degrees of freedom and show that the partition function takes the form

Z = Z0

∫
Dm exp

{
−U

4

∫ β

0

dτ
∑
i

m2
i (τ) +

∑
σ

tr ln

(
1− U

2
σ3m̂Ĝ0

)8
,

where Z0 and G0,p = (iεn − ξp)
−1 denote, respectively, the quantum partition function

and Green function of the non-interacting electron gas, the matrix m̂ = {mi(τ)δijδ(τ −
τ ′)}, and σi are Pauli spin matrices. Left in this form, the expression for the quantum

partition function is formally exact, but seemingly unmanageable.

Yet there is an expectation that the system will undergo a phase transition to a mag-

netic phase at some critical value of the interaction, U = Uc, signaled by the appearance

of a non-zero expectation value of the magnetization field mi. This being so, a mean-

field description of the transition can be developed along two complementary lines.

Firstly, when far below the transition, one expects that the quantum partition function

is characterized by a well-developed saddle-point of the field integral. By minimizing

the action with respect to mi, the corresponding saddle-point equation can be used to

track the development of magnetic order (exercise). Alternatively, if the transition to

the magnetic phase is of second order (i.e. the expectation value of the magnetization

field grows continously from zero as the interaction is increased through Uc), a field the-

ory of the system near the critical point can be developed as a perturbative expansion
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of the action in powers of the magnetization field. It is this program to which we now

turn.

(b) Drawing on the RPA expansion of the weakly interacting electron gas discussed in the

main text, expand the action to fourth order in the magnetization field. Subjecting the

magnetic susceptibility to a gradient expansion, show that the action takes the general

form (where
∫
dx ≡

∫
dτddx)

S[m] =
U2ν

4

∑
q

[
r + ξ2q2 +

|ωn|
v|q|

]
|mq|2 +

uT

4N

∫
dx m4(x) + · · · ,

where r = 1/(Uν) − 1, v = vFc, and c is some numerical constant.98 Identify the

coefficients of the expansion. (Hint: Recall the discussion of the Lindhard function on

page 218; at fourth order in the expansion you will encounter the product of four fermion

Green functions. Assuming that the momentum q carried by the magnetization field is

much smaller than the typical momentum of the electronic single-particle states, you

may approximate the product of Green functions by a constant whose value you need

not specify.)

Finally, rescaling the magnetization field and u, bring the action into the form

S[m] =
1

2

∑
q

[
r + ξ2q2 +

|ωn|
v|q|

]
|mq|2 +

u

4

∫
dxm4(x).

(c) In the mean-field approximation, show that the system exhibits a (Stoner) transition to

a spin-polarized phase when Ucν = 1.

INFO Although the mean-field theory provides a good qualitative understanding of the nature of

the transition, the Stoner criterion itself is unreliable. In the lattice system, the density of states

is typically set by the bandwidth, i.e. ν ∼ 1/t. Therefore, at the Stoner transition where U/t ∼ 1,

the system enters the strongly correlated phase where the interaction cannot be considered as a

small perturbation. In this regime, the electrons experience an effective interaction renormalized

by the screening effect of the charge redistribution. Following Kanamori,99 an estimate for the

effective interaction, Ueff ∼ U/(1+U/t), shows that, in the relevant regime, the Stoner criterion

becomes replaced by the condition νt ≥ 1. Typically, for a smoothly varying density of states, ν ∼
1/t and the inequality is difficult to satisfy. In practice, the Stoner transition to ferromagnetism

tends to appear in materials where there is significant enhancement of the density of states near

the Fermi energy.

98 The validity of the gradient expansion of the action as an approximation relies on the benignancy of transverse
fluctuations of the magnetization density. Recent results (D. Belitz, T. R. Kirkpatrick, and T. Vojta, Non-
analytic behavior of the spin susceptibility in clean Fermi systems, Phys. Rev. B 55 [1997], 9453–62) have cast
some doubt on the integrity of this approximation. However, we should regard this pathology of the present
scheme as an idiosyncrasy of the itinerant ferromagnetic system, while the present action provides a sound
illustration of the guiding principles.

99 J. Kanamori, Electron correlation and ferromagnetism of transition metals, Prog. Theor. Phys. 30 (1963),
275–89.



354 Broken symmetry and collective phenomena

Answer:

(a) When cast as a field integral, the quantum partition function takes the form

Z =

∫
D(ψ̄, ψ) exp

{
−

∫ β

0

dτ

[∑
p

ψ̄pσ(∂τ + ξp)ψpσ − U

4

∑
i

(ψ̄iσσ
z
σσ′ψiσ′)2

]8
,

where the sum over repeated spin indices is assumed. In this form, the interaction may

be decoupled with the introduction of a commuting scalar field conjugate to the local

magnetization density,

Z =

∫
Dm D(ψ̄, ψ)exp

{
−

∫
dτ

(
U

4

∑
i

m2
i (τ) +

∑
p

ψ̄pσ(∂τ + ξp)ψpσ

+
U

2

∑
i

ψ̄iσσmi ψiσ

)8
.

Finally, integrating over the fermionic degrees of freedom, one obtains the required

partition function.

(b) The expansion of the action mirrors closely the RPA of the weakly interacting electron

gas. Carried out to fourth order, it may be confirmed straightforwardly that terms odd

in powers of m vanish identically (a property compatible with the symmetry m → −m),

while the even terms lead to the expression Z = Z0

∫
Dme−S[m], where

S[m] =
1

2

∑
q

v2(q)|mq|2 +
T

4N

∑
qi

v4({qi})
4∏

i=1

mqiδ
∑

i qi,0
+ · · ·

Focusing on the second-order contribution, one finds that v2(q) =
U
2 (1− UΠq) where

Πq represents the familiar fermion bubble or Lindhard function,

Πq = − T

N

∑
k

G0,kG0,k+q = − 1

N

∑
k

nF(εk)− nF(εk+q)

iωn + ξk − ξk+q
.

As one would expect, the existence and nature of the magnetic instability depend sensi-

tively on the susceptibility v2(q), which, in turn, depends on the detailed structure of the

spectrum εk. The static susceptibility is dominated by contributions to the momentum

sum where ξk � ξk+q. This involves the regions of reciprocal space where q is small or

where, for some non-zero q = Q, ξk � ξk+Q over a wide region of the Brillouin zone.

The second condition reflects a nesting symmetry where a translation by a constant

wavevector leaves the spectrum invariant. It is in this situation, where commensurabil-

ity effects become significant, that magnetic or spin density waves develop. If, instead,

the spectrum varies smoothly, so that nesting symmetry is absent, the susceptibility is

maximized for q = 0. Leaving the spin density wave system for “private investigation,”

we focus here on the channel q = 0.

EXERCISE Explain why bipartite lattices lead naturally to nesting symmetry.
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While, in general, the Lindhard function assumes a complicated structure reflecting

the detailed dispersion of the non-interacting system, for the free electron system εk =

k2/2m an exact expression can be derived explicitly (see Eq. (5.30)). In particular,

at frequencies |ωn|/|q|vF small, this expression has the expansion Πq � Π0,q − ν |ωn|
v|q| ,

where v = cvF with a constant c depending on dimensionality. (In the three-dimensional

system, c = π/2.) Similarly, for q small, one may expand the static susceptibility in

gradients, i.e. Π0,q � ν[1− ξ2q2 + · · · ] where ξ ∼ 1/kF.

Turning now to the quartic interaction, the general structure of v4 again involves a

complex computation. However, since its effect near the critical point is merely to control

the strength of the magnetization, in the following we may focus on the frequency- and

momentum-independent contribution, setting

v4({qi}) �→ v4(0) ≡ u =
2(U/2)4

βN

∑
p

[G0(p)]
4 ∼ U4ν′′,

where ν′′ = ∂2
ε

∣∣
ε=EF

ν(ε). Taken together with the quadratic interaction, the total effec-

tive action assumes the form given above.

(c) In the leading approximation, an understanding of the model can be developed by ignor-

ing the effect of fluctuations – spatial and temporal. In such a mean-field approximation,

the fields m are assumed independent of q (or x). In this case, the rescaled action takes

the form
S[m]

βN
=

r

2
m2 +

u

4
m4,

where r = U(1 − Uν)/2. Minimizing the action with respect to m, one finds a Stoner

transition to a spin-polarized ferromagnetic phase when r = 0, i.e. Ucν = 1. At values

of U in excess of Uc, the (oversimplified) mean-field analysis above predicts that the

magnetization will grow in a continuous yet non-analytic manner, i.e. m =
√
−r/4u.
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Functional bosonization

The techniques introduced in this chapter are engaged to develop a functional-integral-oriented scheme

of bosonizing the one-dimensional electron gas.

Consider the interacting one-dimensional electron gas as described by the relativistic action

Eq. (4.43) and the interaction contribution Eq. (4.44). Throughout, it will be convenient to

formulate the last in a matrix representation,

Sint[ψ
†, ψ] =

1

2

∫
dτ dx

(
ρ̂+ ρ̂−

)(g4 g2
g2 g4

)(
ρ̂+
ρ̂−

)
≡ 1

2

∫
dτ dx

(
ρ̂+ ρ̂−

)
ĝ

(
ρ̂+
ρ̂−

)
.

To probe the response of the system to external perturbations, we add to the action a source

term Ssource[ψ, ψ
†, j, j†] ≡

∫
dτ dx

∑
s=±(ψ

†
s js + j†sψs). By Grassmann differentiation with

respect to the source fields j and j†, we may then generate any correlation function of

interest.

(a) Decouple the four-fermion interaction by introducing a two-component Hubbard–

Stratonovich field ϕT = (ϕ+, ϕ−). Show that the action can be written as

S[ψ̄, ψ, ϕ] =
1

2

∫
d2x ϕT ĝ−1ϕ−

∫
d2x ψ̄( �∂ − i �ϕ)ψ, (6.74)

where ψT = (ψ+, ψ−), ψ̄ = (ψ†
−, ψ

†
+), and we have switched to a covariant notation: x1 =

τ , x2 = x, d2x = dx1 dx2, and �∂ = σμ∂μ and �ϕ = σμϕμ. The space–time components

of the interaction field are defined by ϕ1 = 1
2 (ϕ+ + ϕ−) and ϕ2 = 1

2i (ϕ+ − ϕ−).
The interaction field ϕ couples to the fermion action as a two-dimensional vector

potential. As with any two-component vector, the coefficients of ϕ can be decomposed

into an irrotational and a divergenceless contribution (the Hodge decomposition): ϕμ =

−(∂μξ + iεμν∂νη). This is an interesting decomposition as it suggests that the vec-

tor potential can be removed from the action by a generalized gauge transformation.

Indeed, the transformation ψ → eiξ+iησ3ψ, ψ̄ → ψ̄e−iξ−iησ3 naively removes the vector

potential from the action (exercise: check this). A moment’s thought identifies the two

transformations by ξ and η as the vectorial and axial gauge transformations discussed

in Section 4.3 above. It turns out, however, that the transformation by η is actually not

permissible – a direct manifestation of the chiral anomaly.

INFO There are different ways to understand the origin of the chiral gauge symmetry

violation. For instance, one may observe that the transformation leaves the action invariant,

but not the measure dψ̄ dψ.100 This means that the functional integral as a whole lacks

gauge invariance. Alternatively, one may integrate out the fermions and realize that the

resulting “tr ln” exhibits problematic UV behavior. Applying a UV regularization scheme –

of which, due to the importance of the Dirac operator in particle physics, there are many –

one observes that the chiral gauge invariance gets lost.101

100 K. Fujikawa, Chiral anomaly and the Wess–Zumino condition, Phys. Rev. D 31 (1985), 341–51.
101 For a detailed discussion of this point, see J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Oxford University Press, 1993).
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Notice that both the lack of gauge invariance of the measure and the UV problems manifest

themselves in an integral over (quantum) fluctuations, i.e. while the symmetry is preserved

on the classical level, it gets lost in the quantum theory. This is the defining property of an

anomaly.

(b) To explore the consequences of the anomaly, integrate out the fermions and expand the

resulting “tr ln” to second order in the fields ϕ±. Switching to a frequency–momentum

representation and approximating the Matsubara sum by an integral, one obtains an

expression that is formally UV divergent. Regularize the integral by introducing a cut-off

Λ in momentum space. Show that the effective ϕ-action reads as

S[ϕ] =
1

2

∑
q̃

ϕT
q̃

(
ĝ−1 + Π̂q̃

)
ϕ−q̃, (6.75)

where q̃ = (ω, q) and Π̂q̃ ≡ { δss′
2π

q
−isω+q}. Finally, introduce the field doublet ΓT ≡ (ξ, η)

to represent the action as

S[Γ] =
1

2

∑
q̃

ΓT
q̃ D

T
q̃

(
ĝ−1 + Π̂q̃

)
D−q̃Γ−q̃, (6.76)

where the transformation matrix

Dq̃ ≡
(

q − iω −q − iω

−q − iω q + iω

)
mediates between the field variables Γ and ϕ (exercise).

We next turn our attention to the source terms. The integration over the original

fermion variables generates a source contribution

Ssource[ψ, ψ
†, j, j†]

∫
Dψ−→ S[j, j†,Γ] =

∫
d2x d2x′ j̄(x)Ĝ[Γ](x, x′)j(x′)

=

∫
d2x d2x′ (j̄e−i(ξ+ησ3))(x)Ĝ(x, x′)(ei(ξ+ησ3)j)(x′),

where x are space/time indices, the superscript [Γ] indicates that the fermion Green func-

tion depends on the Hubbard–Stratonovich interaction fields, and in the last step we have

applied the generalized gauge transformation above to transfer the (ξ, η)-dependence

to the source vectors j. The action above contains the free fermion Green function (a

matrix in both space–time and ±-space) as an integration kernel. To proceed, notice

that matrix elements of the fermion Green function can be obtained as correlation func-

tions of a free bosonic theory. This connection was introduced in Problem 4.5 on the

example of a specific free fermion correlation function. Generalizing the results of that

problem, one may verify that (exercise)

Ĝss′(x, x
′) = (2πa)−1〈e−i(ϕ+sθ)(x)ei(ϕ+sθ)(x′)〉, (6.77)

where a is the lattice spacing and the action of the bosonic doublet ΞT ≡ (φ, θ) is given

by

S0[Ξ] =
1

2

∑
q̃

ΞT
q̃ Kq̃Ξ−q̃, Kq̃ ≡ 1

π
(q2 − iqωσ1) (6.78)
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i.e. a non-interacting variant of the Luttinger liquid action (cf. Eq. (4.49)).

(c) Use the Fermi–Bose correspondence to represent the generating function as a double

field integral over Γ and Ξ. Next shift the integration variables Ξ to remove the field Γ

from the source action and perform the quadratic integral over Γ. Show that the final

form of the action is given by (4.51). Summarizing, you have rediscovered the action

of the interacting Luttinger liquid, and the boson representation of fermion correlation

functions (the latter obtained by differentiation with respect to the source parameters

j). While the present derivation is certainly less transparent than the one discussed in

Section 4.3, it has the advantage of being more “explicit” (inasmuch as we start from

the standard “tr ln,” which is then subjected to manipulations standard in many-body

field theory. On the other hand, the authors are not aware of applications where this

aspect turned out to be of much practical relevance: usually, the standard bosonization

approach is just fine; and, where it is not, the formalism above would not be any better).

Answer:

(a) This is resolved by a straightforward exercise in Gaussian integration and reorganizing

indices.

(b) Integrating over fermions and momentarily forgetting about the impurity, we obtain the

effective action

S[ϕ] =
1

2

∫
d2xϕT ĝ−1ϕ− tr ln(�∂ − i �ϕ)

=
1

2

∫
d2xϕT ĝ−1ϕ− 1

2
tr( �∂−1 �ϕ �∂−1 �ϕ) +O(ϕ4)

=
1

2

∑
q̃

ϕq̃,s

(
ĝ−1
ss′ + δss′Πs,q̃

)
ϕs′,−q̃ +O(ϕ4),

where q̃ = (ω, q) and Πs,q̃ =
∫
d2p (ε + isp)−1(ε + ω + is(p + q))−1. Evidently, the

structure of this integral poses a problem: while all poles of the integrand appear to be

on one side of the real axis (so that analyticity arguments might suggest a vanishing of

the integral), the double integral is manifestly divergent. We are, thus, confronted with

a 0 · ∞ conflict and a regularization scheme is called for. (At [n > 2]nd orders in the

ϕ expansion, one “fast” momentum integration extends over n > 2 energy denomina-

tors. These terms indeed vanish by analyticity, i.e. the second-order expansion of the

logarithm is, in fact, exact.) To some extent, the choice of the regularization scheme is

dictated by the physical context: in particle physics, relativistic covariance is sacred, and

a rotationally invariant (Euclidean formalism!) regularization is required. However, in

condensed matter physics, where the effective action is obtained by linearization of some

band Hamiltonian, frequency and momentum play different roles. While the integration

domain of the former is infinite, the latter is bounded to values |p| < Λ, where Λ is some
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cutoff. To proceed, we first integrate over frequencies and then do the finite integral over

momentum:

Πs,q̃ =
1

ω + isq

∫ Λ

−Λ

dp

2π

∫
dε

2π

[
1

ε+ isp
− 1

ε+ ω + is(p+ q)

]
= − 1

ω + isq

i

2

∫ Λ

−Λ

dp

2π
[sgn(sp)− sgn(s(p+ q))] =

1

2π

q

−isω + q
.

(Notice that the result is actually independent of the non-universal cutoff Λ.) Substi-

tuting this result into the action, we obtain Eq. (6.75).

(c) Representing the fermion Green function as in Eq. (6.77), we obtain the local expression

Z =

∫
DΞ DΓ e−S0[Ξ]−S[Γ]exp

(
−

∫
d2x

(
j̄e−i(ξ+φ+(η+θ)σ3) + ei(ξ+φ+(η+θ)σ3)j

))
,

where the non-universal factor 2πa has been absorbed in the definition of the source

fields. (To confirm that the Ξ-integral faithfully reproduces the source action, one has

to take into account the fact that exp(i(φ± θ)) ↔ ψ is a Gaussian correlated variable.)

The structure of the source term suggests a shift φ → φ − ξ, θ → θ − η, or Ξ → Ξ − Γ

for short. Denoting the now Γ-independent source contribution by exp(−Ssource[Ξ]), the

partition function assumes the form Z =
∫
DΞ DΓ e−S0[Ξ−Γ]−S[Γ]−Ssource[Ξ]. We further

note that Kq̃ = −DT
q̃ Πq̃D−q̃ to obtain the integral over Γ,

S0[Ξ− Γ] + S[Γ] =
1

2

∑
q̃

[
ΞT
q̃ Kq̃Ξ−q̃ + ΓT

q̃ (D
T
q̃ ĝ

−1D−q̃)Γ−q̃

+ΞT
q̃ Kq̃Γ−q̃ + ΓT

q̃ Kq̃Ξ−q̃

]
∫
DΓ−→ 1

2

∑
q̃

ΞT
q̃

[
Kq̃ −Kq̃(D

T
q̃ ĝ

−1D−q̃)
−1Kq̃

]
Ξ−q̃

=
1

2

∑
q̃

ΞT
q̃

[
Kq̃ + 2q2(g4 − g2σ3)

]
Ξ−q̃

=
1

2π

∑
q̃

(ϕ, θ)q̃

(
q2[1 + 2π(g4 − g2)] −iqω

−iqω q2[1 + 2π(g4 + g2)]

)(
ϕ

θ

)
−q̃

,

where we have used the fact that Kq̃D
−1
−q̃ = −g(1 − iσ2). Transforming back to real

space/time, we obtain Eq. (4.51).
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Response functions

The chapter begins with a brief survey of concepts and techniques of experimental condensed matter

physics. It will be shown how correlation functions provide a bridge between concrete experimental

data and the theoretical formalism developed in previous chapters. Specifically we discuss – an example

of outstanding practical importance – how the response of many-body systems to various types of

electromagnetic perturbation can be described in terms of correlation functions and how these functions

can be computed by field theoretical means.

In the previous chapters we have introduced important elements of the theory of quan-

tum many-body systems. Perhaps most importantly, we have learned how to map the basic

microscopic representations of many-body systems onto effective low-energy models. How-

ever, to actually test the power of these theories, we need to understand how they can be

related to experiment. This will be the principal subject of the present chapter.

Modern condensed matter physics benefits from a plethora of sophisticated and highly

refined techniques of experimental analysis including the following: electric and thermal

transport; neutron, electron, Raman, and X-ray scattering; calorimetric measurements;

induction experiments; and many more (for a short glossary of prominent experimental tech-

niques, see Section 7.1.2 below). While a comprehensive discussion of modern experimental

condensed matter would reach well beyond the scope of the present text, it is certainly prof-

itable to attempt an identification of some structures common to most experimental work

in many-body physics. Indeed, we will need a discussion of this sort to construct meaningful

links between the theoretical techniques developed above and experiment.

7.1 Crash course in modern experimental techniques

7.1.1 Basic concepts

Crudely speaking, experimental condensed matter physics can be subdivided into three1

broad categories of analytical technique:

� experiments probing thermodynamic coefficients;

� transport experiments;

� spectroscopy.

1 There are a few classes of experiment that do not fit comfortably into this three-fold scheme. These include
scanning tunneling microscopy, a technique to be discussed in more detail below.

360
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A summary of their utility, the basic experimental setup, the principal areas of application,

and concrete realization of these families is given in the following section. (Readers who are

totally unfamiliar with the basic notions of experimental many-body physics may find it

useful to browse through that section before reading further.) The few occasional references

to experimental data given in previous chapters were all to thermodynamic properties. The

reason for this restriction was that the extraction of thermodynamic information from the

theoretical formalism is relatively straightforward: one need only differentiate the partition

function (alias the field integral) with respect to a few globally defined coefficients (the

temperature, homogeneous magnetic field, etc.). This simplicity has advantages but also

limiting aspects: thermodynamic data are highly universal2 and, therefore, represent an

important characteristic of a system. On the other hand, they contain information neither

on spatial structures, nor on dynamical features. This means that thermodynamic data do

not suffice to fully understand the physics of a system.

With the other two categories of experiment the situation is different. Transport and

spectroscopic measurements can be used to probe both static and dynamical features of a

system; further, fully angle/frequency-resolved spectroscopic data contain detailed informa-

tion on the spatio-temporal structure of the dominant excitations of a system or, in other

words, on their dispersion relation. It is for these reasons that the focus in the present

chapter will be on the last two of the experimental classes mentioned above.

In spite of the wide diversity of present day analytical techniques, there are a few struc-

tures common to all experimental probes of condensed matter:

� Firstly, the interaction of a many-body system with its environment is almost exclu-

sively mediated by electromagnetic forces.3 Accordingly, most experiments subject the

system under consideration to some external electromagnetic perturbation (a voltage

drop, an influx of spin magnetic moments carried by a beam of neutrons, the local electric

field formed at the tip of a scanning tunneling microscope, etc.). In a second step, the

“response” of the system is then recorded by an appropriate detector or measuring device.

Formally, the externally imposed perturbation is described by a (time-dependent) con-

tribution to the Hamiltonian of the system,

ĤF =

∫
ddrF ′

i (r, t)X̂
′
i(r). (7.1)

Here, the coefficients F ′
i , sometimes referred to as generalized “forces,” represent a per-

turbation that couples to the system through some operators X̂ ′. For example, F ′
i (r, t) =

φ(r, t) could represent a space- and time-dependent electric voltage coupling to the density

of the electronic charge carriers in the system X̂ ′
i = ρ̂, etc.

� The use of the term “perturbation” is appropriate because the forces {F ′
i} will, in general,

be much weaker than the internal correlations of the system.

� The forces perturb the system out of its F ′
i = 0 reference state. The measurable effect

of this perturbation will be that certain operators X̂i, whose expectation values vanish

2 Remember that a few thermodynamic variables, i.e. numbers, suffice to unambigously characterize the state of
a homogeneous system in equilibrium.

3 An important exception involves heat conduction.
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in the unperturbed state, build up non-vanishing expectation values Xi(r, t) = 〈X̂i(r, t)〉.
(For example, in response to an external voltage F ′

i = φ, a current might begin to flow,

X̂i = ĵi, etc.). The ultimate goal of any theory will be to understand and predict the

functional dependence of the measured values of Xi on the forces F ′
j .

� In general, there is nothing one can say about that connection other than that Xi

[
F ′
j

]
will be some functional of the forces. However, for a sufficiently weak force, the situation

is simpler. In this case, one may expect that the functional relation between forces F ′
j

and the expectation values Xi is approximately linear, i.e. of the form

Xi(r, t) =

∫
ddr′

∫
dt′ χij(r, t; r

′, t′)F ′
j(r

′, t′) +O(F ′2). (7.2)

While the quantities
0
F ′
j

1
and {Xi} are externally adjustable/observable – either as an

experimental input/output, or as parameters in the theory – the integral kernel χ repre-

sents a purely intrinsic property of the system. It describes how the system “responds”

to the application of an external probe {F ′
i} (wherefore it is commonly referred to as a

response function) or generalized susceptibility. The functional profile of the response

kernel is in turn determined by the dominant excitations of a system (notably its long-

range excitations), i.e. our prime objects of interest.

These considerations show that response functions play a principal role in promoting the

dialog between experiment and theory. Experimentally, they will be measured by relating

the input
0
F ′
j

1
to the response {Xi}. Theory will attempt to predict the response behavior,

ideally in a way that conforms with experimental observation.

7.1.2 Experimental methods

To keep our discussion of the relation “experiment ↔ theory” less abstract, it is instructive

to list a few prominent experimental techniques of condensed matter physics. Of course, the

summary below can be no more than an introduction.4 Our intention is merely to illustrate

the connection (perturbation � response) through a few examples; indeed readers lacking

a background in experimental many-body physics may welcome some motivation before

plunging into the formalism of correlation functions and response developed below.

Thermodynamic experiments

Of the thermodynamic properties of a system that can be accessed in experiment, those most

commonly investigated include the following: the specific heat, cv = ∂U/∂T , i.e. the rate of

change of the internal energy under a change of temperature; themagnetic susceptibility,

χ = ∂M/∂H, the change of magnetization in response to a (quasi-)static magnetic field;

the (isothermal) compressibility, κ = −V −1∂V/∂p, the volume change in response to

4 For a short and pedagogical (if perhaps a bit outdated) introduction to a number of experimental approaches we
refer to the classic text by N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders International,
1983), while, for an up-to-date and detailed exposition of methods of spectroscopy, we refer to H. Kuzmany,
Solid State Spectroscopy (Springer-Verlag, 1998).
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the external pressure etc. Note that, strictly speaking, the magnetic susceptibility and the

isothermal compressibility are both tensor quantities.

The thermodynamic response functions are highly universal. (Remember that a few

thermodynamic state variables suffice to unambiguously characterize the state of a given

system.) Specifically, for given values of chemical potential, magnetic field, pressure,

etc., a calorimetric experiment will produce a one-dimensional function cv(T ). The low-

temperature profile of that function generally contains important hints as to the nature of

the low-energy excitations of a system.5 However, the universality of thermodynamic data

also implies a limitation: thermodynamic coefficients contain information neither about the

spatial fluctuations of a given system nor about its dynamics.

Transport experiments

V, ,T M

I, IS IT,

I, IS IT,

When subject to a gradient of a generalized “volt-

age” U , a current flows through a device (see figure).

Although, typically, the voltage is electrical, U = V ,

one can apply a temperature gradient U = ΔT or even

attach the sample to two “reservoirs” of different mag-

netizations U = ΔM. One then records the current flow induced by U . The corresponding

current can be electrical, I carried by the charge of mobile carriers, the “thermal current”

IT carried by their energy, or a “spin current” IS carried by their magnetic moments. Also

notice that the current need not neccessarily be parallel to the voltage gradient. For exam-

ple, in the presence of a perpendicular magnetic field, a voltage gradient will give rise to

a transverse Hall current I⊥. The ratio of a current and a generalized voltage defines a

conductance, g = I
U .

Conductance measurements represent the most common way to determine the transport

behavior of a metal or the thermal conduction properties of insulators. A disadvantage is

that conductance measurements are invasive, i.e. the system has to be attached to contacts.

There are situations where the local injection process of charge carriers at the contact

(rather than the bulk transport behavior in which one is interested) determines the value

of the conductance. (For a further discussion of this point, we refer to Problem 7.6.1.)

Spectroscopic experiments

The general setup of a spectroscopic experiment is shown in Fig. 7.1. A beam of particles p –

either massive (electrons, neutrons, muons, atoms, etc.), or the quanta of electromagnetic

radiation – is generated at a source and then directed onto a sample. The kinematic infor-

mation about the source beam is stored in the dispersion relation (k, ω(k)).6 The particles

5 For example, the specific heat of the Fermi liquid, cv,Fermi liquid ∼ T , is linear in temperature, that of phonons,

cv,phonon ∼ T 3, is cubic, while in a system without low-lying excitations, it vanishes exponentially (exercise:
consider why).

6 For some sources, e.g. a laser, the preparation of a near-monochromatic source beam is (by now) standard. For
others, such as neutrons, it requires enormous experimental skills (and a lot of money!).
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k, ω

k′,ω
′

D

S

Figure 7.1 Basic setup of a spectroscopic experiment. A beam of electromagnetic radiation (or
massive particles) of frequency–momentum (ω(k),k) is emitted by some source (S) and directed
onto a target sample. The sample responds by emitting radiation according to some distribution
P (ω′(k′),k′), which is, in turn, recorded by a detector (D). Notice that the emitted radiation can,
but need not, contain the same type of particles as the source radiation. For example, light quanta
may lead to the emission of electrons (photoemission spectroscopy).

of the source beam then interact with constituents X of the sample to generate a secondary

beam of scattered particles p′. Symbolically,

p + X −→ p′ + X ′

$ $ $ $
k, ω(k) K,Ω(K) k′, ω(k′) K′,Ω(K′),

where X ′ represents the final state of the process inside the sample. Notice that the particles

p′ leaving the sample need not be identical to those incident on the sample. (For example, in

photoemission spectroscopy, X-ray quanta displace electrons from the core levels of atoms in

a solid. Here p represent the light quanta, and p′ electrons.) Further, the dominant scattering

process may be elastic (e.g. X-rays scattering off the static lattice structure) or inelastic

(e.g. neutrons scattering off phononic excitations). In either case, the accessible information

about the scattering process is stored in the frequency–momentum distribution P (ω(k′),k′)
of the scattered particles, as monitored by a detector.

Sir Chandrasekhara
V. Raman 1888–
1970 (left), Lord
Rayleigh (John
William Strutt)
1842–1919 (mid-
dle), Max von Laue
1879–1960 (right)
Raman was awarded the Nobel Prize in Physics in 1930 “for his
work on the scattering of light and for the discovery of the effect
named after him.” Lord Rayleigh was awarded the Nobel Prize in
Physics in 1904 “for his investigations of the densities of the most
important gases and for his discovery of argon in connection with
these studies.” Laue was awarded the Nobel Prize in Physics in 1914
“for his discovery of the diffraction of X-rays by crystals.” (Image c©
The Nobel Foundation.)

From these data, one

would like to restore

the properties (i.e. the

dispersion (Ω(K),K))

of the states inside the

solid. This is where

the detective work of

spectroscopy begins.

What we know is that

the dispersions of the

scattered particles and

of the sample con-

stituents, (k, ω(k))

and (K,Ω(k)), respec-

tively, are related
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through an energy–momentum conservation law, i.e.

k+K = k′ +K′,

ω(k) + Ω(K) = ω(k′) + Ω(K′).

According to this relation, a “resonant” peak in the recorded distribution P (ω(k′),k′) sig-
nals the existence of an internal structure (for example, an excitation, or a lattice structure)

of momentum ΔK ≡ K′−K = k−k′ and frequency ΔΩ ≡ Ω′−Ω = ω−ω′. However, what

sounds like a straightforward recipe in principle may be quite involved in practice: solid

state components interact almost exclusively through electromagnetic forces. When charged

particles are used as scattering probes, these interactions may actually turn out to be too

strong. For example, a beam of electrons may interact strongly with the surface states of

a solid (rather than probing its bulk), or the scattering amplitude may be the result of a

complicated process of large order in the interaction parameters, and therefore difficult to

interpret. The obvious alternative – scattering of neutral particles – is met with its own

problems (see below). Notwithstanding these difficulties, spectroscopy is one of the most

important sources of experimental information in condensed matter physics. A number of

prominent “sub-disciplines” of solid state spectroscopy are summarized below:

� Raman spectroscopy: The inelastic scattering of visible light can be used to explore

the dispersion of optical phonons (magnons, plasmons, or other electronic excitations).

Such techniques require experimental skill to discriminate the “Raman peak” from the

much larger “Rayleigh peak” corresponding to the elastic scattering of light quanta.

� Infrared spectroscopy: The scattering of light in the infrared range can be used to

explore the vibrational modes in polycrystalline solids and the band-gaps in semiconduc-

tors.

� X-ray crystallography: By measuring the angle-resolved intensity profile (the von Laue

pattern), the elastic scattering of X-rays from the lattice ions of a solid can be used

Sir William H. Bragg
1862–1942 (left) and
his son Sir William
Lawrence Bragg, 1890–
1971 (right)
Awarded the Nobel Prize
in Physics in 1915 “for
their services in the
analysis of crystal structure by means of X-rays.” (Image
c© The Nobel Foundation.)

to infer the structure of

a crystalline substance.

(Notice that the typical

wavelength of X-rays ∼
10−10 m is of about the

size of typical interatomic

spacings in solids.) Such

techniques of solid state

spectroscopy have already

acquired a long history dat-

ing back to 1913.

� X-ray/electron spectroscopy: A number of spectroscopic techniques are based on the

fact that the ionization energies of atomic core levels lie in the X-ray range. In X-ray

absorption spectroscopy the absorption of X-rays by a solid is measured as a function

of the light frequency (see Fig. 7.2(a)). The absorption cross-section rises in a quasi-
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(a) (b)

(c) (d)

Figure 7.2 The different types of X-ray/electron spectroscopy. (a) X-ray absorption: the loss of
X-ray radiation due to the ionization of core levels. (b) X-ray fluorescence: the recombination of
valence electrons with previously X-ray-emptied core levels leads to the emission of radiation, which
also lies in the X-ray range. The spectral analysis of this radiation contains information about the
level structure of the system. (c) Photoemission spectroscopy (PES): detection of the frequency-
dependence of the electrons kicked out by X-ray core level ionization. (d) Auger spectroscopy:
the energy emitted by a valence electron recombining with a core level is transmitted to a second
valence electron which leaves the solid as a high-energy Auger electron.

discontinuous manner whenever the energy of the X-rays becomes large enough to ionize

an atomic core level of the atoms of the solid. Due to interatomic correlations, these

energies differ from the ionization energies of gaseous atoms, i.e. information about solid

state binding energies is revealed.

� In X-ray fluorescence spectroscopy the radiation emitted by valence electrons recom-

bining with core holes created by incident X-ray radiation is measured (Fig. 7.2(b)). This

type of spectroscopy is frequently used to chemically analyze a sample, or to detect the

presence of impurity atoms, i.e. different elements have different core/valence excitation

energies. Peaks in the fluorescence spectrum at frequencies characteristic of individual

atoms therefore identify the presence of these atoms in the target sample. In photoe-

mission spectroscopy (PES) core electrons7 displaced by X-ray radiation are detected

(Fig. 7.2(c)). The fully frequency/angle-resolved measurement of the photo-electron cur-

rent, known as angle-resolved photoemission spectroscopy (ARPES), is one of the

most important spectroscopic techniques in the experimental analysis of band structures.

Auger spectroscopy is based on an interaction process of higher order (Fig. 7.2(d)). In

this process, a core hole is created by irradiation by either X-rays or high-energy electrons.

In a secondary process, part of the energy emitted by a recombining valence electron is

transferred to another valence electron, which then leaves the atom and is detected.

7 To access valence electrons, soft X-ray radiation or hard UV radiation can be employed.
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� Neutron scattering: Thermal neutrons are scattered elastically or inelastically by a

solid state target. Being a neutral particle, the neutron interacts only weakly with solid

state constituents (i.e. magnetically, through its spin) and hence penetrates deeply into

the sample. Owing to its particular energy dispersion, the neutron is tailor-made to the

analysis of low-lying collective excitations (phonons, magnons, etc. – for example the data

shown on page 78 were obtained by neutron spectroscopy). Just as with X-ray scatter-

ing, elastic neutron scattering can be employed to obtain crystallographic information.

Unfortunately, the production of thermal neutrons requires a nuclear reactor, i.e. neutron

scattering is an extremely expensive experimental enterprise.

� Magnetic resonance: A sample containing particles of non-vanishing moment is placed

into a static (in practice, a slowly varying) magnetic field, strong enough to cause complete

magnetic polarization. The sample is then exposed to an AC magnetic field perpendicular

to the polarizing field. If the AC field frequency is in resonance with the Zeeman energy,

magnetic transitions are resonantly induced. The observable effect is a strongly enhanced

radiation loss of the AC field.

� In nuclear magnetic resonance (NMR) the nuclear spins of the sample are polarized.

In solid state physics, NMR is applied to obtain information about the magnetic properties

of the electronic states of the solid. Owing to the hyperfine interaction of the electron spin

and the nuclear spin, the effective magnetic field seen by the nucleus partially depends on

the surrounding electron cloud. For example, in metals, the Pauli paramagnetic response

of the electrons causes a characteristic shift of the spectral lines (as compared with the

NMR spectra of nuclei in uncorrelated environments) known as the Knight shift. Anal-

ysis of this shift obtains information about the magnetic properties of the conduction

electrons. Resonance spectroscopy of transitions between spin-polarized electron states,

electron spin resonance (ESR), is frequently used in chemical analysis and molecular

physics.

For discussion of other spectroscopic techniques, e.g. Mössbauer spectroscopy,

positron–electron annihilation spectroscopy (PES), muon scattering, electron

energy loss spectroscopy (EELS), etc., we refer to the literature.

Other experimental techniques

There are a few experimental probes of condensed matter physics that do not fit comfortably

into the three-fold “transport-thermodynamics-spectroscopy” scheme discussed above. This

applies, for example, to scanning tunneling microscopy (STM), a technique whose

development by Binnig and Rohrer in the 1980s has triggered a revolution in the area of

nanotechnology.
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Gerd Binnig 1947– and
Heinrich Rohrer 1933–
Awarded one half of
the 1986 Nobel Prize
(together with E. Ruska,
the inventor of the
electron microscope)
for “their design of the
scanning tunneling microscope.” (Image c© The Nobel
Foundation.)

The basic principle of STM

is easily understood: a small

tip, kept at a positive elec-

trostatic potential, is brought

in proximity to a surface.

When the tip–surface separa-

tion becomes comparable to

atomic scales, electrons begin

to tunnel from the substrate

onto the tip. The resulting

tunnel current is fed into a piezoelectric crystal that in turn levels the height of the tip.

Through this mechanism, the surface–tip separation can be kept constant, with an accuracy

of fractions of typical atomic separations. A horizontal sweep of the tip then generates

an accurate image of the surface profile. For example, Fig. 7.3 shows an STM image of a

carbon nanotube.

Figure 7.3 STM image of a carbon nanotube. (Figure courtesy of C. Dekker.)

7.2 Linear response theory

In the previous section, we argued that condensed matter experiments typically probe the

(linear) response of a system to the application of weak perturbations
0
F ′
j

1
. Such linear

response can be cast in terms of a generalized susceptibility χ: Eq. (7.2). In the following

we try to give the formal expression (7.2) a concrete meaning. Specifically,we relate the

response function χ to microscopic elements of the theory familiar from previous chapters.

However, before entering this discussion, let us list a few properties of χ that follow from

common sense reasoning.

� Causality: The generalized forces F ′
j(t

′) cannot cause an effect prior to their action, i.e.

χij(r, r
′; t, t′) = 0, t < t′. Formally, we say that the response is retarded.

� If the system Hamiltonian does not explicitly depend on time (which will usually be the

case), the response depends only on the difference of the time coordinates, χij(r, r
′; t, t′) =

χij(r, r
′; t−t′). In this case it is convenient to Fourier transform the temporal convolution

(7.2), i.e. to express the response in frequency space:

Xi(r, ω) =

∫
ddr′ χij(r, r

′;ω)F ′
j(r

′, ω) +O(F ′2). (7.3)
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The important statement implicit in Eq. (7.3) is that, in the linear response regime, a

(near) monochromatic perturbation acting at a certain frequency ω will cause a response

of the same frequency. For example, an AC voltage with frequency ω will drive an AC

current of the same frequency, etc. We can read this statement in reverse to say that, if

the system responds at frequencies �= ω, we have triggered a strong, nonlinear response.

Indeed, it is straightforward to verify (exercise) that an expansion of the general functional

R[F ′] to nth order in F ′ generates a response with frequency nω.8 According to Eq. (7.3),

a peak in the response Xi(ω) at a certain frequency ω indicates a local maximum of the

response function, i.e. the presence of an intrinsic excitation with characteristic frequency

ω.

� For systems that are translationally invariant, the response function depends only on

differences between spatial coordinates, χij(r, r
′; t−t′) = χij(r−r′; t−t′). Spatial Fourier

transformation then leads to the relation

Xi(q, ω) = χij(q;ω)F
′
j(q, ω) +O(F ′2). (7.4)

By analogy to what was said above about the frequency response, we conclude that a

peak of the function Xi(q, ω) signals the presence of an excitation with frequency ω and

momentum q. We thus see that, at least in principle, linear response measurements are

capable of exploring the full dispersion relation of the excitations of a system.

This is as much as one can say on general grounds. In the following we will employ the field

integral formalism to relate the response function to concrete microscopic properties of the

system.

EXERCISE Consider X-ray or neutron radiation probing a crystalline medium whose unit cells

are spanned by vectors ai, i = 1, . . . , d. Show that the response function χ shows this periodicity

through the condition χ(k,k′;ω) ∝ δk−k′−G, where G belongs to the reciprocal lattice of the

system. That is, the angle-resolved scattering pattern displays the full periodicity of the reciprocal

lattice and, therefore, of the original lattice. This is, in a nutshell, the main principle behind

spectroscopic crystallography.

7.2.1 Microscopic response theory

We now set out to relate the response function to the microscopic elements of the theory.

Previously we saw that, in quantum theory, the response signal X(t) should be interpreted

as the expectation value of some (single-particle) operator9 X̂ =
∑

aa′ c†aXaa′ca′ , where ca

8 While these “side bands” are usually negligible, they may become sizeable in, for example, laser-spectroscopic
experiments. The field intensities reached by laser beams can be so large as to generate frequency-doubled or
-tripled response signals. However, these phenomena, which belong to the realm of nonlinear optics, are beyond
the scope of the present text.

9 For notational clarity, the indices i and r labeling a multi-component set of local response quantities Xi(r) will
be dropped in this section (similarly with F ′

j(r
′)).
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may, as appropriate, represent bosonic or fermionic operators. Within the formalism of the

field integral, the expectation value at imaginary times is thus given by

X(τ) =
∑
aa′

〈ψ̄a(τ)Xaa′ψa′(τ)〉, (7.5)

where, as usual, 〈· · · 〉 = Z−1
∫
D(ψ̄, ψ) (· · · )exp{−S[F ′, ψ̄, ψ]} is the functional average

over the action describing our system. The action of the system is given by S[F ′, ψ̄, ψ] =
S0[ψ̄, ψ] + δS′[F ′, ψ̄, ψ], where S0 is the action of the unperturbed system and

δS′[F ′, ψ̄, ψ] =
∫

dτ ĤF ′ =

∫
dτ F ′(τ)

∑
aa′

ψ̄a(τ)X
′
aa′ψa′(τ),

is the perturbation introduced by the action of the generalized force (cf. Eq. (7.1)).

In practice, it is often convenient (for a better motivation, see the next section) to repre-

sent X(τ) as a derivative of the free energy functional. To this end, let us formally couple

our operator X̂ to a second “generalized force” and define

δS[F, ψ̄, ψ] ≡
∫

dτ F (τ)X̂(τ) =

∫
dτ F (τ)

∑
aa′

ψ̄a(τ)Xaa′ψa′(τ),

as a new element of our action. With S[F, F ′, ψ̄, ψ] = S0[ψ̄, ψ] + δS[F, ψ̄, ψ] + δS′[F ′, ψ̄, ψ],
we then have

X(τ) = − δ

δF (τ)

∣∣∣∣
F=0

lnZ[F, F ′],

where the notation Z[F, F ′] =
∫
D(ψ̄, ψ) e−S[F,F ′,ψ̄,ψ] indicates that the partition function

Z functionally depends on the two generalized forces.

Now, if it were not for the presence of the driving force F ′, the expectation value X

would vanish. On the other hand, we also assume that F ′ is weak in the sense that a

linear approximation in F ′ satisfactorily describes the measured value of X. Noting that

the formal first-order expansion of a general functional G[F ′] is given by G[F ′] � G[0] +∫
dτ ′ δG[F ′]

δF ′(τ ′) |F ′=0F
′(τ ′), we can write

X(τ) � −
∫

dτ ′
(

δ2

δF (τ) δF ′(τ ′)

∣∣∣∣
F=F ′=0

lnZ[F, F ′]
)
F ′(τ ′).

Comparison with Eq. (7.2) then leads to the identification

χ(τ, τ ′) = − δ2

δF (τ) δF ′(τ ′)

∣∣∣∣
F=F ′=0

lnZ[F, F ′],

of the response kernel. Carrying out the derivatives, we find

χ(τ, τ ′) = −Z−1 δ2

δF (τ) δF ′(τ ′)

∣∣∣∣
F=F ′=0

Z[F, F ′]

+

(
Z−1 δ

δF ′(τ ′)

∣∣∣∣
F ′=0

Z[0, F ′]
)(

Z−1 δ

δF (τ)

∣∣∣∣
F=0

Z[F, 0]

)
.
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Now, by construction, the second term in large parentheses is the functional expectation

value 〈X̂(τ)〉 taken over the unperturbed action. We had assumed that this average vanishes,

so that our preliminary, and still very formal, result for the response function is given by

χ(τ, τ ′) = −Z−1 δ2

δF (τ) δF ′(τ ′)

∣∣∣∣
F=F ′=0

Z[F, F ′]. (7.6)

Performing the two derivatives, we obtain a more concrete representation of the response

function in terms of a four-point correlation function:

χ(τ, τ ′) = −〈X̂(τ)X̂ ′(τ ′)〉 = −〈
∑
ab

ψ̄a(τ)X̂abψb(τ)
∑
a′b′

ψ̄a′(τ ′)X̂ ′
a′b′ψb′(τ

′)〉. (7.7)

EXERCISE Directly expand Eq. (7.5) to first order in the generalized force F to obtain this

expression. As mentioned above, the usefulness of the derivative construction outlined above will

become clear shortly.

INFO Equation (7.7) indicates a connection between two seemingly very different physical mech-

anisms. To disclose this relation, let us consider the case where the observed and the driving

operator are equal: X̂ ′ = X̂. (Shortly, we will see that the important application to the electro-

magnetic response of a system falls into this category.) Using the vanishing of the equilibrium

expectation values, 〈X̂(τ)〉 = 0, we can then rewrite (7.7) as

χ(τ, τ ′) = −〈(X̂(τ)− 〈X̂(τ)〉)(X̂(τ ′)− 〈X̂(τ ′)〉)〉. (7.8)

This relation is called the fluctuation–dissipation theorem. Indeed, the right-hand side of the

relation clearly describes the quantum thermal fluctuation behavior of (the physical observable

represented through) the operator X̂. By contrast, the left-hand side is of dissipative nature. For

example, for the case X̂ = j (see below), χ relates to the conductance of the system, i.e. the way

in which the kinetic energy of a charge carrier is dissipated among the intrinsic excitations of

the system.

We might now proceed to evaluate this function by means of the

machinery introduced in the previous chapters and that is, indeed, how

the response function will be computed in practice. However, before

doing this, we must face up to one more conceptual problem. What we

are after is the real-time response X(t) to a real-time dynamical per-

turbation F ′(t′). However, our functional integral formalism produces,

naturally, an imaginary-time response χ(τ, τ ′). In fact, we have fre-

quently met with this problem before: while we are generally interested

in real-time properties the formalism makes imaginary-time predic-

tions. In previous chapters, we dealt with this problem by remembering

that the imaginary-time setup could be obtained by analytical con-

tinuation t → −iτ of the integration contour of a real-time functional integral. Reversing

this “Wick rotation” we argued that a real-time response X(t) can be extracted from an

imaginary-time result X(τ) by substitution τ → it.
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In the majority of cases, this procedure indeed leads to correct results. However, some-

times one has to be more careful and that applies, in particular, to our present linear

response calculus. Indeed, the simple substitution F (τ) → F (t) = F (τ → it) is a crude

shortcut of what mathematically should be a decent analytical continuation. Problems with

this prescription arise when the answer F (τ) generated by the functional integral contains

singularities in the complex τ -plane.10 If a fictitious contour interpolating between the

limiting points τ and it inevitably crosses these singularities (see the figure), the simple

substitution prescription becomes a problem. The upshot of these considerations is that,

before proceeding with the construction of the linear response formalism, we need to develop

a better understanding of the mathematical structure of correlation functions.

7.3 Analytic structure of correlation functions

It is the purpose of this section to clarify – at last – the connection between imaginary and

real-time correlation functions. Throughout much of this section we will return to the tradi-

tional operator representation, i.e. expressions with circumflexes, X̂, represent canonically

quantized operators and 〈· · · 〉 = Z−1tr(· · · exp{−β[Ĥ − μN̂ ]}) represents the quantum-

thermal expectation value. Restricting ourselves to correlation functions of operators taken

at two different times,11 the general definition of the imaginary-time correlation func-

tion reads

Cτ
X1X2

(τ1 − τ2) ≡ −〈Tτ X̂1(τ1)X̂2(τ2)〉 ≡ −
{
〈X̂1(τ1)X̂2(τ2)〉, τ1 ≥ τ2,

ζX̂〈X̂2(τ2)X̂1(τ1)〉, τ2 > τ1,
(7.9)

where X̂i(c, c
†) are arbitrary operators represented in terms of either boson or fermion opera-

tors {c, c†}. The time-dependence of these operators is defined through the imaginary-time

Heisenberg representation,

X̂(τ) ≡ eτ(Ĥ−μN̂)X̂e−τ(Ĥ−μN̂), (7.10)

i.e. the imaginary-time analog of the real-time Heisenberg representation familiar from quan-

tum mechanics.12 The role of the time-ordering operator Tτ , whose action is defined

10 More precisely, the quantity F (τ) produced by evaluating the functional integral should be interpreted as a
function defined on the imaginary axis of a complex-time domain. Analytical continuation then leads to a
generalization F (z), where z may take values in some two-dimensional domain of the complex plane. What we
imply when we substitute F (τ) → F (τ → it) is that the analyticity domain includes the real axis, and that
analytical continuation amounts to a simple re-substitution of the argument. Both assumptions may happen to
be violated.

11 According to our discussion above, correlation functions of this type suffice to explore the linear response of a
system. Although the situation with nonlinear response signals is more complicated, much of what we are going
to say below has general validity.

12 Within imaginary-time theory, it is customary to absorb the chemical potential into the dynamical evolution
of an operator.
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through the second equality,13 is to chronologically order the two operators X̂1(τ1) and

X̂2(τ2).

Notice that for one-body operators X̂i =
∑

αβ c
†
α[Xi]αβcβ , the definition above describes

the response functions discussed in the previous section. For X̂1 = cα, X̂2 = c†β , Eq. (7.9)
coincides with the one-body imaginary-time correlation functions (“Green functions”) dis-

cussed earlier in this text, i.e. Eq. (7.9) and its real time descendants to be discussed next

cover most of the correlation functions of relevance in many-body physics.

INFO Although we shall postpone the discussion of the connection to the field integral formal-

ism for a while, it is instructive to compare the definition (7.9) with the field integral correlation

function (7.7) defined above. Indeed, if the quantities X̂i(τi) in (7.9) were to be interpreted as

the functional representation of second quantized operators, X̂(a†, a) → X̂(ψ̄, ψ), the two cor-

relation functions would coincide. The reason is that the time-ordering operation acting on the

functional representation of an operator pair is redundant, Tτ X̂1(ψ̄(τ1), ψ(τ1))X̂2(ψ̄(τ2), ψ(τ2)) =

X̂1(ψ̄(τ1), ψ(τ1))X̂2(ψ̄(τ2), ψ(τ2)) (Exercise: Try to think why). In other words, the correlation

function (7.9) reduces to (7.7) when the operators are represented within the field integral for-

malism. (The reason why Tτ is not redundant for canonically quantized operators is that these

have a non-vanishing commutator/anti-commutator at equal times.)

In a manner that is difficult to motivate in advance, we next introduce not one but three

different response functions of a real-time argument. Substituting in Eq. (7.9) real-time

arguments for imaginary times, τ → it, we obtain the real-time response function

CT
X1X2

(t1 − t2) = −i〈TtX̂1(t1)X̂2(t2)〉, (7.11)

where the factor of i has been introduced for later convenience, Tt chronologically orders

real times, and X̂(t) ≡ eit(Ĥ−μN̂)X̂e−it(Ĥ−μN̂) are real-time Heisenberg operators. While

this expression appears to be the “natural” generalization of (7.9), it is not our prime object

of interest. Much more physical significance is carried by the retarded response function

C+
X1X2

(t1 − t2) = −iΘ(t1 − t2)〈[X̂1(t1), X̂2(t2)]ζX̂ 〉, (7.12)

i.e. an object that exists only for times t1 > t2 (hence the attribute “retarded”). The

complementary time domain, t1 < t2, is described by the advanced response function

C−
X1X2

(t1 − t2) = +iΘ(t2 − t1)〈[X̂1(t1), X̂2(t2)]ζX̂ 〉. (7.13)

INFO What is the physical meaning of the real-time retarded response function? To

address this question we need to reformulate the linear response arguments given above in the

13 The sign factor ζX̂ = ±1 depends on the statistics of X̂i, i.e. ζX̂ = 1 if X̂i are bosonic. Note that the operator

X̂i is bosonic if {c, c†} are Bose operators or if it is of even order in a fermion algebra. Conversely, ζX̂ = −1 if
they are fermionic.
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language of the canonical operator formalism. What we would like to compute is the expectation

value

X(t) = 〈X̂F ′
(t)〉, (7.14)

building up in response to the presence of a weak perturbation F ′(t)X̂ ′ in the Hamiltonian

Ĥ = Ĥ0 + F ′(t)X̂ ′. In Eq. (7.14), the superscript “F ′” indicates that the time evolution of

X̂ follows the full Hamiltonian (including the perturbation F ′(t)X̂ ′). In contrast, the angular

brackets represent a thermal average 〈· · · 〉 = Z−1 tr[(· · · )exp{−βĤ0}] that does not include the

perturbation.14 The philosophy behind this convention is that, somewhere in the distant past,

t → −∞, the system was prepared in a thermal equilibrium distribution of the unperturbed

Hamiltonian Ĥ0. As time evolved, a perturbation ∝ F ′(t) was gradually switched on until it

began to affect the expectation value of the dynamically evolved operator X̂. (One need not be

irritated by the somewhat artificial definition of the switching on procedure; all it tells us is

that X̂ ′ acts on a system in thermal equilibrium, an assumption that is not problematic if the

perturbation is sufficiently weak.) To compute the expectation value, it is convenient to switch

to a representation wherein the evolutionary changes due to the action of the perturbation are

separated:

X(t) = 〈(ÛF ′
)−1(t)X̂(t)ÛF ′

(t)〉, (7.15)

where ÛF ′
(t) = Û−1

0 (t)Û(t), the evolution of X̂ follows the standard Heisenberg dynamics

X̂(t) = Û−1
0 (t)X̂Û0(t), and Û(Û0) generates the time evolution of the full (unperturbed) Hamil-

tonian. Using the defining equations of these evolution operators, it is straightforward to verify

that ÛF ′
obeys the differential equation, dtÛ

F ′
(t) = −iF ′(t)X̂ ′(t)ÛF ′

(t), i.e. the time evolu-

tion of ÛF ′
is controlled by the (Heisenberg representation of the) perturbation X̂ ′. According

to conventional time-dependent quantum mechanical perturbation theory, the solution of this

differential equation (with boundary condition ÛF ′
(t → −∞) → 1) is given by

ÛF ′
(t) = Ttexp

(
−i

∫ t

−∞
dt′ F ′(t′)X̂ ′(t′)

)
� 1− i

∫ t

−∞
dt′ F ′(t′)X̂ ′(t′) + · · ·

Substituting this result into Eq. (7.15) we obtain

X(t) = −i

∫
dt′ θ(t− t′)F ′(t′)

4
[X̂(t), X̂ ′(t′)]

5
=

∫
dt′ C+

XX′(t− t′)F ′(t′),

i.e. the retarded response function turns out to generate the linear response of X̂ to the presence

of the perturbation. In other words, the function C+ is our prime object of interest, while all other

correlation functions defined above play the (potentially important) role of supernumeraries.

We next set out to explore the connection between the different correlation functions defined

above. In doing so, the principal question that should be at the back of our minds is “How

do we obtain the retarded real time function C+ provided we know the imaginary-time

correlation function Cτ?” The key to the answer of this question lies in a highly formal rep-

resentation of the correlation functions CT,τ,+,−, known as the Lehmann representation.

This representation is obtained by representing the correlation functions in terms of an exact

eigenbasis {|Ψα〉} of the system: representing the trace entering the thermal expectation

values as tr(· · · ) =
∑

α〈Ψα| · · · |Ψα〉, and inserting a resolution of unity 1 =
∑

β |Ψβ〉〈Ψβ |

14 To simplify the notation, the chemical potential has been absorbed into the definition of Ĥ.
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between the two operators appearing in the definition of the correlation function, it is

straightforward to show that, e.g.15

CT (t) = −iZ−1
∑
αβ

X1αβX2βαe
itΞαβ

(
Θ(t)e−βΞα + ζXΘ(−t)e−βΞβ

)
. (7.16)

Here, Eα is the eigenvalue corresponding to a state Ψα and we have introduced the shorthand

notations Ξα ≡ Eα − μNα,Ξαβ ≡ Ξα − Ξβ , Xαβ ≡ 〈Ψα|X̂|Ψβ〉. We next Fourier transform

CT to find

CT (ω) =

∫ ∞

−∞
dtCT (t)eiωt−η|t| = Z−1

∑
αβ

X1αβX2βα

[
e−βΞα

ω + Ξαβ + iη
− ζX̂

e−βΞβ

ω + Ξαβ − iη

]
,

where the convergence-generating factor η – which will play an important role throughout! –

has been introduced to make the Fourier representation well-defined.16

Equation (7.16) is the Lehmann representation of the real time correlation function. What

is the use of this representation? Clearly, Eq. (7.16) will be of little help for any practical

purposes; the equation makes explicit reference to the exact eigenfunctions/states of the

system. Should we have access to these objects, we would have a full solution of the problem

anyway. Rather, the principal purpose of spectral resolutions such as (7.16) is to reveal exact

connections between different types of correlation functions and the analytical structure of

these objects in general. To do so, we first need to compute the Lehmann representation

of the other correlation functions. Proceeding as with the real time function above, it is

straightforward to show that

CT (ω)

C+(ω)

C−(ω)

⎫⎬⎭ = Z−1
∑
αβ

X1αβX2βα

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e−βΞα

ω + Ξαβ

⎧⎨⎩
+

+

−

⎫⎬⎭ iη

− ζX̂
e−βΞβ

ω + Ξαβ

⎧⎨⎩
−
+

−

⎫⎬⎭ iη

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.17)

From this result, a number of important features of the correlation functions can be

readily inferred. Anticipating the analytical structures alluded to above, we should think of

CT,+,−(z) as functions of a set of complex variables z. (The representations above apply to

CT,+,−(z = ω) where ω is restricted to the real axis.) This extended interpretation allows

us to view CT,+,− as complex functions with singularities in the immediate vicinity of the

real axis. More specifically:

� The retarded correlation function C+ has singularities for z = −Ξαβ − iη slightly below

the real axis. It is, however, analytic in the entire upper complex half plane Im(z) ≥ 0.

15 Wherever no confusion may arise, we omit the operator subscript CXX′ carried by the correlation functions.
16 Indeed, we can attach physical significance to this factor. The switching on procedure outlined above can be

implemented by attaching a small damping term exp(−|t|η) to an otherwise purely oscillatory force . If we absorb

this factor into the definition of all Fourier integrals,
∫
dt (F (t)e−t|η|)eiωt(· · · ) → ∫

dt F (t) (e−t|η|eiωt)(· · · ),
we arrive at the Fourier regularization mentioned above.
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� Conversely, the advanced correlation function C− has singularities above the real axis.

It is analytic in the lower half plane Im(z) ≤ 0. Notice that C+ and C− are connected

through complex conjugation,

C+(ω) =
[
C−(ω)

]∗
. (7.18)

� The time-ordered correlation function has singularities on either side of the real axis

(which makes it harder to analyze).

� The position of the singularities in the vicinity of the real axis contains important infor-

mation about the fundamental excitations of the system (see Fig. 7.4). For example,

consider the case where X̂1 = c†a and X̂2 = cb are one-particle creation and annihilation

operators (no matter whether bosonic or fermionic). In this case, Nα − Nβ ≡ ΔN = 1

(independent of the state indices α, β) and Eα − Eβ is of the order of the single-particle

energies of the system. (For a non-interacting system, Eα − Eβ strictly coincides with

the single-particle energies – exercise: why?) That is, the singularities of CT,+,− map out

the single-particle spectrum of the system. This can be understood intuitively by remem-

bering the meaning of the one-particle correlation function as the amplitude for creation

of a state |a〉 followed by the annihilation of a state |b〉 at some later time. It is clear

that the time Fourier transform of the amplitude, |a〉 t→ |b〉, becomes “large” when the

phase (∼ ωt) of the Fourier argument is in resonance with an eigenphase ∼ (Eα − Eβ)t

supported by the system. (If you do not find this statement plausible, explore the simple

example of a plane wave Hamiltonian.) Similarly, for a two-particle correlation function,

X̂1 ∼ c†acb, the energies Eα−Eβ describe the spectrum (the “energy cost”) of two-particle

excitations, etc. Notice that the single-particle spectrum can be continuous (in which case

the functions CT,+,− have cuts parallel to the real axis), or discrete (isolated poles).

� Once one of the correlation functions is known, all others follow straightforwardly from

a simple recipe: using the familiar Dirac identity,

lim
η↘0

1

x± iη
= ∓iπδ(x) + P

1

x
, (7.19)

Im z

Re z

singularities of C–

singularities of C–

pole
cut

Figure 7.4 Illustrating the singularities of advanced and retarded correlation functions in the com-
plex plane. The points denote poles and the lines branch cuts.
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where P is the principal part, it is a straightforward matter to show that (exercise!)

ReCT (ω) = ReC+(ω) = ReC−(ω), (7.20)

and

ImCT (ω) = ±ImC±(ω)×

⎧⎪⎪⎨⎪⎪⎩
coth

βω

2
, bosons,

tanh
βω

2
, fermions,

(7.21)

i.e. the information stored in the three different functions is essentially equivalent.

After our discussion of the real-time correlation functions, the analysis of the imaginary-time

function Cτ is straightforward. The imaginary-time analog of Eq. (7.16) reads

Cτ (τ) = −Z−1
∑
αβ

X1αβX2βαe
Ξαβτ

(
Θ(τ)e−βΞα + ζX̂Θ(−τ)e−βΞβ

)
. (7.22)

Inspection of this representation for positive and negative times shows that Cτ acquires the

periodicity properties of the operators X̂1,2:

Cτ (τ) = ζX̂Cτ (τ + β), τ < 0. (7.23)

Consequently Cτ can be expanded in a Matsubara Fourier representation just like a con-

ventional operator, Cτ (iωn) =
∫ β

0
dτCτ (τ)eiωnτ , where, depending on the nature of the

operators X̂1,2, ωn may be a bosonic or a fermionic Matsubara frequency. Applying this

transformation to the Lehmann representation (7.22), we obtain

Cτ (iωn) = Z−1
∑
αβ

X1αβX2βα

iωn + Ξαβ

[
e−βΞα − ζXe−βΞβ

]
. (7.24)

Our final task is to relate the four correlation functions defined through Eq. (7.17) and

(7.24) to each other. To this end, we define the “master function”

C(z) = Z−1
∑
αβ

X1αβX2βα

z + Ξαβ

[
e−βΞα − ζXe−βΞβ

]
, (7.25)

depending on a complex argument z. When evaluated for z = ω+, ω−, iωn, respectively, the

function C(z) coincides with C+, C−, Cτ . Further, C(z) is analytic everywhere except for

the real axis. This knowledge suffices to construct the relation between different correlation

functions that was sought. Suppose then we had succeeded in computing Cτ (iωn) = C(z =

iωn) for all positive Matsubara frequencies.17 Further, let us assume that we had managed

to find an analytic extension of C(z = iωn) → C(z) into the entire upper complex half plane

Im z > 0. The evaluation of this extension on the infinitesimally shifted real axis z = ω+ i0

then coincides with the retarded Green function C+(ω) (see figure below). In other words,

17 Keep in mind that, in practical computations of this type, we will not proceed through the Lehmann represen-
tation.
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To find C+(ω) we need to (i) compute Cτ (iωn) for all positive Matsubara

frequencies (e.g. by means of the thermal field integral) and then (ii) continue

the result down to the real axis, iωn → ω + i0.

ω + i0

z
ωn

The advanced Green function C− is obtained analogously, and by

analytic extension the thermal correlation function Cτ (iωn < 0), to

frequencies with a negative offset, ω − i0.

These statements follow from a theorem of complex function the-

ory stating that two analytic functions F1(z) and F2(z) coincide if

F1(zn) = F2(zn) on a sequence {zi} with a limit point in the domain

of analyticity. (In our case iωn → i∞ is the limit point.) From inspection of (7.25) we

already know that F1(iωn) ≡ C+(ω → iωn) coincides with F2(iωn) = Cτ (iωn). Thus any

analytic extension of Cτ must coincide with C+ everywhere in the upper complex half plane,

including the infinitesimally shifted real axis.

EXERCISE Writing z = ω ± iη, transform the spectral representation (7.25) back to the time

domain: C(t) = 1
2π

∫
dω e−iωtC(ω ± iη). Convince yourself that, for Im(z) positive (negative),

the temporal correlation function C(t) contains a Θ-function Θ(t) (Θ(−t)). (Hint: Make use

of Cauchy’s theorem.) Importantly, the presence of this constraint does not hinge on η being

infinitesimal. It even survives generalization to a frequency-dependent function η(ω) > 0. (For the

physical relevance of this statement, see below.) All that matters is that, for η > 0, the function

C(ω ± iη) is analytic in the upper (lower) complex half plane. This observation implies a very

important connection between analyticity and causality: temporal correlation functions

whose frequency representation is analytic in the upper (lower) complex half plane are causal

(anticausal). (A time-dependent function is called “(anti)causal” if it vanishes for (positive)

negative times.)

How is the continuation process, required to find the retarded correlation function, carried

out in practice? Basically, the answer follows from what was said above. If we know the

correlation function Cτ (iωn) for all positive Matsubara frequencies, and if that function

remains analytic upon substitution Cτ (iωn → z) of a general element of the full complex

half plane, the answer is simple: we merely have to substitute iωn → ω + i0 into our result

to obtain the retarded correlation function. Sometimes, however, we simply do not know

Cτ (iωn) for all positive frequencies. (For example, we may be working within an effective

low-energy theory whose regime of validity is restricted to frequencies ωn < ω∗ smaller than

some cut-off frequency.) In this case, we are in serious trouble. Everything then hinges on

finding a “meaningful” model function that can be extended to infinity and whose evaluation

for small frequencies ωn < ω∗ coincides with our result; there are no generally applicable

recipes for how to deal with such situations.

INFO As a special case of great practical importance, let us briefly explore the non-interacting

single-particle Green function, i.e. the single-particle correlation function X̂1 = ca, X̂2 =

c†a for a non-interacting system. (We assume that {|a〉} is an eigenbasis of the one-particle

Hamiltonian.) As expected, these correlation functions assume a particularly simple form. In
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the non-interacting case, the eigenstates |α〉 = |a1, a2, . . .〉 are symmetrical or antisymmetrical

combinations of single-particle eigenstates |ai〉. Their energy is Eα = εa1 +εa2 + · · · , where εa are

the single-particle energies. Using the fact that Eβ = Eα + εa (exercise: why?) one then verifies

that the correlation function acquires the simple form

C(z)| X̂1=ca

X̂2=c
†
a

≡ Ga(z) =
1

z − ξa
,

i.e. the partition function entering the definition of the general correlation function cancels

against the thermally weighted summation over |α〉 (check!). Notice that the thermal version

of this Green function, Ga(iωn) = (iωn − ξa)
−1, appeared previously as the fundamental build-

ing block of perturbation theory. This is, of course, no coincidence: within the formalism of

the field integral, the Green function appeared as the functional expectation value 〈ψ̄a,nψa,n〉0
taken with respect to the Gaussian non-interacting action. But this object is just the functional

representation of the operator correlation function considered above.

Building on this representation, it is customary to introduce a Green function operator

through the definition

Ĝ(z) ≡ 1

z + μ− Ĥ
.

By design, the eigenvalues of this operator – which are still functions of z – are given by the

correlation function Ga(z) above. Numerous physical observables can be compactly represented

in terms of the operator Green function. For example, using Eq. (7.19), it is straightforward to

verify that the single-particle density of states of a non-interacting system is obtained as

ρ(ε) = − 1

π
Im tr Ĝ+(ε), (7.26)

by taking the trace of the retarded Green function (operator).

To illustrate the procedure of analytic continuation, let us consider a few elementary

examples.

1. For the single-particle Green function (X̂1 = ca, X̂2 = c†a) of an elementary excitation

with energy εa, Ga(ωn) = (iωn−ξa)
−1, the continuation amounts to a mere substitution,

G+
a (ω) =

1

ω + i0− ξa
.

2. We have seen that quasi-particle interactions lead to the appearance of a – generally

complex – self-energy Σ(z): Ga(ωn) → (iωn − ξa − Σ(iωn))
−1, where we have simplified

the notation by suppressing the potential dependence of the self-energy on the Hilbert

space index a. Extension down to the real axis leads to the relation

G+
a (ω) =

1

ω+ − ξa − Σ(ω+)
, (7.27)

where ω+ ≡ ω + i0 and Σ(ω+) is the analytic continuation of the function Σ(z) to the

real axis. Although the specific structure of the self-energy depends on the problem under
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consideration, a few statements can be made in general. Specifically, decomposing the

self-energy into real and imaginary parts, we have

Re Σ(ω+) = +Re Σ(ω−), Im Σ(ω+) = − Im Σ(ω−) < 0. (7.28)

In words, the self-energy function has a cut on the real axis. Upon crossing the cut, its

imaginary part changes sign. This important feature of the self-energy can be understood

from different perspectives. Formally, it follows from Eq. (7.18) relating the retarded

and advanced Green functions through complex conjugation. More intuitively, the sign

dependence of the imaginary part can be understood as follows. Suppose we start from

a non-interacting imaginary-time formalism and gradually switch on interactions. The

(Landau) principle of adiabatic continuity implies that nowhere in this process must the

Green function – alias the propagator of the theory – become singular. This implies,

in particular, that the combination i(ωn − Im Σiωn) must not become zero, lest the

dangerous real axis of the energy denominator be touched. The safeguard preventing the

vanishing of the imaginary part of the energy denominator is that −Im Σ and ωn have

the opposite sign. Of course, this feature can be checked order by order in perturbation

theory. Decomposing the self-energy into real and imaginary parts, Σ = Σ′ + iΣ′′, and
transforming G+(ω) back to the time domain we obtain

G+(t) =

∫
dω

2π
e−iωtG+(ω) ≈ e−it(ξa+Σ′)+tΣ′′

Θ(t),

where we have made the (over)simplifying assumption that the dependence of the self-

energy operator on ω is negligible: Σ(ω) ≈ Σ.

EXERCISE Check the second equality above.

If we interpret G+(t) as the amplitude for propagation in the state |a〉 during a time

interval t, and |G+|2 as the associated probability density, we observe that the probability

to stay in state |a〉 decays exponentially, |G+|2 ∝ e2tΣ
′′
, i.e. 2Σ′′ ≡ − 1

τ can be identified

as the inverse of the effective lifetime τ of state |a〉. The appearence of a finite lifetime

expresses the fact that, in the presence of interactions, single-particle states no longer

represent stable objects, but rather tend to decay into the continuum of correlated many-

body states. This picture will be substantiated in Section 7.3.1 below.

3. Let us apply Eq. (7.26) to compute the BCS quasi-particle DoS of a superconductor.

In Section 6.4 we saw that the thermal Gor’kov Green function of a superconductor with

spatially constant real order parameter is given by Ĝ(iωn) = [iωn− (Ĥ −μ)σ3−Δσ1]
−1.

Switching to an eigenrepresentation and inverting the Pauli matrix structure, we obtain

− 1

π
tr Ĝ(iωn) =

1

π

∑
a

tr

[
iωn + ξaσ3 +Δσ1

ω2
n + ξ2a +Δ2

]
=

2iωn

π

∑
a

1

ω2
n + ξ2a +Δ2

.

Next, performing our standard change from a summation over eigenenergies to an inte-

gral, we arrive at

− 1

π
tr Ĝ(iωn) �

2iωn

π
ν

∫
dξ

1

ω2
n + ξ2 +Δ2

=
2iωnν√
ω2
n +Δ2

,
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where, as usual, ν denotes the normal density of states at the Fermi level. This is the

quantity we need to continue to real frequencies. To this end we adopt the standard

convention whereby the cut of the square root function is on the positive real axis, i.e.√
−r + i0 = −

√
−r − i0 = i

√
|r| for r positive real. Then,

− 1

π
tr Ĝ(iωn → ε+) =

2ε+ν√
−ε+2 +Δ2

� 2εν√
−ε2 − i0 sgn (ε) + Δ2

,

where we anticipate that the infinitesimal offset of ε in the numerator is irrelevant (trace

its fate!) and, making use of the fact that, for ε approaching the real axis, only the sign

of the imaginary offset matters: (ε+ i0)2 � ε2 + 2i0ε � ε2 + 2i0sgnε. Finally, taking the

imaginary part of that expression, we arrive at the standard BCS form

ν(ε) = Im
2εν√

−ε2 − i0 sgn(ε) + Δ2
=

⎧⎨⎩0, |ε| < Δ,
2|ε|ν√
ε2 −Δ2

, |ε| > Δ.

7.3.1 Sum rules and other exact identities

In the next section we apply the analytical structures discussed above to construct a powerful

theory of real time linear response. However, before doing so, let us stay for a moment

with the formal Lehmann representation to disclose a number of exact identities, or “sum

rules,” obeyed by the correlation functions introduced in the previous section. Admittedly,

this addition to our discussion above does not directly relate to the formalism of linear

response, and readers wishing to proceed in a more streamlined manner are invited to skip

this section at first reading.

In fact, the formulae we are going to collect are not specific to any particular context and

that is precisely their merit: identities based on the analytical structure of the Lehmann

representation are exact and enjoy general applicability. They can be used (a) to obtain full

knowledge of a correlation function from fragmented information – e.g. we saw in Eq. (7.20)

and (7.21) how all three real time correlation functions can be deduced once any one of them

is known – and, equally important, (b) to gauge the validity of approximate calculations.

The violation of an exact identity within an approximate analysis is usually an indication

of serious trouble, i.e. such deviations mostly lead to physically meaningless results.

The spectral (density) function

We begin by considering an object that carries profound physical significance in its own

right, especially in the area of strongly correlated fermion physics, i.e. (−2 times) the imag-

inary part of the retarded correlation function,

A(ω) ≡ −2ImC+(ω). (7.29)
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Equation (7.29) defines the spectral function or spectral density function. Using

Eq. (7.19) and the Lehmann representation (7.17) it is straightforward to verify that it has

the spectral decomposition

A(ω) = 2πZ−1
∑
αβ

X1αβX2βα

[
e−βΞα − ζX̂e−βΞβ

]
δ(ω + Ξαβ). (7.30)

INFO To understand the physical meaning of the spectral function let us consider the

case where X̂1,2 are single-particle creation/annihilation operators, X̂1 = ca, X̂2 = c†a. (We

assume that the non–interacting part Ĥ0 of the Hamiltonian Ĥ0 + V̂ is diagonalized in the

basis {|a〉}.) For a non-interacting problem, V̂ = 0, it is then straightforward to show that

Aa(ω) = 2πδ(ω− ξa), i.e. the spectral function is singularly peaked at the single-particle energy

(measured from the chemical potential) of the state |a〉. Here, the subscript “a” indicates that

we are dealing with a spectral function defined for a pair of one-body operators ca, c
†
a.

Heuristically, the singular structure of Aa(ω) can be understood by observing that, in the

non-interacting case, the state c†a|α〉 obtained by adding a single particle |a〉 to the many-particle

state |α〉 is, again, an eigenstate of the system. In particular, it is orthogonal to all states by

itself, whence the eigenstate summation over |β〉 contains only a single non-vanishing term. We

say that the “spectral weight” carried by the (unit-normalized) state c†a|α〉 is concentrated on a

single eigenstate of the system.

What happens to this picture if interactions are restored? In this case, the addition c†a|α〉 of

a single-particle state to a many-body eigenstate will, in general, no longer be an eigenstate of

the system. In particular, there is no reason to believe that this state is orthogonal to all but

one (N + 1) particle states |β〉. We have to expect that the spectral weight carried by the (still

unit-normalized) state c†a|α〉 gets distributed over many, potentially a continuum, of states |β〉.
It is instructive to explore the consequences of this phenomenon in the representation (7.27)

where the effect of interactions has been lumped into a self-energy operator Σ. Taking the

imaginary part of this expression, we find

Aa(ω) = −2
Σ′′(ω)

(ω − ξa − Σ′(ω))2 + (Σ′′(ω))2
,

where Σ′ and Σ′′ denote the real and imaginary part of the self-energy, respectively, and we

have neglected the infinitesimal imaginary offset of ω+ in comparison with the finite imaginary

contribution iΣ′′. The result above suggests that the net effect of interactions is an effective

shift of the single-particle energy εa → εa + Σ(ω) by the real part of the self-energy operator;

interactions lead to a distortion of the single-particle energy spectrum, an effect that follows, for

example, from straightforward perturbative reasoning. More importantly, the δ-function obtained

in the non-interacting case gets smeared into a Lorentzian (see Fig 7.5). In a sense, the spectral

weight carried by the many-body states C+
a |α〉 is distributed over a continuum of neighboring

states, wherefore the spectral function loses its singular character. The width of the smearing

interval is proportional to the imaginary part of the self-energy and, therefore, to the inverse of

the lifetime τ discussed in the previous section.

Notice that the smeared spectral function still obeys the normalization condition,
∫

dω
2π

Aa(ω) =

1, as in the non-interacting case.18 This suggests an interpretation of A as a probability measure

describing in what way the spectral weight carried by the state c†a|α〉 is spread out over the

18 Strictly speaking, we can integrate A only if the variance of Σ(ω) over the interval [ξa +Σ′ −Σ′′, ξa +Σ′ +Σ′′]
in which the Lorentzian is peaked is negligible (but see below).
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continuum of many-body states |β〉. To put that interpretation onto a firm basis, not bound to the

self-energy representation above, we consider the spectral decomposition (7.30). The positivity

of all terms contributing to the right-hand side of the equation implies that Aa(ω) > 0, a

condition necessarily obeyed by any probability measure. To verify the general validity of the

AV

ω ω

εa

Figure 7.5 Illustrating the meaning of the spectral function. For zero interaction,
V = 0, the spectral weight is singularly concentrated on the single particle energies
of the system. As interactions are switched on, the spectral weight is distributed
among a continuum of states concentrated around a shifted center point. The width
of the distribution increases with growing interaction strength. Dark solid curve:
(schematic) shape of the spectral function if the self-energy carries a pronounced ω
dependence.

unit-normalization condition one may integrate Eq. (7.30) over ω:∫
dω

2π
Aa(ω) = Z−1

∑
αβ

caαβc
†
aβα

[
e−βΞα − ζce

−βΞβ

]

= Z−1

⎛
⎝∑

α

〈α
∣∣∣cac†a∣∣∣α〉e−βΞα − ζc

∑
β

〈β
∣∣∣c†aca∣∣∣β〉e−βΞβ

⎞
⎠

= Z−1
∑
α

e−βΞα〈α| cac†a − ζcc
†
aca︸ ︷︷ ︸

[ca,c
†
a]ζc=1

|α〉 = Z−1
∑
α

e−βΞα

︸ ︷︷ ︸
1

= 1.

Positivity and unit-normalization of Aa(ω) indeed suggest that this function measures the dis-

tribution of spectral weight over the many-body continuum.

To further substantiate this interpretation, consider the integral of the spectral function

weighted by the Fermi- or Bose-distribution function:∫
dω

2π
nF/B(ω)Aa(ω) = Z−1

∑
αβ

caαβc
†
aβα

[
e−βΞα − ζce

−βΞβ

] ∫
dω δ(ω + Ξαβ)

1

eβω − ζc

= Z−1
∑
αβ

caαβc
†
aβαe

−βΞβ

[
eβΞβα − ζc

] 1

eβΞβα − ζc

= Z−1
∑
β

e−βΞβ 〈β
∣∣∣c†aca∣∣∣β〉 = 〈n̂a〉,

which tells us that, if we weight the spectral density function of a single-particle state |a〉 with the

thermal distribution function, and integrate over all frequencies, we obtain the total occupation

of that state. The relation ∫
dω

2π
nF/B(ω)Aa(ω) = 〈n̂a〉, (7.31)
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indeed states that Aa is a distribution function describing in what way the spectral weight of

the state c†a|α〉 spreads over the continuum of exact eigenstates.

A number of exact identities involving correlation functions are formulated in terms of

the spectral function. We begin by showing that the spectral function carries the same

information as the correlation function itself. (In view of the fact that A is obtained by

removing the real part of C, this result might come as a surprise.) Indeed, starting from

A(ω) = i(C+(ω)− C−(ω)), one may confirm the relation

C(z) =

∫ ∞

−∞

dω

2π

A(ω)

z − ω
. (7.32)

Note that the first (second) term contributing to the right-hand side of the definition (a) is

analytic in the upper (lower) half of the complex ω-plane and (b) decays faster than ω−1

for |ω| → ∞. For Im z > 0, the theorem of residues then implies that the C−-term does

not contribute to the integral. (Without enclosing singularities, the integration contour can

be closed in the lower half plane.) As for the C+contribution, one may integrate over an

infinite semicircle γ closing in the upper half plane to obtain∫ ∞

−∞

dω

2π

A(ω)

z − ω

Im z>0
= − 1

2πi

∫
γ

dω
C+(ω)

z − ω
= C(z), (7.33)

where the second identity relies on the analyticity of C+ in the upper half plane. The case

Im z < 0 is treated analogously. We thus find that knowledge of the imaginary part suffices

to reconstruct the full correlation function. (Notice, however, that the identity (7.32) is

heavily “non-local”; i.e. we need to know the spectral function for all ω, including ω → ±∞,

to reconstruct the correlation function at a given value of z.)

Considering the second equality in Eq. (7.33) and setting z = ω+, one obtains

C+(ω) = − 1

2πi

∫
dω′ C+(ω′)

ω − ω′ + i0
.

Representing the denominator under the integral in terms of the Dirac identity (7.19), and

collecting terms, the identity assumes the form

C+(ω) =
1

πi

∫
dω′C+(ω′)P

1

ω′ − ω
.

It is customary to consider real and imaginary parts of this relation separately, whence one

arrives at the celebrated Kramers–Kronig or dispersion relations:

Re C+(ω) =
1

π

∫
dω′ Im C+(ω′)P

1

ω′ − ω
,

Im C+(ω) = − 1

π

∫
dω′ Re C+(ω′)P

1

ω′ − ω
.

(7.34)

INFO To appreciate thephysical content of theKramers–Kronig relations, let us anticipate

our discussion below and note that the scattering amplitude of particles incident on a medium at
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energyω is proportional to the retardedGreen functionC+(ω). Taking as an example the scattering

of electromagnetic radiation from a solid state sample, the Kramers–Kronig relations then tell us

that the real part of the scattering amplitude – the index of refraction – is proportional to the imagi-

nary part – the index of absorption – integrated over all energies, i.e. the Kramers–Kronig relations

establish a connection between the two seemingly unrelated physical mechanisms of absorption and

refraction.Otherareasofapplicationofdispersionrelations includehighenergyphysics, optics (both

classical and quantum), andmanymore.

In the next section we discuss some concrete applications of the Kramers–Kronig relations

in many-body physics.

The dielectric function: a case study

Equation (7.34) represents a “master identity” from which numerous other exact relations

can be obtained. As an example of the derivation and usefulness of these identities, let

us consider the frequency- and momentum-dependent dielectric function ε(q, ω), i.e. the

object describing the polarization properties of a medium in the presence of an electromag-

netic field. In Section 5.2 we explored the dielectric function within the framework of the

RPA approximation. However, as we are about to discuss exact relations, we should now be

a bit more ambitious than that, i.e. we should base our discussion on a more generally valid

representation of the dielectric function. Indeed, it is a straightforward exercise in linear

response to show that (see Problem 7.6.2)

ε(q, ω) =

[
1− V0(q)

Ld

∫
dτ eiωmτ 〈n̂(q, τ)n̂(−q, 0)〉c

∣∣∣∣
iωm→ω+

]−1

, (7.35)

where V0(q) = 4πe2/q2 is the bare Coulomb potential, 〈n̂n̂〉c denotes the connected thermal

average of two density operators n̂(q, τ) = c†q(τ)cq(τ), and iωm → ω+ indicates symbolically

the analytical continuation to real frequencies. Heuristically, Eq. (7.35) can be understood

by noting that 1/ε = Veff/V0 measures the ratio between the effective potential felt by a test

charge in a medium and the vacuum potential. The difference between these two quantities

is due to the polarizability of the medium which, in turn, is a measure of its inclination to

build up charge distortions δ〈n̂〉 in response to the action of the potential operator ∼
∫
dV0n̂.

In linear response theory,19 δ〈n̂〉 is given by the kernel
∫
d〈n̂n̂〉V0, i.e. the second term in

Eq. (7.35).

We thus observe that the (inverse of the) dielectric function is determined by the retarded

correlation function C+(q, ω) with X̂1 = X̂2 = n̂. (For obvious reasons, this function is

called the retarded density–density response function. It appears as an important

building block in many areas of many-body physics.) Building on the relation

ε(q, ω)−1 = 1− V0(q)

Ld
C+(q, ω), (7.36)

19 The linear response approximation is quite appropriate here because the standard definition of the dielectric
function ε = limV0→0(V0/Veff ) implies an infinitesimally weak external perturbation.
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we next show how analyticity arguments and certain limit relations can be employed to

derive strong test criteria for the dielectric functions. We first apply the Kramers–Kronig

relation to ε−1 − 1 ∝ C+ to obtain

Re ε(q, ω)−1 − 1 =
1

π

∫ ∞

−∞
dω′ Im ε (q, ω′)−1 1

ω′ − ω
.

Using the fact that Im ε(q, ω′)−1 = −Im ε (−q,−ω′)−1 = −Im ε (q,−ω′)−1, where the first

identity holds for the Fourier transform of arbitrary real-valued functions and the second

follows from real space symmetry, the integral can be brought to the compact form

Re ε(q, ω)−1 = 1 +
2

π

∫ ∞

0

dω′ Im ε(q, ω′)−1 ω′

ω′2 − ω2
. (7.37)

We next consider this relation for the special case ω = 0 and |q| → 0. The probing of this

limit is motivated by the fact that the behavior of the static dielectric function ε(q, ω = 0)

is significantly more simple to analyze than that of the generic function ε(q, ω). The reason

is, of course, that a static external field does not prompt any dynamical response of the

system. Indeed, one can show on general grounds (see the Info block below) that, in the

static limit,

ε(q, 0)−1 = (1 + 4πν|q|−2)−1 |q|→0−→ 0. (7.38)

r

–Veff

E
μ

Substitution of this result into Eq. (7.37) then leads to

the identity

lim
q→0

∫ ∞

0

dω
Im ε (q, ω)−1

ω
= −π

2
. (7.39)

Equation (7.39) is a typical example of a sum rule. For

the derivation of a few more sum rules to be obeyed by

the dielectric function see, e.g., the text by Mahan.20

INFO To understand the behavior of the dielectric function in the static limit, imagine a

system of charged particles subject to a potential V0(r). Since V0 is static, it does not drive the

system out of equilibrium. In particular, all fermionic quasi-particle states21 are filled up to a

uniform chemical potential μ. This, however, necessitates a redistribution of charge. The reason

is that the potential shifts the energies εa of quasi-particle states |a〉 according to the relation

εa → εa − Veff(r), where Veff is the effective potential seen by the particles. (In order for this

relation to make sense, the typical spatial extent of a quasi-particle must, of course, be smaller

than the modulation range of V (r).) For low temperatures, states will be filled up to an energy

μ−Veff(r) (see the figure). We can make this argument quantitative by introducing a distribution

function neff(ε, r) ≡ nF(ε− Veff(r)) locally controlling the occupation of quasi-particle states. In

20 G. Mahan, Many Particle Physics (Plenum Press, 1981).
21 We assume that we are dealing with a Fermi liquid, i.e. that we can think of the constituents of the system as

fermionic quasi-particles, in the spirit of Landau’s theory.
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a linear approximation, the induced charge density screening the external potential is then given

by

ρind(r) = − 1

Ld

∑
a

(neff(εa, r)− nF(εa)) = −ν

∫ ∞

−∞
dε(neff(ε, r)− nF(ε))

= −ν

∫ ∞

−∞
dε(nF(ε− Veff(r))− nF(ε))

≈ ν

∫ ∞

−∞
dε ∂�nF(ε)Veff(r) = −νVeff(r).

To compute the difference between the external and the effective potential, respectively, we

assume that the former had been generated through some charge density ρ0: −∂2V0 = 4πρ0, or

V0(q) = 4πq−2ρ0(q). In contrast, the full potential Veff will be generated by a charge distribution

ρeff comprising the external charge and the screening charge, Veff(q) = 4πq−2(ρ0(q)+ρind(q)) =

V0(q)− 4πνq−2Veff(q). We thus find that

ε(q, 0) =
V0(q)

Veff(q)
= 1 + 4πν|q|−2,

as stated above. Indeed, we had obtained this result, generally known as Thomas–Fermi

screening, long before within the more microscopic framework of the RPA. In contrast, the

merit of the present argument is that it is not based on any specific approximation scheme.22

While Eq. (7.39) was for the specific example of the dielectric function, the general con-

struction recipe has much wider applicability: (a) a quantity of physical interest (here, the

dielectric function) is represented in terms of a retarded response function which then (b) is

substituted into a Kramers–Kronig-type relation. This produces a frequency non-local con-

nection between the response function at a given frequency to an integral (“sum”) over all

other frequencies. (c) This integral is evaluated for a reference frequency for which our ref-

erence quantity is generally known (here, ω → 0). This produces an integral relation which

should hold under very general conditions. As mentioned at the beginning of this section,

sum rules play an important role as test criteria for physical approximation schemes.

Experimental access to the spectral density function

Earlier, we have seen that the spectral density function contains highly resolved micro-

scopic information about a many-body system. But how do we access this information other

than by theoretical model calculation? Interestingly, it turns out that the spectral function

is not only central to theoretical analysis, but also directly related to a key experimen-

tal observable, the inelastic scattering cross-section. To appreciate this connection,

consider again the prototypical setup of a scattering experiment shown in Fig. 7.1. The

frequency- and angle-resolved scattering cross-section is a measure of the rate of transi-

tions from the incoming state (ε,k) into an outgoing state (ε′,k′). To give the problem a

quantum mechanical formulation, we first note that the full Hilbert space H of the system

is the direct product of the Fock space, F , of the target system and the single-particle

space H1 of the incoming particle species, H = F ⊗ H1. We assume that the interaction

22 However, the argument is a bit phenomenological and does rely on the Fermi liquid doctrine.
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between the incoming particle and the constituent particles of the system is governed by

an interaction Hamiltonian whose conventional (first quantized) real space representation

reads Ĥint =
∑

i V (r̂i − r̂). Here, r̂i are the positions of the particles of the system and r̂

is the position of the incoming particle. For simplicity we assume that the interaction is

point-like, i.e. V (r̂− r̂′) = Cδ(r̂− r̂′), where C is some constant. (The generalization to more

general interaction potentials is straightforward.) The second quantized representation of

the interaction operator then reads

Ĥint = C

∫
ddr δ(r̂− r)c†(r)c(r), (7.40)

where r̂ retains its significance as a single-particle operator acting in the space H1. An

alternative and, for all that follows, more convenient representation is given by

Ĥint = C

∫
ddr

∫
ddq

(2π)d
eiq(r̂−r)c†(r)c(r) = C

∫
ddq

(2π)d
eiq·r̂ρ̂(q),

where we have made use of a plane wave representation of the δ-function, δ(r) =∫
(ddq/(2π)d)exp(iq · r), and ρ̂(q) ≡

∫
dr e−iq·rc†(r)c(r) describes density modulations

in the target system of characteristic momentum q. Assuming, for simplicity, that the

sample is kept at zero temperature (i.e. it is in its ground state), a scattering process

of first order in the interaction Hamiltonian is described by the transition amplitude

A(q) = 〈β,k − q|Ĥint|0,k〉, where |0〉 represents the ground state of the system, and |β〉
may be any exact eigenstate of the target system.23 Substitution of the representation of

the interaction Hamiltonian above brings the transition amplitude to the form

A(q) = 〈β,k− q|Ĥint|0,k〉 ∝ 〈β|ρ̂q|0〉. (7.41)

A first conclusion to be drawn from Eq. (7.41) is that the scattering amplitude probes

density modulations in the bulk system. According to Fermi’s Golden Rule, the transition

rate associated with the scattering amplitude A(q) is given by

P(q) = 2π
∑
β

|〈β|ρ̂(q)|0〉|2δ(ω − Ξβ0), (7.42)

where Ξβ0 = Eβ − E0 > 0 is the excitation energy of |β〉 above the ground state and

the δ-function enforces energy conservation. The summation over β reflects the fact that

only the beam of scattered particles is observed while the final state of the target remains

unspecified.

23 Using the nomenclature of Fig. 7.1, one might identify |0〉 with a ground state of zero collective momentum
K = 0 and |β〉 = |K′ = q〉 with a state that has absorbed the momentum of the scattered particle. The present
discussion is more general in that it does not assume that the target eigenstates carry definite momentum.
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It is instructive to reformulate Eq. (7.42) in a number of different ways. Representing the

δ-function as a time integral, 2πδ(ω) =
∫
dt exp(+iωt), one obtains

P(q) =

∫
dt

∑
β

|〈β|ρ̂(q)|0〉|2e+it(ω−Ξβ)

=

∫
dt e+iωt

∑
β

〈0|ei(Ĥ−μN̂)tρ̂(−q)e−i(Ĥ−μN̂)t|β〉〈β|ρ̂(q)|0〉

=

∫
dt e+iωt〈0|ei(Ĥ−μ̂N)tρ̂(−q)e−i(Ĥ−μN̂)tρ̂(q)|0〉 =

∫
dte+iωt〈0|ρ̂(−q, t)ρ̂(q, 0)|0〉.

This clearly illustrates the connection between the observable scattering rate and the micro-

scopic characteristics of the system, i.e. the rate P(q, ω) is a measure of the dynamical

propagation of density modulations of wavelength q at time scales ∼ ω−1.

To establish the connection to the previously developed apparatus of response functions,

we introduce the abbreviation ρ̂(q)αβ = 〈α|ρ̂(q)|β〉 and reformulate Eq. (7.42) as

P(q) = −2 Im
∑
β

ρ(q)β0ρ(−q)0β
ω+ + Ξ0β

= −2 lim
T→0

ImZ−1
∑
αβ

ρ(q)βαρ(−q)αβe
−βΞα

ω+ + Ξαβ

= −2 lim
T→0

ImZ−1
∑
αβ

ρ(q)βαρ(−q)αβ(e
−βΞα − e−βΞβ )

ω+ + Ξαβ

= −2 lim
T→0

ImC+(ω) = A(q, ω),

where A(q, ω) denotes the spectral density function evaluated for the density operators

X̂1 = ρ̂(q), X̂2 = ρ̂(−q). Here, we have made use of the fact that, for T → 0, the Boltzmann

weight exp(−βΞα) projects onto the ground state. Similarly, for ω > 0, the contribution

exp(−βΞβ) vanishes (exercise: why?).

We thus note that information about the scattering cross-sections is also carried by a

retarded real time response function. More specifically:

The inelastic scattering cross-section for momentum transfer q and energy

exchange ω is a direct probe of the spectral density function A(q, ω).

Although the derivation above did not exactly follow the linear response scheme, it had

the same weak coupling perturbative flavor. (The golden rule is a first-order perturbative

approximation!) While we derived our formula for the particular case of a short-range density

coupling, it is clear that a more general beam–target coupling mechanism would lead to an

expression of the same architecture, i.e. a suitably defined retarded response function.

7.4 Electromagnetic linear response

In the previous two sections we have assembled everything needed to compute the response

of physical systems to moderately weak perturbations. We have learned how to linearize

the response in the strength of the generalized force and to extract real time dynamical
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information from imaginary time data. In this section we will illustrate the functioning of

this formalism on undoubtedly its most important application, the response to a general

electromagnetic field.

The general setup of the problem is easily formulated: suppose a system of charged parti-

cles has been subjected to an electromagnetic signal represented through a scalar potential

φ(r, t) and/or a vector potential A(r, t). To simplify the notation, let us represent the per-

turbation through a (1+ d)-dimensional24 potential Aμ(x) = (φ(x),A(x)), where x ≡ (t, r)

is a (1 + d)-dimensional space-time argument vector. The system will respond to this per-

turbation by a redistribution of charge, ρ(x) ≡ 〈ρ̂(x)〉, and/or the onset of current flow

j(x) ≡ 〈̂j(x)〉. Confining charge and vectorial current into a (1+ d)-dimensional generalized

current vector jμ = (ρ, j), our task is to identify the linear functional j = K[A] + O(A2)

relating the current to its driving potential. Written more explicitly,

jμ(x) =

∫
t′<t

dx′ Kμν(x, x
′)Aν(x′), (7.43)

where the condition t′ < t indicates that the response is retarded. To compute the elements

of the response tensor, we proceed according to the general recipe constructed in the preced-

ing sections: we first employ the general formalism to derive the imaginary-time response

K(r, r′; iωn), and then continue to real frequencies, iωn → ω + i0.

However, before formulating this programme in detail, let us derive two fundamental

constraints to be fulfilled by the kernel K. Firstly, a gauge potential Aμ = ∂μf (f is a

function) cannot drive a physical current. Substituting this condition into Eq. (7.43), we

find

0
!
=

∫
t′<t

dx′ Kμν(x, x
′)∂νf(x′) = −

∫
t′<t

dx′ (∂ν
x′Kμν(x, x

′))f(x′).

Since f is arbitrary one may conclude that 0 = Kμν

←
∂ν where the arrow indicates that

the derivative acts from the right. Secondly, current conservation demands ∂μjμ = 0 or,

transcribed to Eq. (7.43), 0
!
=

∫
t′<t

dx′ ∂μ
xKμν(x, x

′)Aν(x′). Due to the arbitrariness of Aμ,

this condition can only be generally valid if
→
∂μ Kμν = 0. Summarizing,

Gauge invariance and particle number conservation demand the identity
→
∂μ Kμν = Kμν

←
∂ν= 0.

We next turn to the derivation of the linear response kernel. Our starting point is an

observation made already in Chapter 1 (and several times thereafter), namely the fact that

24 To not unnecessarily exclude important applications of the formalism to effectively two- or one-dimensional
problems, the dimensionality of space is left unspecified.
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the coupling of matter to the classical electromagnetic field is described by the relation25

jμ =
δSc[A]

δAμ
, (7.44)

where the subscript “c” indicates that only the part of the action that couples matter to

the field (but not the background action of the field) is differentiated. In this expression we

are back to a Euclidean metric vμwμ ≡ v0w0 + v ·w (on account of the definition, j0 ≡ iρ,

A0 ≡ iφ of imaginary time current and vector potential, respectively). The additional i

appearing in this convention mirrors the i of the temporal component of the imaginary-time

vector (t, r) → (−iτ, r). Notice, however, that we are merely changing conventions, i.e. both

the imaginary- and the real-time action contain the invariant contribution −ρφ + j · A.

To keep the notation simple, we will not indicate the difference between imaginary-time

and real-time vectors explicitly; the appropriate convention is determined by the context in

which we are operating.

This appealingly simple structure (7.44) is all we need to write down a general expression

for the linear response kernel. Comparison with Section 7.2.1 shows that F = F ′ = Aμ,

i.e. the generalized force, F ′, and the auxiliary “force” F used to generate the expectation

value of ĵ by differentiation are both given by Aμ. Equation (7.6) then tells us that

Kμν(x, x
′) = Z−1 δ2

δAμ(x) δAν(x′)
Z[A]

∣∣∣∣
A=0

, (7.45)

which is one of the most important relations of microscopic response theory. Notice that,

owing to the interchangeability of the two derivatives, Kμν(x, x
′) = Kνμ(x

′, x). This sym-

metry in turn implies that – an observation repeatedly made before – gauge invariance,

Kμν

←
∂ν= 0, and particle number conservation,

→
∂μ Kμν = 0, represent different sides of the

same coin. Equation (7.45) is a very general, but also very formal, result. To give it some

meaning, it is instructive to evaluate the two derivatives for a few specific functionals Z[A],

as described in the next section.

Electromagnetic response of the microscopic theory

As a particularly important example, let us consider the microscopic action of a Fermi or

Bose system in the presence of an electromagnetic field. Ignoring the coupling of the field

to the spin degrees of freedom,

S[ψ̄, ψ,A] =

∫
dx ψ̄σ

(
∂τ + φ+

1

2m
(−i∇−A)2 − μ+ V0

)
ψσ + Sint[ψ̄, ψ],

25 You may ask yourself why we use the relation (a) jμ = δAμSc[A] instead of a direct representation of linear

coupling (b) Sc[A] =
∫
jμAμ + . . . The reason is that in some prominent cases – the microscopic theory of

charged particles discussed in Section 7.4 being the most prominent example – the current jμ = jμ[A] depends

on A by itself. This means that A will enter the action non-linearly (viz. by a “diamagnetic term” ∼ A2) and
this in turn implies that (a) ceases to be a faithful representation of the more general (b). However, our theory
of linear response is based on derivative operations such as (b) anyway and the above complication does not
pose a significant problem.
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where V0 denotes a (field-independent) potential. With A0 = iφ, Ai = (A)i, and

ĵA0 = iρ̂ = iψ̄σψσ, ĵAi = (̂j)i =
1

2m
ψ̄σ(−i

↔
∂i +Ai)ψσ, (7.46)

where f
↔
∂i g ≡ f∂ig − (∂if)g, we have ĵAμ = δ

δAμ
S[A] and the notation jA hints at

the important fact that the current itself depends on the vector potential. Application of

Eq. (7.45) then gives

Kμν(x, x
′) = Z−1 δ2

δAμ(x) δAν(x′)

∣∣∣∣
A=0

∫
D(ψ̄, ψ) e−S[ψ̄,ψ,A]

= −Z−1 δ

δAν(x′)

∣∣∣∣
A=0

∫
D(ψ̄, ψ) ĵAμ (x) e

−S[ψ̄,ψ,A]

= 〈−δ(x− x′)δμν ∂Aμ(x)ĵ
A
μ (x) + ĵAμ (x)ĵ

A
ν (x

′)〉
∣∣∣
A=0

,

where the angular brackets denote functional averaging. Setting A = 0, one obtains

Kμν(x, x
′) = −〈ρ̂(x)〉

m
δ(x− x′)δμν(1− δμ0) + 〈ĵpμ(x)ĵpν (x′)〉. (7.47)

The first term contributing to the response kernel is known as the diamagnetic term.

Indeed, tracing back through the derivation, one discovers that this term originates from

the diamagnetic contribution ∼ A2 to the Hamiltonian. Conversely, ĵp ≡ ĵ
∣∣
A=0

is called

the paramagnetic contribution to the current operator. The functional expectation value

∼ 〈ĵpĵp〉 defines the paramagnetic term.

Notwithstanding its unappealing structure, Eq. (7.47) represents a strong result which

encompasses virtually all aspects of electromagnetic linear response.26 For example, the

diagonal vectorial components Kii, i = 1, 2, . . . , d, of the response tensor describe the lon-

gitudinal conductivity of the system (see Section 7.4.1). In cases where a magnetic field

is present, the off-diagonal components Ki�=j measure the Hall conductivity. The tem-

poral components K00 describe the density response of the system, a feature that is of

importance, for example, in the analysis of scattering data, etc.

Electromagnetic response of effective theories

In cases where we are operating on a level beyond the microscopic description, i.e. within

the framework of an effective low-energy theory, the structure of the response tensor may

differ from Eq. (7.47). To identify the “effective” response tensor, we need to carry out a

canonical two-step programme: (i) identify the coupling of the electromagnetic potential to

the relevant degrees of freedom (in cases where one has not kept track of the field dependence

from the very beginning, it usually suffices to minimally couple the field, i.e. to introduce

the components Aμ so as to make the action gauge invariant); (ii) perform the two-fold

derivative Eq. (7.45).

26 Except for spin-related phenomena.
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We illustrate the procedure on a familiar example, the phase action of the BCS

superconductor,

S[θ] =

∫
dx

[
ν(∂τθ)

2 +
ns

2m
(∇θ)2

]
. (7.48)

Under a gauge transformation induced by some function f(x), ∂μθ → ∂μθ + ∂μf , i.e. the

gauge invariant extension of the action reads (cf. Eq. (6.34)) S[θ,A] =
∫
dx [ν(∂τθ − φ)2 +

ns

2m (∇θ −A)2]. Differentiating this result with respect to the components Ai, one obtains

Kij(x, x
′) = −ns

m

[
δij −

ns

m
〈∂iθ(x)∂jθ(x′)〉

]
. (7.49)

EXERCISE Evaluate the correlator 〈∂iθ ∂jθ〉 to show that the conductivity σii(q = 0, ω) diverges

in the limit ω → 0. The divergence of the conductivity can be traced back to the fact that,

in a superconductor, there is no cancellation between diamagnetic and paramagnetic responses.

Compute the response of the system to a static magnetic field. Show that, in the London gauge

∇ · A = 0, current and vector potential are proportional to each other, j ∝ A. Recall (cf.

Section 6.4) that this result, in combination with the Maxwell equation ∇ × H = 4πj, implies

the Meissner effect.

7.4.1 Longitudinal conductivity of the disordered electron gas

Equations (7.47) and (7.49) exemplify the structure of the response tensor after the master

formula (7.45) has been applied. However, to obtain a concrete result for the conductivity,

say, one must evaluate the two-(〈ρ̂〉) or four-(〈ĵĵ〉) point correlation functions appearing in

these expressions. Of course, the details of this last step of the program depend sensitively

on the microscopic structure of the theory under consideration, i.e. no universally applicable

computational recipe can be formulated. Notwithstanding these differences in details, a

number of large-scale structural elements are recurrent in the mathematical analysis of

the current–current correlation functions of microscopic response theory. To illustrate these

common structures, let us consider an example that is of considerable importance in its own

right, namely the longitudinal AC conductivity of the electron gas.

The AC conductivity is defined through the relation

j(ω) = σ(ω)E(ω), (7.50)

i.e. as the coefficient relating the current density to a homogeneous external field oscillating

with frequency ω. In the absence of symmetry-breaking perturbations such as a strong

magnetic field or system-intrinsic anisotropies, the current flow will be in line with the

field gradient. This justifies the scalar, rather than a more complex tensorial ansatz for the

conductivity in Eq. (7.50) (For a more complex situation, see Problem 7.6.4.)

INFO Before entering the details of the linear response calculation, it is instructive to recapit-

ulate how the conductivity can be obtained from common sense reasoning. To this end, let us

look at the world from the persective of an individual conduction electron. In the presence of an

electric field, the electron will be subject to two different forces: the force of the field, −eE, and

a dissipative friction force −m
τ
ṙ inhibiting its free acceleration (deviating from our convention,
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e = 1, we temporarily reintroduce the electron charge). The damping rate is essentially set by

the scattering rate off static impurities, viz. 1/τ . To a first approximation, the dynamics of the

electron is thus described by the equation of motion mr̈ = −eE(t)− m
τ
ṙ or, in Fourier represen-

tation, −imωv(ω) = eE(ω)− m
τ
v(ω). Solving for v one finds that the current density j = −nev

(n is the particle density) is given by j(ω) = σ(ω)E(ω) with

σ(ω) =
ne2

m

1
1
τ
− iω

. (7.51)

In the limit ω � τ−1, σ(ω) � ine2

m
ω−1, i.e. the electron current is determined by the ballistic

motion of the electrons in the electric force field. Conversely, in the DC limit ω → 0, one obtains

the Drude formula σ = ne2τ
m

, i.e. the field drives a steady current density whose value is limited

by the amount of momentum relaxation.

Below we compute the conductivity under the simplifying assumption that Coulomb or

other types of many-body interaction are negligible.27 By contrast, the discussion of the

Info block above shows that any meaningful analysis of the conductivity must take account

of the presence of static disorder; without disorder, the field would make the electrons

freely accelerate, i.e. there would be no such thing as a steady current flow in metals.

Thus, what we should have in mind when we think about the conductivity is 〈σ〉V , the
conductivity averaged over all realizations of a microscopic disorder potential.28 To obtain

the conductivity, we will explore the current flow in response to a vector potential A, where

∂tA = −E generates the electric field. Anticipating that, after averaging over impurities,

the system will be effectively translationally invariant, the analysis is most economically

carried out in Fourier space, i.e. we compute the expectation value j(q → 0, ω) in response

to a potential A(q → 0, ω), where the limit q → 0 indicates that we are interested in a

spatially homogeneous external field. Fourier transforming Eq. (7.47) in the difference of

coordinates, x − x′ (cf. the remarks made in connection with Eq. (7.4)), one verifies that

the appropriate response kernel is given by

K(q) =
1

Ld

(
− 1

m
〈〈ρ̂〉〉V + 〈〈ĵpi,q ĵ

p
i,−q〉〉V

)
, (7.52)

where the vectorial index i is arbitrary and the double brackets indicate the two-fold average

over the quantum thermal distribution and the disorder potential. Also notice that the

connection ωmA(q) = E(q) implies

σ(ω) = − lim
q→0

1

ωm
K(q)

∣∣∣∣
iωm→ω+i0

. (7.53)

27 Nonetheless, the calculation will still be fairly technical. If you find the Drude conductivity of the electron
gas too elementary an observable to justify these efforts, please keep in mind that our prime motivation is
methodological: technical operations very similar to those detailed here appear in practically every quantum
response analysis.

28 A good question to ask is whether the conductivity of any particular realization of a disordered metal will differ
from the averaged conductivity, i.e. whether the conductivity is a “self-averaging” quantity. This leads one to
the interesting problem of conductance statistics, a topic beyond the scope of the current text.
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To process this expression, we substitute the Fourier transform of Eq. (7.46) (exercise),

ρ̂ =
∑
p

ψ̄σ,pψσ,p, ĵpi,q =
1

2m

∑
p

(2p+ q)iψ̄σ,pψσ,p+q,

into (7.52) and apply Wick’s theorem to compute the thermal expectation value. This leads

to the expression

K(q) = −2T

Ld

∑
n,p,p′

(
δp,p′

m
〈Gn,p,p〉V +

(2p+ q)i(2p
′ + q)i

(2m)2
〈Gn+m,p+q,p′+qGn,p,p′〉V

)
,

(7.54)

where the factor of two accounts for the spin summation (for simplicity we assume that

the Hamiltonian is spin-independent), Gn,p,p′ ≡ 〈ψ̄n,pψn,p′〉 is the thermal electron Green

function for a particular realization of the disordered background, and the remaining bracket

stands for the disorder average. (Notice that, before disorder averaging, the system lacks

translational invariance, i.e. the single-particle Green function is not diagonal in momentum

space.) A diagrammatic representation of the paramagnetic response kernel in terms of

Green functions is shown in the upper part of the figure below, where the wavy lines denote

the current operator and the dashed lines symbolically represent the scattering off the static

impurity potential (cf. our discussion of the impurity scattering and Green functions in

Section 6.5.)

To make further progress with this expression, we shall adopt an approximation that

critical readers may find questionable: we will replace the average of the two-Green-function

correlator by an impurity average of the individual Green functions, 〈GG〉 → 〈G〉〈G〉.29 In

Section 6.5 it has been shown that these averaged Green functions are given by

〈Gn,p,p′〉 = δp,p′Gp ≡ δp,p′

iωn − ξp + i
2τ sgn ωn

,

where τ defines the mean impurity scattering time. (Recall what has been said above about

the meaning of the imaginary part of the Green function denominator as an effective inverse

lifetime. In the present context, τ measures the time after which a particle with initial

momentum p gets scattered into states of different momentum.) Substituting this result

into Eq. (7.54), we obtain

K(q) = −2T

Ld

∑
p

(
1

m
Gp +

1

(2m)2
(2p+ q)2iGp+qGp

)
. (7.55)

29 Readers who have navigated through the disorder section in Chapter 6 are invited to critically assess the validity
of this approximation. The result of this analysis is that, for hard impurity scattering potentials, i.e. for impurity
potentials 〈p|V |p′〉 = const. that scatter isotropically over the entire momentum shell, the approximation
above becomes justifiable in the limit q → 0. To understand why, construct any diagram involving impurity
lines connecting the two Green functions. You will notice that, in this case, the two fast momenta carried
by the current operators are no longer locked to each other. The subsequent angular integration over these
momentum vectors then leads to a vanishing of the diagram. The physical mechanism behind this vanishing
is that, in a disordered medium, the velocity vector of an electron changes rapidly, i.e. a velocity–velocity (or
current–current) correlation function is highly susceptible to large-angle impurity scattering.
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Looking at the structure of Eq. (7.54), one might

be tempted to perform the frequency summation by

one of the standard formulae. However, a moment’s

thought shows that this strategy will not work. The

reason is that, in the present case, the extension

of the Green function to the complex plane, Gp =

Gp(z) =
(
z − ξp + i

2τ sgn Im z
)−1

, has a cut along

the real axis; this, in turn, means that the product

Gp+q(z + iωm)Gp(z) has cuts at Im(z) = 0 and Im(z + iωm) = 0 (see the figure). To

circumvent this difficulty, we need to integrate over a contour that (a) encompasses all

Matsubara frequencies and (b) avoids the cut lines. While there is no simple contour that

does the job, a joint integration over the three contours γ1,2,3 shown in the figure faithfully

represents the Matsubara sum:

∑
ωn

GpGp+q = − β

2πi

∮
γ1∪γ2∪γ3

dz nF(z)Gp(z)Gp+q(z + iωm).

The three integrals contributing to the sum lead to very different results: as shown in the

exercise below, the two integrals over the contours γ1 and γ3 cancel against the diamagnetic

contribution to the response tensor, i.e. the first term in Eq. (7.55).

INFO To appreciate why the contribution from the contours γ1 and γ3 is unphysical, notice

that, e.g.

β

2πi

∮
γ1

dz nF(z)Gp(z)Gp+q(z + iωm) =
β

2πi

∫ ∞

−∞
dεnF(ε)Gp(ε+ i0)Gp+q(ε+ iωm)

iωm→ω+i0−→ β

2πi

∫ ∞

−∞
dε nF(ε)Gp(ε+ i0)Gp+q(ε+ ω + i0),

i.e. the integral extends over a product of two retarded single-particle Green functions. Now,

remember that at the end of the day we want to compute the conductance, i.e. a quantity that

resembles a transition probability (namely the probability for electrons propagating under the

influence of an applied electric field). In quantum mechanics, probabilities σ ∼ GG∗ appear as

absolute squares of amplitudes, G. Indeed, we have seen before that the retarded Green function

can be interpreted as a transition amplitude of quantum mechanical particles. We also saw that

its complex conjugate, G∗, is an advanced Green function. Put differently, our admittedly very

hand-waving argument indicates that the quantum dynamics of conduction should be described

in terms of products of advanced and retarded Green functions. However, a product of two

retarded (or two advanced) Green functions lacks an obvious physical interpretation. Indeed,

these contributions cancel against the diamagnetic term.
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We thus focus on the integral over γ2:

β

2πi

∮
γ2

dz nF(z)Gp(z)Gp+q(z + iωm)

=
β

2πi

∫ ∞

−∞
dε nF(ε) [−Gp(ε− i0)Gp+q(ε+ iωm) +Gp(ε− iωm)Gp+q(ε+ i0)]

iωm→ω+i0−→ β

2πi

∫ ∞

−∞
dε nF(ε)

[
−Gp(ε

−)Gp+q(ε
+ + ω) +Gp(ε

− − ω)Gp+q(ε
+)

]
= − β

2πi

∫ ∞

−∞
dε [nF(ε)− nF(ε+ ω)]Gp(ε

−)Gp+q(ε
+ + ω),

where, in the first equality, we have used the symmetry nF(ε + iωm) = nF(ε) of the dis-

tribution function under translation by bosonic frequencies. Substituting this result into

Eq. (7.55) and (7.53), we arrive at the intermediate result

σ(ω) =
1

2π

∫ ∞

−∞
dε

nF(ε)− nF(ε+ ω)

ω

2

Ldm2

∑
p

p2iG
−
p (ε)G

+
p (ε+ ω), (7.56)

where G±
p (ε) =

(
ε− ξp ± i

2τ

)−1
.

EXERCISE To complete our analysis, we need to understand better the cancellation of the

diamagnetic term and, relatedly, the role played by the integration contours γ1,3. We first

write K(q) = K(0) + [K(q)−K(0)] and observe that (i) the contribution of γ2 discussed above

sits solely in the finite q term, K(q)−K(0) (the contour γ2 collapses to zero at q = 0), while (ii)

the diamagnetic term and the contribution of the curves γ1,3 are in K(0). (Finite q-corrections to

the contour integrals along γ1,3 vanish due to the strong convergence of the integrands and the

fact that all singularities lie on one side of the real axis: think about this point.) The cancellation

of the diamagnetic term against the contribution of γ1,3 thus amounts to showing K(0) = 0.

Introducing the notation Gn,� ≡ Gp|�p=�, show that

K(0) = −2T

m

∑
n

∫
dε ν(ε)

(
1 +

2ε

d
∂�

)
Gn,�,

where ν(ε) = 1
Ld

∑
p δ(ε − εp), and we used

∑
p F (εp)p

2
i = 2m

d

∑
p F (εp)εp by the isotropy of

space. Integrating by parts (why do the contributions of the integration boundaries vanish?),

and using the fact that ν(ε) = const.× ε(d−2)/2, show that K(0) = 0.

The analytical structure of this result actually reveals a number of important elements of

the electron conduction process: an AC field of frequency ω creates electron–hole pairs of

excitation energy ω. The phase volume accessible to these processes is measured by the

ε-integral, weighted by the difference of two Fermi functions, i.e. Fermi statistics demands

that the energy of the electron to be excited lies within a shell [μ−ω, μ] at the Fermi surface

(see the figure below). The dynamics of the excited electron is described by a retarded Green

function of energy ε+ ω.
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ω

Conversely, the dynamics of the hole is described by the advanced

Green function. Heuristically, this can be understood by noting

that the advanced Green function describes the (fictitious) prop-

agation of an electron backwards in time. However, an electron

propagating in a chronologically reversed direction can be inter-

preted as a hole moving forward in time. Thus, the advanced electronic Green function

effectively represents a descriptor of hole dynamics. That the product of two Green func-

tions is weighted by two operators pi/m reflects the fact that current transport essentially

depends on the velocity of the electrons.

To perform the sum over p we note that, for a radially symmetric function F (ξp),∫
ddp p2iF (ξp) =

1

d

∫
ddp p2F (ξp) =

2m

d

∫
dξ (ξ + μ)ν(ξ)F (ξ).

Identifying the function F with the product of our two Green functions, we obtain

2

Ld

∑
p

p2iGp(ε
−)Gp(ε

+ + ω) =
4m

(2π)dd

∫ ∞

−μ

dξ (ξ + μ)ν(ξ)G−
ξ (ε)G

+
ξ (ε+ ω)

� 4mμν

(2π)dd

∫ ∞

−∞
dξ G−

ξ (ε)G
+
ξ (ε+ ω) =

1
1
τ − iω

,

where, in the third equality, we have used the fact that the Green functions are strongly

peaked on scales τ−1 � μ around ξ = 0 implying that, to a very good approximation, the

ξ-integration can be extended to the entire real axis and the energy variation of the density

of states ν(ξ) on the effective interval of integration is negligible. The last integral can be

performed by elementary means or, more elegantly, by closing the ξ-integration contour

in the upper or lower half plane and using the analytic structure of the Green functions.

Substituting the result into our formula for σ(ω), and using the fact that
∫
dε (nF(ε) −

nF(ε+ ω))ω−1 � 1, we arrive at the final result Eq. (7.51).

At this point it is rewarding to pause for a moment to look back at a number of large-scale

structures of the analysis:

� On the microscopic level, the two-point function 〈ĵĵ〉 of current operators is represented
in terms of a four-point function ∼ 〈ψ̄ψψ̄ψ〉 of field operators. A moment’s thought shows

that four-point correlation functions generically appear as microscopic descriptors

of the response functions of quantum single-particle operators (simply because, in sec-

ond quantization, a single-particle operator maps onto a bilinear of field operators) and,

therefore, of the vast majority of response functions.

� This observation implies a hierarchy of correlation functions. For example, in our

non-interacting example, the retarded response correlation function was described in

terms of a product of an advanced and a retarded microscopic single-particle correlation

function.30 This almost trivial observation is of some importance because it entails

30 For interacting problems, the response functions no longer neatly split into a product of two single-particle
Green functions. Instead, the four field operators describing the response functions can be connected by an
arbitrarily complicated network of interaction vertices. However, ultimately, the propagators connecting this
network are again the single-particle Green functions of the problem.
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� a separation of energy scales. The argument (ω,q) of the response function is a

measure of the frequency/momentum scale of the external perturbation. These parame-

ters are to be distinguished from the argument (ε,p) of the single-particle propagators

microscopically describing the response process. In many cases, the two sets of scales are

parametrically different. For example, in the problem discussed above, (ω,q) is set by

the resolution of an external electronic apparatus and, therefore, much slower than the

frequency/momentum scale (ε,p) of electronic charge carriers at the Fermi surface. In

these circumstances, the ratios ω/ε and |q|/|p| define small expansion parameters which

can be used in the approximate evaluation of the response kernel. (In other cases, e.g.

spectroscopic analysis of microscopic single-particle excitations, it is essential that (ω,q)

and (ε,p) be of the same order.)

7.5 Summary and outlook

This completes our preliminary survey of theory and application of correlation functions

in many-body physics. We have seen that correlation functions, notably real-time retarded

response functions, represent a principal interface between experiment and theory. The

connection between these objects and experimental data – the latter represented through

expectation values of certain operators – was established by a formalism known as linear

response: assuming an experimentally imposed perturbation of a many-body system to be

weak, its response can be analyzed within a controlled expansion scheme whose leading-

order term is identified as a retarded correlation function.

A number of general properties of the response function – e.g. causality – could be identi-

fied from common sense reasoning. However, to develop a full understanding of this object,

notably the connection between the imaginary time response function (the quantity pro-

duced by evaluation of the field integral) and its retarded real time counterpart (the quantity

we are interested in), we had to go beyond that level. Indeed, we saw that the relation

between various types of correlation function could be revealed by means of a powerful spec-

tral representation that was simple, exact, and not dependent on any particular physical

context (while not being particularly useful for practical computational purposes).

The structural elements developed early in the chapter were finally bundled into a power-

ful theory of electromagnetic linear response. We illustrated the application of this machin-

ery on the example of the longitudinal conductivity of the electron gas and pointed out a

number of computational elements common to most concrete microscopic linear response

calculations.

In the next chapter we return to the intrinsic development of the theory. We become

acquainted with the renormalization group, a versatile analytical tool designed to analyze

correlation functions (and other objects of physical interest) within the vast space left

open between straightforward perturbation theory at one end and the few available exact

evaluation schemes at the other.
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7.6 Problems

7.6.1 Orthogonality catastrophe

This problem describes a scenario realized frequently in condensed matter in which a spatially localized

quasi-particle is immersed in a large host system (the latter described by some N -body ground state

wavefunction). The resulting wavefunction, “single-particle state ⊗ N -particle ground state,” turns out

to be largely orthogonal to the true ground state of the now (N + 1)-particle system. In practice, this

means that it takes a very long time for the intruding particle to become accommodated to its new

environment, a retardation mechanism known as the orthogonality catastrophe. Following Anderson’s

original line of argument we here explore the basic physical mechanism underlying the phenomenon.

In the thermodynamic limit, Anderson31 has shown that the ground state |Ψ′〉 of a system

in the presence of a local perturbation V (r) is orthogonal to the ground state |Ψ〉 of the

unperturbed system:

|〈Ψ|Ψ′〉|2 N→∞−→ 0.

(Here, the local perturbation serves as a caricature of the interaction potential created

by a new particle in the system.) This mechanism implies, for example, that transport

coefficients measured in setups where a sample is connected to external leads at local con-

tacts often determine a “contact resistance” (determined by the resistance of the sample to

accommodate external charge carriers) rather than the bulk conduction properties of the

system.

(a) Consider a system of non-interacting fermions. Show that the overlap between the

many-particle ground states of the unperturbed system and of the perturbed system is

bounded from above:

χ̃ ≡ |〈Ψ|Ψ′〉|2 < χ = exp

⎡⎣−1

2

∑
εn≤EF,εm′>EF

|〈n|m′〉|2
⎤⎦ ≡ exp[−I],

where |n〉 and |m′〉 are single-particle states of the unperturbed and perturbed system,

respectively, and EF is the Fermi energy. To obtain this inequality, recall that the non-

interacting many-particle states are Slater determinants. What is the overlap between

ground states? To simplify the resulting expression, use the fact that detA ≤ 1 if A has

normalized, but non-orthogonal rows. Here one may assume that, if the perturbation is

small,
∑

εm′>EF
|〈n|m′〉|2 � 1 for εn ≤ EF.

(b) We next compute the exponent I for the particularly simple case of a spherically sym-

metric system of radius R. Focusing on the sector of lowest angular momentum l = 0,

the unperturbed states are given by φn(r) = Nn sin(knr)/knr, where kn = πn/R and

the normalization Nn = kn/
√
2πR. The asymptotic profile of the perturbed wavefunc-

tions can be approximated as φ′
n(r) = Nn sin(knr + δm(1 − r/R))/knr, where δ is the

31 P. W. Anderson, Infrared catastrophe in Fermi gases with local scattering potentials, Phys. Rev. Lett. 18
(1967), 1049–51.
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s-wave scattering phase shift. Use this ansatz to compute first the overlap matrix A and

then the exponent I.

Answer:

(a) In the ground state, all single-particle levels with energies below the Fermi energy EF

are filled while all levels with higher energies are empty. Thus, the overlap of ground

states is given by χ = detA, where Anm = 〈n|m′〉 and εn, εm′ < EF. Defining a row-

normalized matrix Ã by Ãnm ≡ Anm/Nn with Nn =
√∑

m |〈n|m′〉|2, we conclude that
χ = det Ã

∏
n Nn ≤

∏
n Nn. We next take the logarithm of this relation to obtain

lnχ ≤
∑

εn<EF

ln (Nn) =
1

2

∑
εn<EF

ln

⎛⎝ ∑
εm′<EF

|〈n|m′〉|2
⎞⎠ .

Using the closure relation
∑

m′ |m′〉〈m′| = 1 and expanding the logarithm in x =∑
εm′>EF

|〈n|m′〉|2 � 1 we arrive at the approximation

∑
εn<EF

ln

⎛⎝ ∑
εm′<EF

|〈n|m′〉|2
⎞⎠ =

∑
εn<EF

ln

⎛⎝1−
∑

εm′>EF

|〈n|m′〉|2
⎞⎠

� −
∑

εn<EF,εm′>EF

|〈n|m′〉|2 = −2I.

(b) The overlap matrix A is given by

Anm = 〈n|m′〉 = 4πNnNm

∫ R

0

dr r2
sin(knr)

knr

sin
(
kmr + δm(1− r

R )
)

kmr

� 2πNnNm

knkm
sin δm

1

kn − km + δm
R

=
sin δm

π(n−m) + δm
.

Performing the summation over wavenumbers n larger or smaller than the Fermi wave

number nF = kFR/π we obtain I = + 1
2π2

∑
n<nF,m>nF

sin2 δm
(n−m+ δm

π )2
∼ sin2 δ lnM , where

EM = (πM/R)2/(2m) is a cut-off energy at which the phase shift δ ≡ δM has become

negligibly small. Since EM is some fixed (independent of the system size) energy scale,

M ∼ EMR2 ∼ N grows with the system size. Thus I ∼ + lnN , which in turn implies

that the overlap |〈Ψ|Ψ′〉|2 vanishes as some negative power of N .

7.6.2 RPA dielectric function

Much of the response of a system of charged fermions to an external electromagnetic perturbation is

encoded in the dielectric function εq. While the dielectric function cannot be computed rigorously, the

most common approximation scheme – asymptotically exact in the limit of the infinitely dense gas –

is the RPA. It is the purpose of this problem to elaborate upon the various sporadic encounters with

the RPA dielectric function we had in the text. Specifically, we will derive Eq. (7.35) and discuss the
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Figure 7.6 Representation of the dielectric function in terms of the full density–density correla-
tion function (the dark-shaded bubble) and the interaction-irreducible density–density correlation
function (light-shaded bubble).

generalization to a disordered electron gas. The problem is physically instructive and a good exercise in

diagrammatic calculus.

(a) Derive Eq. (7.35). To this end, consider two infinitesimally weak (yet generally time-

dependent) test charges immersed in a system of charged fermions. Omitting the self-

interaction of the particles, determine the interaction correction to the free energy and

use your result to compute the ratio between the vacuum and the actual interaction

potential. Show that

εq =

(
1− TV0(q)

Ld
〈n̂qn̂−q〉c

)−1

, (7.57)

where the subscript “c” indicates that only connected diagrams contribute. Analytic

continuation to real frequencies obtains Eq. (7.35).

(b) Equation (7.57) represents a rigorous yet quite formal result for the dielectric function;

it involves the exact density–density correlation function which is generally unknown.

As a first step towards a more manageable expression, show that Eq. (7.35) is equivalent

to

εq = 1 +
TV0(q)

Ld
〈n̂qn̂−q〉irr, (7.58)

where 〈n̂n̂〉irr is the interaction-irreducible density–density response function, i.e. the

sum of all diagrams that cannot be cut into two just by cutting one interaction line

(i.e. 〈n̂n̂〉irr is to the effective interaction what the self-energy is to the Green function).

In order to show that Eq. (7.57) and (7.58) are equivalent, find a series expansion of

C(q, iωm) in terms of V0 and Π(q, iωm). The series is very similar to the RPA series.

Note, however, that, in contrast to RPA, the bubble 〈n̂n̂〉irr still contains interaction

lines. A graphical representation might be helpful.

Answer:
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(a) If we represent the two test charges with two charge distributions ρ1,2(q), the Coulomb

interaction becomes Sint =
T

2Ld

∑
q[n̂q+ρ1,q+ρ2,q]V0(q)[n̂−q+ρ1,−q+ρ2,−q]. An expan-

sion of the field integral (or, equivalently, the partition function) to lowest order in ρ1,2
then produces the interaction contribution to the free energy,

Fint[ρ1, ρ2] = −T 2

Ld

∑
q

ρ1,q

[
V0(q)−

TV 2
0 (q)

Ld
〈n̂−qn̂q〉c

]
ρ2,−q.

The term in rectangular brackets determines the effective interaction potential Veff(q).

Remembering that εq = V0(q)/Veff(q), we obtain Eq. (7.57).

(b) For a diagrammatic representation of the solution, see Fig. 7.6.

7.6.3 Electromagnetic response of a quantum dot

In Problem 6.7 we considered a model of quantum dots coupled by tunnel contacts to external leads.

There, we derived an effective action for this system but did not say much about its actual physical

behavior. As a first step towards a better understanding of the electromagnetic properties of small

quantum dots, we here derive a formula elucidating the classical response of the system. In Prob-

lem 8.8.2, we then apply renormalization group methods to study how quantum fluctuations affect the

low-temperature physics of the system. (Before addressing this problem, refamiliarize yourself with the

derivation of the dissipative tunneling action in Problem 6.7.)

(a) ConsiderEq. (6.67) for aquantumdot coupled toa lead.Assuming that abias voltage iU(τ)

between lead and dot has been applied, show that the argument of the dissipative action

generalizes to φ(τ) → φ(τ) +
∫ τ

0
dτ ′ U(τ ′). Focusing on the regime of high temperatures,

expand the action to second order in φ (argue why, for high temperatures, anharmonic

fluctuations of φ are small) and compute the 00-component of the linear response kernel,

K00.Analytically continueback to real frequencies and showthat the currentflowingacross

the tunnel barrier in response to a voltageU(ω) is given by

I(ω) =
U(ω)

2π
gT

− 2EC

iω

. (7.59)

(b) To understand the meaning of this result, notice that, classically, the dot is but a capacitor

connected via a classical resistor to a voltage source. Apply Kirchhoff’s laws to obtain the

current–voltage characteristics of the classical system and compare with the result above.
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Answer:

(a) Consider the action of the system at an intermediate stage, immediately after the

fermions have been integrated out (cf. Eq. (6.68)). In the presence of a bias voltage, the

“tr ln” contains a term i(V +U), where V is the Hubbard–Stratonovich field decoupling

the interaction. Removing the sum of these two fields by the same gauge transformation

as used in the derivation of the dissipative action, the tunneling matrix elements acquire

the phase factor specified above.

At second order in the expansion in φ, the action assumes the form

S(2)[φ, V ] =
1

4ECT

∑
m

ω2
m|φm|2 + gT

4πT

∑
m

|ωm||φm + Um/iωm|2,

where the Fourier identity |ωm| ↔ −πT sin−2(πTτ) has been used. Differentiating twice

with respect to U , we obtain

(K00)m = Z−1T
δ2

δUmδU−m
Z[U ] = − gT

2π|ωm|

(
1− gT |ωm|

2πT
〈φmφ−m〉

)
= − gT

2π|ωm|

(
1− gT |ωm|

2πT

1
ω2

m

2ECT + gT |ωm|
2πT

)
= − 1

2π|ωm|
gT

+ 2EC

.

The 00-element of the linear response tensor describes changes in the particle number32

in response to an applied potential, δNm = (K00)mUm. Noting that i∂τδN = I is

the current through the barrier, and substituting our result for K00, we obtain Im =

Um

(
2π
gT

+ 2EC

|ωm|
)−1

. Analytical continuation from positive imaginary frequencies |ωm| →
−iω + 0 to real retarded frequencies gives Eq. (7.59).

(b) According to Kirchhoff’s laws, the sum of all voltage drops in the system must equal

zero, 0 = U(ω) + C−1δN(ω) − RI(ω), where C and R denote the capacitance and

resistivity, respectively. Using the fact that δN = I/iω, and solving for I, we readily

obtain I(ω) = U(ω)
R−1/iωC , i.e. the current voltage characteristics of a classical RC-circuit.

Identifications R = 2π/GT and C = 1/2EC bring us back to the formula derived

microscopically above.

7.6.4 Hall conductivity

In this problem we derive microscopic expressions for the current response of a (generally disordered)

electron gas in the presence of a perpendicular magnetic field. Our results will be the starting point for

the analysis of the quantum Hall effect in the next chapter.

Consider a two-dimensional electron gas in the presence of a perpendicular magnetic field.

The system is described by the Hamiltonian Ĥ = 1
2m (p̂−Â)2+ V̂ , where V̂ is a one-particle

32 Here, we notice that the factor of “volume” discriminating between particle number and density is contained
in our definition of the source variables.



7.6 Problems 405

potential (disorder and/or boundary potential) and Â = B
2 r̂ × e3 is the vector potential

of the external field. To compute the conductivity tensor, we start from the real-space33

expression of (cf. Eq. (7.47) and (7.53)),

σij = − 1

ωmL2

∫
d2x d2x′

(
2

m
δijδ(x− x′)〈ρ̂0(x)〉+ 〈ĵm,i(x)ĵ−m,j(x

′)〉
)∣∣∣∣

iωm→+i0

,

where ĵi is defined in Eq. (7.46).34 Using Wick’s theorem to compute the expectation value

of the current and density operators, we obtain

σij =
1

ωm

T

L2

∑
n

∫
d2x d2x′

(
−2

m
δijδ(x− x′)Gn(x,x)

+(v̂iĜn+m)(x,x′)(v̂jĜn)(x
′,x)

)∣∣∣∣
iωm→+i0

,

where v̂ = 1
m (−i∇ − Â) is the velocity operator and we have set the electron charge to

unity. Anticipating the presence of cuts on the real energy axis, the frequency summation

is split into three parts, σ = σ−− + σ+− + σ++, where σ±± denotes the contribution for

which the frequency indices n+m and n are positive or negative, respectively.

(a) Beginning with the diagonal contribution to the conductivity tensor, σxx, show that

the paramagnetic contributions to σ−−
xx + σ++

xx cancel against the diamagnetic term.

(Hint: Use the fact that for n · (n+m) > 0 the product of two Green functions is short-

range: 〈Gn+mGn〉V = 〈Gn+m〉V 〈Gn〉V , where, as usual, 〈G〉V decays on the scale of

the mean free path (i.e. unlike the combination Gn<0Gn+m>0, no long-range quantum

interference processes contribute to the product of two Green functions of identical

signature). Due to this short-rangeness, we may approximate the position operator

entering the definition of the current operator by a c-number valued vector whose value is

set by spatial arguments x � x′ of G(x,x′). Consequently, both Ĝ and ĵ are diagonalized

by the basis of momentum states.)

(b) Owing to the vanishing of σ++
xx and σ−−

xx , the longitudinal contribution to the conduc-

tance tensor σxx = σ+−
xx is obtained by summation over the sector of mixed frequency

signature. Show that

σxx � 1

2πL2

∫
d2x d2x′ (v̂xĜ+)(x,x′)(v̂xĜ−)(x′,x), (7.60)

where Ĝ± = (μ± i/2τ − Ĥ)−1.

(c) Turning to the Hall coefficients, we first note that (think why) σxy = −σyx or σxy =
1
2εijσij . Using the simplifications listed in (a) and the identity v̂ = i

m [Ĥ, x̂], show that

σ++
xy + σ−−

yx � i
L2 ∂B〈N̂〉, where N̂ is the particle number operator. Convince yourself

33 In view of the coordinate dependence of the vector potential, it is preferable to work in a real-space basis.
34 Do not confuse the vector potential of the external magnetic field with the weak vector potential employed

to probe the electromagnetic response of the system; the current operators in the conductivity formula above
contain the former but not the latter.
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that the region of mixed frequency signature contributes as in the longitudinal case, i.e.

that the total linear response Hall conductivity is given by

σxy � 1

4πL2

∫
d2x d2x′ εij(v̂iĜ+)(x,x′)(v̂jĜ−)(x′,x) +

i

L2
∂B〈N̂〉. (7.61)

(d) In Chapter 9, we apply the linear response formulae derived above to a field-theoretical

analysis of the quantum Hall effect, the physics of a two-dimensional electron gas subject

to a strong perpendicular field. Our starting point will be the replicated partition sum

Z =
∫
D(ψ, ψ̄) exp(−S[ψ, ψ̄]), where

S[ψ, ψ̄] =

∫
d2x ψ̄(x)

[
iδσ3 − μ+

1

2m
(−i∇−A)2 + V (x)

]
ψ(x),

and ψ = {ψar} is a 2R-component field carrying a replica index r = 1, . . . , R and an

index a = +,− distinguishing between “retarded” and “advanced” field components.

The Pauli matrix σ3 acts in the space of a-indices, thus determining the imaginary

offset of the inverse propagator in the action. To generate the linear response formulae

derived above, we couple the action to a source: A → A + U−1∇U , where the matrix

U = exp(i(xκxσ1 + yκyσ2) ⊗ P(1)) and P(1) = {δr1δr′1} projects onto the first replica

channel. Show that

σxx = lim
R→0

1

4πL2
∂2
κxκx

∣∣∣∣
κ=0

Z, σxy = lim
R→0

1

4πiL2
∂2
κxκy

∣∣∣∣
κ=0

Z.

(Hint: You will encounter terms ∼ 〈ψ̄ψ〉 ∼ Re G+, which may be neglected.)

Answer:

(a) As with the previous analysis of the non-magnetic case,

σ++
xx =

1

ωm

T

L2(2π)2

∫
d2x d2p

∑
n>0

(
2

m
G+

n (p,x) + v2x(p,x)(G
+
n (p,x))

2

)∣∣∣∣
iωm→+i0

,

where we made use of the simplifying approximations above, v(p,x) = (p −A(x))/m

(both p and x are vectors of c-numbers) and G+
n = (iωn −mv2/2 + μ + i/2τ)−1. We

may now shift p → p +A to remove the spatial dependence of the integrand, use the

identity G2 = +mp−1
x ∂pxG, and integrate by parts to conclude that σ++

xx = σ−−
xx = 0.

(b) It is an instructive exercise to obtain the result by contour integration. Introduce a

contour that, avoiding the cuts on the real axis, runs around the frequency interval

n(n+m) < 0 and expand the product of Green functions to leading order in iωm. Then

take the DC limit. A simplified, yet less rigorous, derivation goes as follows. For low

frequencies, ωm < 1/τ , Ĝn+m>0 � Ĝ+ and Ĝn<0 � Ĝ− are approximately independent

of the frequency index. Noting that ωm/(2πT ) terms contribute to the frequency sum,

we arrive at Eq. (7.60).
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(c) Representing the frequency sums by a contour integral,

σ++
xy + σ−−

yx = − 1

4πiωmL2

∫
dε nF(ε)

∫
d2x d2x′ εij

×
(
(v̂iĜ)(ε+ iωm,x,x′)(v̂jĜ)(ε+ i0,x′,x)

− (v̂iĜ) ×(ε− i0,x,x′)(v̂jĜ)(ε− iωm,x′,x)
)
iωm→+i0

.

We next (i) use the identity v̂ = −i[Ĝ, x̂], (ii) expand the Green functions to leading

order in iωm, and notice that the zeroth-order term in the expansion vanishes. This

leads to the expansion

σ++
xy + σ−−

yx =
1

4πL2

∫
dε nF(ε)εij tr

(
x̂iĜ(ε+ i0)v̂jĜ(ε+ i0)− c.c.

)
� 1

2πL2

∫
dε nF(ε)∂ε tr

(
Ĝ(ε+ i0)∂BĤ − c.c.

)
= − i

L2

∫
dε nF(ε)∂ε tr

(
δ(ε− Ĥ)∂BĤ

)
=

i

L2
∂B

∫
dε nF(ε) tr

(
δ(ε− Ĥ)

)
=

i

L2
∂B〈N̂〉,

where in the second line we have used the approximate commutativity of the operators

under the trace and the identity ∂BĤ = 1
2εij v̂ix̂j .

(d) To simplify the notation, we will discuss the longitudinal and Hall conductances sep-

arately. To generate the longitudinal conductance, we need to expand the generating

functional to second order in κx. Setting κy = 0, we obtain U−1∇U = iP(1)⊗exκx and

S[ψ, ψ̄] = S[ψ, ψ̄]|κ=0 − iκx

∫
d2x ψ̄1σ1v̂xψ

1 − κ2
x

∫
d2x ψ̄1ψ1.

Twofold differentiation with respect to κx then generates the expectation value

lim
R→0

1

L2
∂2
κxκx

∣∣∣∣
κ=0

Z = lim
R→0

1

L2

B
−

(∫
d2x ψ̄1σ1v̂xψ

1

)2

+ 2

∫
d2x ψ̄1ψ1

C

→ 2

L2

∫
d2x d2x′ (v̂xĜ+)(x,x′)(v̂xĜ−)(x′,x) = 4πσxx,

where in the second line we have noted that 〈ψ̄P(1)ψ〉 ∼ G+ + G− generates the real

part of the Green function which we decided to omit. Turning to the Hall conductivity,

an expansion up to order κxκy gives

U−1∇U = iP(1) (κxσ1ex + κyσ2ey + κxκyσ3(xey − yex)) .

Substituting this expression into the action, we obtain

S[ψ, ψ̄] = S[ψ, ψ̄]|κ=0 − i

∫
d2x ψ̄1(σ1κxv̂x + σ2κy v̂y)ψ

1

−i
κxκy

2

∫
d2x ψ̄1σ3({v̂y, x̂} − {v̂x, ŷ})ψ1.
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Then applying the derivative, we obtain

lim
R→0

1

L2
∂2
κxκy

∣∣∣∣
κ=0

Z = lim
R→0

1

L2

@
−

∫
d2x ψ̄1σ1v̂xψ

1

∫
d2x′ ψ̄1σ2v̂yψ

1

+
i

2

∫
d2x ψ̄1σ3({v̂y, x̂} − {v̂x, ŷ})ψ1

A
→ 1

L2

[
i

∫
d2x d2x′ εij(v̂iĜ+)(x,x′)(v̂jĜ−)(x′,x)

−4

∫
d2x εij v̂ix̂j Im G+(x,x)

]
= 4πiσxy.
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The renormalization group

The method of the renormalization group (RG) provides theorists with powerful and efficient tools to

explore interacting theories, often in regimes where perturbation theory fails. Motivating our discus-

sion with two introductory examples drawn from a classical and a quantum theory, we first become

acquainted with the RG as a concept whereby nonlinear theories can be analyzed beyond the level of

plain perturbation theory. With this background, we then proceed to discuss the idea and practice of

RG methods in more rigorous and general terms, introducing the notion of scaling, dimensional anal-

ysis, and the connection to the general theory of phase transitions and critical phenomena. Finally, to

conclude this chapter, we visit a number of concrete implementations of the RG program introduced

and exemplified on a number of canonical applications.

In Chapter 5, φ4-theory was introduced as an archetypal model of interacting continuum the-

ories. Motivated by the existence of nonlinearities inherent in the model, a full perturbative

scheme was developed, namely Wick contractions and their diagrammatic implementation.

However, from a critical perspective, one may say that such perturbative approaches present

only a limited understanding. Firstly, the validity of the φ4-action as a useful model theory

was left unjustified, i.e. the φ4-continuum description was obtained as a gradient expan-

sion of, in that case, a d-dimensional Ising model. But what controls the validity of the

low-order expansion? Indeed, the same question could be applied to any one of the many

continuum approximations we have performed throughout the first chapters of the text.

Secondly, having identified a number of terms contributing to the perturbative expansion of

the model (i.e. represented them in terms of momentum integrals over the non-interacting

Green function), it rapidly became apparent that the expansion was seemingly uncontrolled:

Those terms that were constructed explicitly (cf., e.g., Eq. (5.17) and the equation before)

contained divergences at large momenta. We also saw that, in the transition region between

the ferro- and the paramagnetic phase of the φ4-theory, these integrals were prone to the

build–up of infrared divergences. Worse still, we had to concede that we had no clue as

to how to overcome these problems! Needless to say, such difficulties exemplified by the

φ4-model are endemic in field theory.

To better understand the origin and remedy of the problems identified above, we must

develop some new ideas. To this end, it is helpful to remember that the central driving force

of all of our efforts is the development of a better understanding of long-range characteristics.

On the other hand, models such as φ4 exhibit fluctuations on all length-scales, while it

was the short-scale fluctuations that were responsible for the majority of difficulties. In

409
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principle, we already know how to deal with situations of this kind: our aim should be

an effective theory of long-range fluctuations realized by integrating over all short-range

fluctuations. Indeed, this program has been exemplified already on numerous examples

where some slow field was coupled to rapidly fluctuating microscopic fields, which were

subsequently integrated out.

a

a(1)

a(2)

.
.

.

L
The problem with our current application is that the φ4-theory is unaware of

any clear-cut separation into “fast” and “slow” degrees of freedom. Rather, all

fluctuations, ranging from the shortest scales (of the order of some microscopic cut-

off, a, limiting the applicability of the theory) to the longest scales (of the order of,

say, the system size, L) are treated on the same footing. However, to nonetheless

implement the scheme of “integrating over fast modes to generate an effective

action of the slow degrees of freedom,” one must declare artificially a certain length

scale a(1) ≡ ba > a, as the scale separating “short-wavelength fluctuations” on

scales [a, a(1)] from “long-wavelength fluctuations” on scales [a(1), L]. Having done

so, one may proceed to integrate out the short-range fluctuations, thereby changing

the action of the long-range degrees of freedom (see figure). Since the short-range

action is by no means simpler than the action of the long-range degrees of freedom,

this step will likely involve some approximation. Indeed, the integration procedure

may lead to a number of conceivable scenarios. For example, it may corrupt the algebraic

structure of the long-wavelength action, leaving us with a theory fundamentally different

from the one with which we began. Alternatively, it may turn out that the effective action

of the slow degrees of freedom is structurally similar to the original, in which case the

entire effect of integrating over the fast fluctuations amounts to a changed set of coupling

constants.

Kenneth G. Wilson, 1936–
Recipient of the 1982 Nobel Prize
in Physics, awarded for “discov-
eries he made in understanding
how bulk matter undergoes phase
transitions, i.e., sudden and pro-
found structural changes result-
ing from variations in environmen-
tal conditions.” Wilson’s background ranges from
elementary particle theory and condensed matter
physics (critical phenomena and the Kondo problem)
to quantum chemistry and computer science. (Image
c© The Nobel Foundation.)

If the latter, the procedure is well

motivated: we have arrived at a the-

ory identical to the original but for

(a) a different, or renormalized,

set of coupling constants, and (b) an

increased short-distance cut-off a →
a(1) = ba. Evidently, one may then

iterate this procedure; that is declare

a new cut-off a(2) = ba(1) = b2a,

integrate out fluctuations on length

scales [a(1), a(2)], etc. Along with the

recursive integration of more “layers

of fluctuations,” the coupling constants of the theory change, or “flow,” until the cut-off

a(n) ∼ L has become comparable to the length scales in which we are interested. Remark-

ably, we will see that the renormalized set of coupling constants in fact encodes much of

the important information about the long-range behavior of the theory.

The general line of reasoning above summarizes much of the thinking behind the renor-

malization group. Of course, the approach would be quite useless had we to perform each
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and every recursion step a(n−1) → a(n) explicitly. However, the utility of the program relies

on the recursive reproduction of the model at each step: a single step already encodes all

the information about the renormalization properties of the model. Cast in abstract terms,

the conceptual idea may sound obscure. Therefore, before developing a general and formal

framework for the renormalization group scheme, we shall acquire some intuition for the

approach by focusing on two specific applications which encapsulate the basic concepts.

INFO The formulation of renormalization group ideas has a long and varied history,

reflecting, in part, the versatility and generality of the method.1 Indeed, the advent of these

ideas in the late 1960s and early 1970s marked the transition between two different “epochs.”

While hitherto researchers had focused primarily on the development and application of ever

more-sophisticated perturbative techniques, the seventies remained under the spell of the renor-

malization program.

In the second half of the 1960s, ideas to recursively generate flows of coupling constants arose –

apparently in independent developments – both in condensed matter and in particle physics.

However, it took the insight of Kenneth Wilson to realize the full potential of the approach

and to develop it into a widely applicable tool.2 It is probably fair to say that Wilson’s original

formulation of the approach, and its later extension by others, led to revolutionary progress in

condensed matter physics, particle physics, and general statistical mechanics. Perhaps no less

important, the RG concept turned out to be one of the major driving forces behind the partial

unification of these fields.

In fact, the (highly unfortunate) terminology of “renormalization group” discloses much of

the historical origin of the approach. A widespread doctrine of late 1960s particle physics had

been that, on a fundamental level, our world could be understood in terms of symmetries and

their implementation through groups – the eight-fold way. In an attempt to absorb the newly

developed RG approach into this general framework, it became dubbed the renormalization

group. Of course, a linkage between group structures and renormalization methods would not

have been drawn had it been utterly unjustified. Indeed, one may argue that the sequence of RG

transformations outlined above defines the structure of a semigroup.3 However, the connection

between RG transformation and group algebraic structures is not only highly formal but also

counterproductive. (It suggests a conceptual bond that simply is not there.) Besides, the group

interpretation of the RG transformation is completely useless with regard to practical aspects.

To introduce the conceptual foundation of the renormalization group, we find it helpful

to draw initially on classical theories, later turning our attention to addressing the effects

1 A perspective on the development of the renormalization group can be found in the review article by M. E.
Fisher, Renormalization group theory: its basis and formulation in statistical physics, Rev. Mod. Phys. 70 (1998),
653–81, or in the text by J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University
Press, 1996).

2 See K. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47
(1975), 773–840, still one of the best introductions to the approach!

3 To this end, one should interpret an individual RG transformation as an abstract mapping between two actions:

S
R→ S′, where S is the original action, S′ the action with increased short-distance cut-off, and R the mapping

between them. One may then notice that these transformations can be iterated, or “multiplied,” R ◦ R′. A
moment’s thought shows that the composition law obeys the defining conditions of a semigroup: there is a unit
transformation (nothing is integrated out) and the iteration is associative. (We are dealing with a semigroup
because the RG transformation is irreversible, i.e. it does not have an inverse.)
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of quantum fluctuations. Our first encounter with the renormalization group is, therefore,

focused on the one-dimensional Ising model.

8.1 The one-dimensional Ising model

To illustrate the implementation of the RG program on a simple example (indeed the

simplest of examples), let us consider the one-dimensional Ising model defined through the

classical microscopic Hamiltonian

H = −J
N∑
i=1

SiSi+1 −Hext

N∑
i=1

Si,

where Si = ±1 denotes the (uniaxial) magnetization or spin of site i (periodic boundary

conditions, SN+1 = S1, imposed), and Hext represents an external field. Throughout this

section we will adhere to the discrete spin representation of the model, i.e. in contrast to

Section 5.1, we will not map the model onto a continuum theory. However, this consideration

does not impede our discussion of the RG program: One may simply regard −βH[S] as a

“functional” of the discrete “field” {Si}, and all steps outlined above can be carried out

without substantial modification.

8.1.1 Exact solution

The feature of the one-dimensional Ising model which makes it of pedagogical interest in the

present context is that it admits an exact solution, i.e. all of its macroscopically observable

properties can be computed in closed form. Both the exact solution of the model and its

RG formulation rely on its transfer matrix representation. One may notice that the

Boltzmann weight of the system can be factorized according to the relation

e−βH = e
∑N

i=1(KSiSi+1+hSi) =

N∏
i=1

T (Si, Si+1),

where, for notational convenience, we have introduced the dimensionless parameters

K ≡ βJ > 0 and h = βHext, and the weight is defined through the relation T (S, S′) =

exp[KSS′ + h
2 (S + S′)]. Defining a two-component matrix T with elements T11 = T (1, 1),

T12 = T (1,−1), T21 = T (−1, 1), and T22 = T (−1,−1), one may confirm that the partition

function of the system can be written as

Z =
∑
{Si}

e−βH =
∑
{Si}

N∏
i=1

T (Si, Si+1) =
∑
{ni}

N∏
i=1

Tnini+1 = trTN .

Thus, we have managed to represent the partition function as a trace of the Nth power

of the two-dimensional “transfer” matrix T .4 In this representation, the partition function

4 The terminology “transfer matrix” originates in an interpretation of the Ising model as a fictitious dynami-
cal process in which a state Si is “transferred” to a state Si+1, where the transition amplitude is given by
T (Si, Si+1).
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(a) (b)

Figure 8.1 (a) On the absence of spontaneous symmetry breaking in the one-dimensional Ising
model. No matter how low the temperature, the energy cost associated with the creation of a
segment of flipped spins is outweighed by the entropy gain. (b) In higher dimensions, entropic
factors no longer have the capacity to overpower the extensive growth of energy associated with
the formation of mismatched regions.

may be presented in terms of the two eigenvalues, λ± = eK [cosh(h)± (sinh2(h)+e−4K)1/2],

of the transfer matrix

T =

[
eK+h e−K

e−K eK−h

]
,

as Z = trTN = λN
+ + λN

− . Noting that λ+ > λ−, one may see that, in the thermodynamic

limitN → ∞, the contribution of the latter may be neglected, so that Z N→∞−→ λN
+ . Restoring

the original microscopic parameters, in the thermodynamic limit, one obtains the free energy

F ≡ − 1

β
lnZ = −N

(
J + T ln

[
cosh(βHext) +

√
sinh2(βHext) + e−4βJ

])
. (8.1)

With this result, one can compute the magnetization M by differentiation with respect to

the magnetic field. As a result one obtains the magnetization per spin,

m ≡ M

N
=

sinh(βHext)√
sinh2(βHext) + e−4βJ

. (8.2)

–1 –0.5 0.5 1
H

0.5
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–0.5
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1
Two magnetization curves are shown in

the figure at two non-zero temperatures.

Notice that, while the magnetization curves

grow ever more steeply with decreasing

temperature, the system does not magne-

tize at any non-zero temperature in the

absence of an external field, i.e., unlike

its higher-dimensional descendants, the

one-dimensional model does not display

spontaneous symmetry breaking.

INFO There are many ways to understand the absence of spontaneous symmetry breaking

in the one-dimensional Ising model (cf. our discussion of the connection with quantum mechanical

tunneling in Section 3.3). Suppose that the system did exhibit a critical temperature Tc below

which the system acquired long-range order with {Si} = 1 or {Si} = −1 (Fig. 8.1 (a)). Now,

let us imagine that a segment of M consecutive spins were to flip. In doing so, they would incur

an energetic cost of O(2J), i.e. the energy associated with the unfavorable spin alignment at
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the two ends of the domain of reversed spins. However, there are some N different choices for

placing the sector of M flipped spins, i.e. the energy loss is counteracted by an entropic factor

of ∼ T ln N (exercise). Thus, no matter how small T is, for large systems of large enough extent

the free energy balance for domain creation is positive, implying that the system will be in a

disordered phase at any non-zero temperature.

EXERCISE By enumerating the number of spin configurations with the same energy, obtain

a formal expression for the classical partition function of a one-dimensional Ising model of

length N with periodic boundary conditions. (Hint: Consider the number of domain wall

configurations.) Making use of Stirling’s approximation lnn! � n(lnn − 1), determine the

temperature dependence of the correlation length (domain size) at low temperatures. Confirm

that the system does not order at any finite temperature.

To what extent do these arguments carry over to Ising systems of higher dimensionality?

Consider, for example, a two-dimensional variant of the model. Here the formation of a large

connected region of M mismatched spins incurs an energy cost U ∼ M1/2J . To understand why,

one may note that the energy cost is proportional to the length of the one-dimensional boundary

that encloses a (circular) domain of reversed spins. However, the entropic gain still scales as

∼ k lnN . (Allowing for less symmetric domains, the energy/entropy balance becomes more

subtle. Yet the qualitative conclusion remains robust.) Thus, for the two-dimensional system,

F ∼ JM1/2 − T lnN . From this one can conclude that, over the range of temperatures for

which this estimate is valid, no matter how small T , it is energetically unfavorable to flip a

thermodynamic M ∼ Nx>0 number of spins. One may, therefore, conclude that the (d ≥ 2)-

dimensional Ising model does exhibit a phase transition into an ordered low-temperature phase.

The phenomenon of spontaneous symmetry breaking occurs only in systems of
sufficiently large dimensionality. The threshold dimension below which entropic
mechanisms exclude spontaneous symmetry breaking is called the lower critical

dimension dc.

Our argument above indicates that the lower critical dimension of the Ising model and, more

generally,

The lower critical dimension of systems with discrete symmetries is dc = 1.

Pursuing this theme, let us complete the discussion by addressing the question of the lower critical

dimension for systems with a continuous symmetry (e.g. the U(1) symmetry of the superfluid

phase, the O(3)-symmetry of the Heisenberg ferromagnet, etc.). To address this question, one

may proceed in a manner analogous to that used in the Ising system, i.e. let us assume that

a critical temperature exists below which the system is ordered. Using, for concreteness, the

language of magnetic phenomena, we might say that the system with two-component spin degrees

of freedom acquires a state of uniform magnetization S(r) = Se1, where e1 denotes the unit

vector in the, say, 1-direction. Expanding the Hamiltonian βH[S] in fluctuations around this

configuration (and, for simplicity, taking a continuum limit), one obtains

S[S] =
cS2

2T

∫
ddr (∂θ)2,
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where θ(r) denotes the polar angle measuring fluctuations around the ordered state and c is a cou-

pling constant. One may now explore the thermal (or, if appropriate, quantum thermal) expec-

tation value 〈S1(r)〉 of the 1-component of the spin variable anywhere in the system. Assuming

that we are close to the ordered state, an expansion in θ gives S1(r) = S cos θ = S(1− 1
2
θ2+ · · · ).

We now proceed to check whether the close-to-ordered assumption was actually legitimate. For

this, we have to verify that, with 〈S1(r)〉 = S − S
2
〈θ2(r)〉+ · · · , the contribution associated with

fluctuations is much smaller than the leading-order constant. Performing the Wick contraction

with respect to the quadratic action, and switching to momentum space, one obtains

〈S1(r)〉 ≈ S

"
1− T

2cS2

∑
q

1

q2

#
≈ S

"
1− T

2cS2

(
L

2π

)d ∫
ddq

q2

#
.

Crucially, in dimensions d ≤ 2, the integral is divergent. In the marginal case d = 2,
∫ a−1

L−1
d2q
q2

=

π ln(L/a), where we have used the fact that the momentum integral should be limited by a short-

(long-) wavelength cutoff of the order of the inverse lattice spacing (the system size). In the

thermodynamic limit, L → ∞, the integral grows without bound, implying that the assumption

of an ordered state was ill-founded no matter how small the temperature; the system is in a

disordered state. Noting that nowhere did we rely on specifics of the spin system, we draw a

conclusion known as the Mermin–Wagner theorem:

The lower critical dimension of systems with broken continuous symmetries is d = 2.

Obviously, the divergence of the fluctuation integral is due to the fact that, for large wavelengths,

and in low dimensions, the integration volume (alias the entropy) of fluctuations ∼ qd scales

more slowly to zero than the energy cost ∼ q2. That is, as in the Ising model case, the Mermin–

Wagner theorem5 can be understood as the statement of a competition of energy and entropy.6

8.1.2 Elements of scaling theory

Returning to the one-dimensional Ising model, we may note that Eq. (8.2) represents a full

solution of the problem. We have explicitly obtained the magnetization as a function of the

magnetic field and the microscopic coupling constant of the model. Other thermodynamic

characteristics, such as the magnetic susceptibility χ = −∂2
HF , can be generated by further

differentiation with respect to H and/or T . (Here, and henceforth, we drop the subscript

“ext” from the definition of the external field, Hext, noting that it can always be discrimi-

nated from the Hamiltonian H by its context.) However, in the vast majority of physically

interesting problems we will not be in possession of a closed analytical solution. This means

that, before comparing the exact solution with the outcome of the RG program, we should

reformulate the former in a universally applicable language, i.e. a code that can be used to

5 N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional
isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966), 1133–6.

6 For completeness, we mention that the proof of the theorem (of which we gave a fairly abridged version here) in
a subtle way relies on the fact that the symmetry in question is compact. For the (rare) class of systems with
non-compact, e.g. hyperbolic, symmetries, the statement does not hold.
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characterize the behavior of a model irrespective of the particular method by which this

behavior has been analyzed.

This objective leads us back to the familiar notion of correlation functions. All models

of physical interest display non-trivial fluctuation behavior on large length scales. Indeed,

in the vicinity of critical points marking the position of continuous phase transitions, one

expects the onset of critical fluctuations, i.e. the accumulation of fluctuations on all length

scales. (For a precise formulation of the terminology, see the section on phase transitions and

critical phenomena below.) One of the central working hypotheses of the theory of “critical

phenomena” is that, in the vicinity of the critical points there is only one length scale of

physical relevance, the correlation length ξ. Within the context of the Ising model (cf.

our previous discussion on page 199), ξ is defined as the decay length of the correlation

function,

C(r1 − r2) ≡ 〈S(r1)S(r2)〉 − 〈S(r1)〉〈S(r2)〉 ∼ exp

[
−|r1 − r2|

ξ

]
,

where we have switched to a continuum notation Si → S(r), to emphasize the large-distance

character of ξ. To relate this quantity to the thermodynamic characteristics, one may note

that the magnetic susceptibility is given by

χ = −∂2
HF

∣∣
H=0 = T∂2

H lnZ
∣∣
H=0

= β

∫
ddr ddr′

C(r−r′)︷ ︸︸ ︷
(〈S(r)S(r′)〉 − 〈S(r)〉〈S(r′)〉) . (8.3)

INFO In fact, this is yet another manifestation of the fluctuation–dissipation theorem

discussed in the previous chapter. A dissipative quantity (in this case, the susceptibility) is

determined by the fluctuation behavior of the system.

Comparison with the definition of the correlation function above identifies χ ∼ ξd, i.e., in the

one-dimensional system, the magnetic susceptibility is directly proportional to the length

scale determining the decay of correlations in the system. So far, we have not yet made use

of the specific results obtained for the Ising models above. However, to actually determine

the correlation length for our present example, we need only differentiate Eq. (8.2) once

again with respect to H, to obtain

ξ ∼ χ ∼ ∂H |H=0 m ∼ e2βJ , (8.4)

i.e. the correlation length exponentially increases in the limit T → 0 on a scale set by

the microscopic “stiffness constant”, J . This result should not be too surprising: unlike its

higher-dimensional counterparts, the one-dimensional Ising model does not display a finite-

temperature phase transition between a ferro- and a paramagnetic phase. It is only in the

limit T → 0 that long-range correlations develop.

In the vicinity of a critical point, the diverging correlation length specifies the singular

thermodynamic properties of the system. More specifically, all observables X of dimension-

ality [length]DX should obey the scaling form

X ∼ ξDXgX ,
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Figure 8.2 RG or block spin transformation of the Ising model illustrated for clusters of size b = 2.
An r-fold iteration of the procedure reduces the degrees of freedom by a factor 2r.

where gX is a dimensionless function. Let us explore this concept on our present example.

The “reduced free energy,”

f(T ) ≡ F

TL
, (8.5)

has dimension L−1. Noting that N ∼ L, a straightforward low-temperature expansion of

Eq. (8.1) indeed gives

f(T )− f(0) = ξ−1

(
−1− 1

2
ξ2h2

)
≡ ξ−1g(ξh), (8.6)

where we have subtracted the infinite but inessential constant f(0) and assumed that 1 �
ξ−1 � h. (The scaling form above actually suggests that the magnetic field has dimension

L−1, a prediction substantiated below.)

We have thus found that the correlation length of the one-dimensional Ising system

diverges according to Eq. (8.4) upon approaching zero temperature, and that the free energy

obeys the scaling law (8.6). Of course, this is only a fraction of the full information stored

in the exact solution. However, the reduced set of data has the striking advantage that it

is of general relevance. Indeed, we saw above that the correlation length is directly related

to measurable properties of the system such as the magnetic susceptibility. Similarly, the

output of experiments on systems with long-range correlations is commonly encoded in the

language of scaling relations. In other words, we have extracted that part of the information

contained in the exact solution that carries universal relevance and can be compared with

the output of other approaches.

8.1.3 Kadanoff’s block spin RG

With this background we are in a position to explore some of the conceptual foundations of

the RG on a model application. According to the general scheme outlined at the beginning

of the chapter, our aim is to devise an algorithm to recursively trace out parts of the

short-scale fluctuations of the system and assess their influence on the remaining degrees of

freedom.
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Leo P. Kadanoff 1934-
Theoretical physicist and applied
mathematician who has con-
tributed widely to research in the
properties of matter, the devel-
opment of urban areas, statistical
models of physical systems, and
the development of chaos in simple mechanical and
fluid systems. He was instrumental in the develop-
ment of the concepts of scale invariance and univer-
sality as they are applied to phase transitions.

Following the program outlined by

Kadanoff’s seminal work on the

foundations of the RG, we will follow

a strategy whereby this renormal-

ization step may be effected by

subdividing the spin chain into reg-

ular clusters of b neighboring spins

(see Fig. 8.2). We may then proceed

to sum over the 2b sub-configurations

of each cluster, thereby generating

an effective functional describing the

inter-cluster energy balance. While it is clear that this energy functional exists, a far less

obvious question to ask is whether it will again have the form of an effective Ising spin

system. Remarkably, the answer is affirmative: the Ising model is said to be “renormaliz-

able.” The structural reproduction of the model implies that we can think of each cluster

as some kind of meta-Ising spin, or block spin. More importantly, it guarantees that the

renormalization step qualifies for iteration: in a second RG step, b block spins are grouped

to form a new cluster (now comprising b2 of the microscopic spins) which are then traced

out, etc. We next discuss how this algorithm is implemented in concrete terms.

Within the transfer matrix approach, a cluster of b spins is represented through b transfer

matrices T . Taking the partial trace over its degrees of freedom amounts to passing from

these b matrices to the product T ′ = T b. (By construction of the approach, the internal

index summation involved in taking the product amounts to tracing out the degrees of

freedom of the cluster.) The transition from the original partition function Z to the new

partition function Z ′ is defined through the relation

ZN (K,h) = trTN = tr (T b)N/b = tr (T ′)N/b = ZN/b(K
′, h′), (8.7)

where the notation makes the parametric dependence of the partition function on the size of

the system, N , and on the coupling constants K,h explicit. Notice that the equation above

makes the highly non-trivial assumption that the reduced trace, tr (T ′)N/b, can again be

expressed as an Ising partition function or, equivalently, that the effective transfer matrix

T ′ has the same algebraic structure as the elementary matrices T .

To confirm the integrity of the transformation, one may explore the structure of the

product matrices T ′ for the simplest case of b = 2 block spins. Introducing the abbreviations

u ≡ e−K , v ≡ e−h, we have

T =

[
eK+h e−K

e−K eK−h

]
=

[
u−1v−1 u

u u−1v

]
,

while the product takes the form

T ′ ≡ T 2 =

[
u2 + u−2v−2 v + v−1

v + v−1 u2 + u−2v2

]
!
= C

[
u′−1v′−1 u′

u′ u′−1v′

]
.

In the last equality we require that the new transfer matrix be of the same structure as

the original. However, noting that this requirement will introduce three conditions (for the
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Figure 8.3 (a) The flow of coupling constants of the one-dimensional Ising model generated
by iteration of the RG transformation. The three lines shown are for starting values (u, v) =
(0.01, 0.9999)(�), (0.01, 0.999)(�), and (0.01, 0.99)(�). (b) Magnification of the zero-temperature
fixed point region.

three independent entries of the symmetric matrices T and T ′), we are willing to tolerate the

appearance of an overall multiplicative constant C.7 Having introduced this new parameter,

we have enough freedom to solve the three equations, from which one finds (exercise)

u′ =
√
v + v−1

(u4 + u−4 + v2 + v−2)1/4
, v′ =

√
u4 + v2√
u4 + v−2

, (8.8)

and C =
√
v + v−1(u4+u−4+v2+v−2)1/4. As a corollary, we remark that the possibility of

representing the new transfer matrix in the same algebraic structure as the old one implies

that the transformed model again describes an Ising spin system (namely the spin system

whose transfer matrix would be given by T ′). However, the Hamiltonian βH of the new

block spin system:

� is defined at a different temperature, magnetic field and exchange constant (as described

by the new values of the coupling constants (u′, v′)) and
� describes fluctuations on length scales that are twice as large as in the original system.

In particular, the short-distance cutoff has been doubled.

To make further progress, one may focus on the two relevant parameters u′ and v′ and

observe that the result of the block spin transformation can be represented as a discrete

map [
u′

v′

]
=

[
f1(u, v)

f2(u, v)

]
,

where the functions f1,2 are defined through Eq. (8.8). In Fig. 8.3 sequences of points

generated by an iterative application of the map f are shown for different values of “initial

conditions” (u0, v0). It is evident from the RG trajectories that the map f possesses two

7 Taking the product of the new transfer matrices, we see that this constant appears in the partition function as

Z′ ∼ CN/b, i.e. the free energy acquires an overall additive constant F ′ ∼ −NT
b lnC which will be of no further

significance.
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disjoint sets of fixed points, i.e. points (u∗, v∗) that remain invariant under the application

of the map f : [
u∗

v∗

]
=

[
f1(u

∗, v∗)
f2(u

∗, v∗)

]
.

Inspection of Eq. (8.8) shows that this is the case for (a) the point (u∗, v∗) = (0, 1), and (b)

the line (u∗, v∗) = (1, v).

The set of fixed points represents the most important structural characteristic of an RG

analysis. They organize the space of “flowing” coupling constants into sectors of qualitatively

different behavior. In particular, one may note that, at a fixed point, all characteristics

of the model, including its correlation length ξ, remain invariant. On the other hand, we

noticed above that an RG step is tantamount to doubling the fundamental length scale of

the system. Consistency requires that either ξ = 0 or ξ = ∞. In the present case, the line

of fixed points is identified with u = exp[−βJ ] = 1, i.e. β = 0. This is the limit of infinitely

large temperatures, at which we expect the model to be in a state of maximal thermal

disorder, that is ξ = 0. Besides the high-temperature fixed line, there is a zero-temperature

fixed point (u, v) = (exp[−βJ ], exp[−βh]) = (0, 1) implying T → 0 and h = 0. Upon

approaching zero temperature, the system is expected to order and to build up long-range

correlations, ξ → ∞.

Notice, however, an important difference between the high- and the low-temperature set

of fixed points: while the former is an attractive fixed point in the sense that the RG

trajectories approach it asymptotically, the latter is a repulsive fixed point. No matter

how low the temperature at which we start, the RG flow will drive us into a regime of

effectively higher temperature or lower ordering. (Of course, the physical temperature does

not change under renormalization. All we are saying is that the block spin model behaves

as an Ising model at a higher temperature than the original system.)

To explore the low-temperature phase of the system quantitatively, we may linearize

the RG map in the vicinity of the T = 0 fixed point. That is, condensing the fixed point

coordinates into a two-component vector, x∗ ≡ (u∗, v∗)T = (1, 0)T , and assuming that Δx

parameterizes a small deviation from the fixed point, one may write x∗+Δx′ = f(x∗+Δx) ≈
f(x∗) + ∂xf ·Δx+O(Δx2). Now, drawing on the invariance of the fixed point, f(x∗) = x∗,
we obtain the linearized map Δx′ = ∂xf ·Δx+O(Δx2). To explore the linearized mapping

in more detail, it is convenient to introduce yet another pair of variables, namely r ≡ u4,

s ≡ v2, whereupon the RG transformation becomes rational, r′ = 2+s+s−1

r+r−1+s+s−1 , s
′ = r+s

r+s−1 .

Differentiating this map at (r, s) = (1, 0), it is straightforward to show that[
Δr′

Δs′

]
=

[
4

2

] [
Δr

Δs

]
.

Noting that a transformation with b = 4, say, is equivalent to a two-fold application of a

b = 2 transformation, one may recast the relation above in the more general form[
Δr′

Δs′

]
=

[
b2

b

] [
Δr

Δs

]
, (8.9)

applicable to arbitrary b.
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To make use of Eq. (8.9), let us once again consider the reduced free energy Eq. (8.5):

f(Δr,Δs) ≡ −N−1 lnZN (K(Δr), h(Δs)) ≡ −N−1 lnZN (Δr,Δs) and reformulate Eq. (8.7)

according to

f(Δr,Δs) = − 1

N
lnZN (Δr,Δs) = − 1

N ′b
lnZN ′(Δr′,Δs′) =

1

b
f(b2Δr, bΔs).

This equation describes the “scaling” of the free energy density under block spin trans-

formations (all in the linearizable low-temperature regime) or, equivalently, changes of the

fundamental length scale at which we consider our model. The right-hand side of the equa-

tion describes how the model would look from a “blurred” perspective where all degrees of

freedom on scales < b have been comprised in a single structural unit.

Importantly, b is a free parameter without intrinsic significance; it can be set to any desired

value. For example, we may find it convenient to look at our model at scales where b2Δr = 1.

With this choice one obtains f(Δr,Δs) = Δr1/2 f(1,Δs/Δr1/2) ≡ Δr1/2 g(Δs/Δr1/2),

where the dimensionless one-parameter function g is defined through the second equality.

Finally, one can relate back to the physical parameters of the system:

Δr = r − 0 = r = u4 = e−4K , Δs = s− 1 = v2 − 1 = e−2h − 1 � −2h,

which brings us to the scaling relation

f = e−2Kg(e2Kh). (8.10)

This is the scaling form predicted by the RG analysis. Notice that a non-trivial statement is

being made. The a priori dependence of the free energy on two independent parameters K,h

has been reduced to a one-parameter function, multiplied by an overall prefactor. Indeed,

we expect on general grounds that (see the discussion of the previous section) the reduced

free energy should scale with the inverse of the correlation length ξ, which in turn diverges

upon approaching the zero-temperature fixed point. Comparing with Eq. (8.10), and noting

that there are no reasons for the rescaled free energy g(x) = f(1, x) to diverge by itself, we

conclude that the divergence of ξ is driven by the prefactor, i.e. ξ ∼ e2K , in agreement with

the result of the exact analysis. With this identification we obtain

f = ξ−1g(ξh),

i.e. the magnetic field appears in conjunction with the correlation length and we have

reproduced the exact asymptotic Eq. (8.6).

Notice that there is no reason to be too irritated about the excessive appearance of vague

proportionalities “∼.” As fixed points are approached, physical systems tend to build up

all sorts of singular scales. The most fundamental of these is the correlation length, but

the divergence of ξ usually entails singular behavior of other physical quantities. These

singularities characterize much of the observable behavior of a system both theoretically

and, in fact, experimentally. In the immediate vicinity of a fixed or transition point, all but

the strongest driving forces of singular scaling are of secondary importance. Indeed, this

is why we could, for example, conclude from Eq. (8.10) that ξ ∼ exp(2K) ∼ exp(2βJ).

We know on general grounds that f ∼ ξ−1. On the other hand, (8.10) implies that the

leading (i.e. exponential) driving force behind the divergence of that scaling factor must
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reside in exp(2βJ). This leads to the identification ξ ∼ exp(2βJ), where all other factors of

proportionality are of secondary importance.

EXERCISE Apply the block spin RG procedure to the one-dimensional q-state Potts spin model

βH = −K
∑N

i=1 δsi,si+1 , where si = (1, 2, . . . , q). Identify all fixed points and note their stability.

In Section 8.3.3 below we discuss these scaling arguments from a more rigorous and general

perspective. However, before doing so, let us exemplify an RG analysis of a second case

study.

8.2 Dissipative quantum tunneling

Previously, we have explored the impact of the external environment on the quantum

mechanical tunneling of a particle from a well. In particular, we have seen that, under a

wide range of conditions, the influence of the environment can be captured by an ohmic

contribution to the action, of the form Sdiss[θ] =
1

πTg

∑
ωn

|ωn||θn|2, where the parameter

g−1 characterizes the bare viscosity. Indeed, we have seen that a similar dissipative struc-

ture appears in a number of different settings, including the problem of impurity scattering

in a quantum wire (see Problem 4.5). There, the dissipative term appeared as a result of

integrating over the collective fluctuations of the bosonized field while pinning the field θ

at the impurity.

In the following, we exploit an RG program to uncover the effect of dissipation on the

facility to tunnel. To be concrete, let us assume that the quantum mechanical particle

inhabits a periodic potential, U(θ) = c cos θ. In this case, the quantum transition probability

can be encapsulated by the quantum partition function Z =
∫
Dθ exp(−S[θ]) where8

S[θ] =
1

4πTg

∑
n

|ωn||θn|2 + c

∫
dτ cos(θ(τ)). (8.11)

To explore the physical behavior of the system described by the effective action (8.11), we

might decide to focus on a physical observable that would then be calculated by taking

appropriate functional averages with respect to the effective action S[θ]. However, we shall

instead proceed in a somewhat more indirect manner: following the general philosophy

outlined at the beginning of the chapter, we begin by arbitrarily subdividing the set of all

fields {θ} into short- and long-wavelength degrees of freedom. For example, assuming that

the maximum frequency up to which the effective bosonic theory of the problem applies is

given by Λ, we might say that fluctuations on scales Λ/b < |ωn| < Λ are “fast” (b > 1)

while those with |ωn| < Λ/b are “slow.”

INFO Notice that this mechanism of subdivision of the degrees of freedom differs from that

employed earlier. In the previous example, we carried out an RG transformation by integrating

8 Here, taking the viscosity 1/g to be large, we have neglected the influence of the kinetic contribution
∫
dm

2 θ̇2,
which serves only to regularize the UV behavior.
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out field fluctuations on short scales in real space, i.e. we performed a real space renormal-

ization. Here, we chose to integrate over a high-lying sector in frequency space. Alluding to the

status of frequency as the (d+1)th component of a generalized momentum, this implementation

of the RG transformation is called momentum shell renormalization. While the real space

renormalization may seem more intuitive, it is usually less convenient to carry out analytically.

(As regards numerical renormalization procedures, the situation is different.) It goes without

saying that the net outcome of any RG strategy must not depend on the specific choice of the

integration procedure.

Our first objective is to identify the effective action of the slow degrees of freedom after

the fast fluctuations have been integrated out. To prepare this integration, it is useful

to decompose a general field amplitude θ(τ) into a slow contribution θs(τ) and its fast

complementary θf(τ) part, that is θ(τ) ≡ θs(τ) + θf(τ), where

θs(τ) ≡
∑
ωn,s

e−iωnτθn ≡
∫
s

dω

2π
e−iωτθ(ω), θf(τ) ≡

∑
ωn,f

e−iωnτθn ≡
∫
f

dω

2π
e−iωτθ(ω).

(8.12)

Here we have introduced the abbreviations
∑

ωn,s
≡

∑
|ωn|<Λ/b and

∑
ωn,f

≡
∑

Λ/b≤|ωn|<Λ.

Anticipating that we shall be working at very low temperatures T � Λ, we note that one

may represent the discrete frequency summations by integrals,
∫
s
dω ≡

∫
|ω|<Λ/b

dω and∫
f
dω ≡

∫
Λ/b≤|ω|<Λ

dω. (It is a good exercise to convince oneself of the legitimacy of this

simplification at every step of the construction below. Also notice that, with the continuum

fields, θ(ω) = θn/T .)

On substituting into the continuum representation of the action (8.11),

S[θ] =
1

4πg

∫
|ω|<Λ

dω

2π
|θ(ω)|2|ω|+ c

∫
dτ cos(θ(τ)), (8.13)

one obtains S[θs, θf ] = Ss[θs] + Sf [θf ] + SU [θs, θf ], where

Ss,f [θs,f ] =
1

4πg

∫
s,f

dω

2π
|θ(ω)|2|ω|, SU [θs, θf ] = c

∫
dτ cos(θs(τ) + θf(τ)).

To proceed with this expression, we will resort to an approximation that is difficult to justify

in advance. Defining e−Seff [θs] ≡ e−Ss[θs]〈e−SU [θs,θf ]〉f , where 〈· · · 〉f ≡
∫
Dθfe

−Sf [θf ](· · · ), and
assuming that the coupling constant c is small, we approximate

e−Seff [θs] = e−Ss[θs] 〈1− SU [θs, θf ] + · · · 〉f ≈ e−Ss[θs]e−〈SU [θs,θf ]〉f . (8.14)

That is, by assuming that the coupling constant c is in some sense small, we expand in

c – which appears to be similar to our previous perturbative approaches – only to re-

exponentiate it in the next step – a manipulation very different from plain perturbation

theory. Evidently, the validity of this step is bound to small values of the coupling constant.

However, before attempting a more qualified justification, let us tentatively accept the

approximation above and explore its consequences.
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Computing the average

〈SU [θs, θf ]〉f = c

∫
Dθf e

−Sf [θf ]

∫
dτ cos(θf(τ) + θs(τ))

=
c

2

∫
dτ eiθs(τ)

∫
Dθf e

− 1
4πg

∫
f

dω
2π θ(ω)|ω|θ(−ω)ei

∫
f

dω
2π eiωτθ(ω) + c.c.

=
c

2

∫
dτ eiθs(τ)e−πg

∫
f

dω
2π |ω|−1

+ c.c. = c

∫
dτ cos(θs)e

−2πg
∫ Λ
Λ/b

dω
2πω

= c

∫
dτ cos(θs)e

−g ln b = cb−g

∫
dτ cos(θs),

We arrive at the remarkable conclusion that the effective action for the slow field,

Seff [θs] =
1

4πg

∫
s

dω

2π
|θ(ω)|2|ω|+ cb−g

∫
dτ cos(θs),

ωω ωs

Λ / b

Λ

is structurally identical to the action we started out from; in other words,

we have seen that the action is renormalizable. Nonetheless, Seff differs

from the initial action S above in two important respects: firstly, the

integration over the fast fields induces a change of the coupling constant

of the perturbation; secondly, the new action takes values on field con-

figurations that fluctuate only on scales |ωn| < Λ/b.

The next step of the RG program requires the comparison of the model

before and after the integration over the fast fields. However, two model

actions taking values on different sets of field configurations cannot be

sensibly compared. Rather, one must effect a rescaling of the fundamen-

tal unit of frequency/time, (τ, ω) → (τ ′, ω′), such that the transformed field θs(ω) → θ′(ω′)
also fluctuates on all scales |ω′| < Λ. We thus introduce a rescaled frequency variable

according to

ω′ ≡ bω.

This change of variables engages a number of secondary transformations. In order to keep

the dimensionless combination ωτ relating time to frequency invariant, one must set τ ′ ≡
b−1τ . As to the transformation of the field variable θ, there is some freedom (because

θ is an integration variable that can be transformed arbitrarily). However, the Fourier

representation Eq. (8.12) implies that, after the transformation of θ(τ) has been fixed, the

transformation of θ(ω) follows from our previous rescaling of frequency/time. In order to

keep the algebraic structure of the cosine operator invariant, we choose to define θ′(τ ′) ≡
θs(τ). Equation (8.12) then enforces the condition

θ′(ω′) = b−1θ(ω).

Substitution of the new variables ω′, τ ′, θ′(τ ′), and θ′(ω′) into the effective action then gives

Seff [θs] = S′[θ′] ≡ 1

4πg

∫
|ω′|<Λ

dω

2π

′
|θ′(ω′)|2|ω′|+ cb1−g

∫
dτ ′ cos(θ′(τ ′)).
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Notice that the first contribution to the action remained invariant, save for the fact that

the integration now extends over the full interval |ω′| < Λ.

INFO In fact, one may note that, without any calculation, the transformation of the action

under the rescaling of variables could have been anticipated from dimensional analysis: the

definition ω′ = bω implies that all contributions to the action of dimension [frequency]d change by

a factor b−d. Since θ(τ) is a dimensionless phase, we have [θ(τ)] = 1 while [θ(ω)] = [frequency]−1.

Thus, the first term of the action has dimension 1 and remains invariant. The second operator

carries the dimension [dτ ] = [frequency]−1 and, therefore, changes by a factor b.

We are now in a position to compare the effective actions S[θ] and S′[θ′] before and after

the integration over the fast modes. Obviously, the principal effect of the integration over

fast modes is that the coupling constant of the periodic potential has changed according to

the relation

c → c(b) ≡ cb1−g. (8.15)

(However, do not forget a point that is implicit in the notation: the new action describes

fluctuations on slower frequency scales or larger temporal scales. That this difference is not

manifest in the notation is due to the fact that we chose to measure the “new” frequency

continuum in rescaled variables ω′ = bω.)

This finding contains a preliminary answer to the question formulated above. To reca-

pitulate, we asked how the presence of the dissipative term manifests itself in the facility

to tunnel. We have found that an integration over short-scale fluctuations of the collective

field θ alters the effective strength of the potential. (In the context of the quantum impurity

problem in the wire, this change is a manifestation of the mutual influence of the Friedel

scattering pattern and interactions in the electron gas. Indeed, it is apparent that in the

non-interacting case, i.e. for g = 1 (cf. Eq. (4.52)), the coupling constant does not change.

For repulsive (attractive) interactions, g < 1 (g > 1) the coupling increases (decreases) in

accord with the qualitative picture formulated above.)

However, at this stage, our result merely indicates how the coupling constant changes

after one RG step. Notably, Eq. (8.15) depends in a non-universal manner on how we choose

to dissect the frequency spectrum (the parameter b). However, ideally, we would like to know

the value of the coupling constant after all degrees of freedom down to a certain infrared

cutoff scale ωmin have been integrated out. (For example, the role of ωmin might be taken

by temperature, the oscillation frequency of an external perturbation, etc.) The general

route towards obtaining this information is to iterate the RG step, i.e., setting c ≡ c(0)

and c′ ≡ c(1), explore the sequence of coupling constants c(0) → c(1) → c(2) → · · · In all

that follows, it is convenient to think of this sequence as a kind of dynamical system. In

each discrete “time step,” the variable c changes according to c → c′ = cb1−g = celn b(1−g).

Assuming that b = 1 + ε is very close to unity (which means that, in each step, only

an asymptotically thin layer in frequency space is “shaven off”), we can encapsulate this

information in the differential equation c′−c
ε ≈ dc

dε ≈ dc
d ln b = c(1−g). The evolution equation
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describing the flow of the coupling constant under an infinitesimal change of the control

parameter,

dc

d ln b
≡ β(c) = c(1− g), (8.16)

is known as a Gell-Mann–Low equation. For historical reasons, the right-hand side of

the equation is called the β-function.

Equation (8.16) makes the interpretation of the RG-generated change of the coupling

constant as a dynamical system manifest. Thinking of the parameter t ≡ ln b as a “time

coordinate,” we can integrate the evolution equation to obtain9 c(t) = c(0)e(1−g)t, where

c(t = 0) = c(b = 1) has the status of the bare coupling constant of the theory. (Remember

that, for b = 1, Λeff = Λ/b = Λ, which is the level of the unrenormalized theory.)

Having inferred the RG flow, one may wonder at what “time” tmax should we stop the

renormalization? What is the “real” value of the coupling constant? The answers to these

questions are somewhat application-specific. For example, we might have coupled the system

to an external perturbation of characteristic frequency ωm. In that case, we might want

to integrate out all degrees of freedom with frequency ωn>m to then explore the effective

low-energy theory at scales ∼ ωm, i.e. we would set Λeff = ωm, or t = ln(Λ/ωm). The

effective theory would then look structurally identical to the microscopic model but with

a renormalized coupling constant c = c(0)(Λ/ωm)1−g ∝ ωg−1
m . (Notice that both the bare

constant c(0) and the cutoff Λ depend in a non-universal manner on microscopic elements

of the model. The use of the proportionality sign indicates that we are not, in general,

interested in these details but rather focus on the dependence of the coupling constant on the

low-energy scale ωm.) Alternatively, we might want to integrate out all degrees of freedom

down to the lowest frequency allowed by Matsubara frequency quantization, Λeff = 2πT .

In this case, c ∝ T g−1. For a system of finite extent L, we might argue that the spectrum

of the modes θ(k) is quantized with ωmin = πv/L. In this case, the effective value of the

coupling at the lowest frequencies would be c ∝ L1−g. Summarizing, the RG flow should be

terminated at a low-energy scale determined by the specific problem under consideration.

Our results so far on the behavior of the coupling constant are summarized in the bottom

part of the figure below. We have found that, for interaction parameters g > 1 (g < 1),

the coupling constant c decreases (increases). The “non-interacting” case g = 1 defines a

fixed line where the coupling strength does not change. However, at this stage, we must

remember that the analysis was based on a spurious expansion of the action to first order

in the impurity operator. This implies that, in the repulsive case, even if the initial value of

the coupling constant was small, it will soon flow into a region where the perturbative RG

analysis loses its meaning (indicated by a wavy line in the figure).

9 Critical readers will notice that this result coincides with the change of the coupling constant obtained after
the first RG step. This coincidence, however, is a consequence of the simple structure of the β-function in the
present example. In more complicated cases, the change of the coupling constant after an infinitesimal RG step
will structurally differ from the result obtained after following the RG flow all the way down to the IR cutoff.
The concept of a β-function and its integration are therefore indispensable elements of the theory.
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c
∞

0
1 1/g

attractive repulsive

How do we know what happens after the coupling

constant has disappeared into the forbidden zone?

Remarkably, it turns out that, for the particular

model in question, not only the regime of a weak

potential but also the complementary case of an

asymptotically large potential (the upper part of the

figure) is amenable to analytical investigation. As a

result of a strong coupling perturbative expansion

(see Problem 8.8.1) one may show that the coupling

constant flows to (away from) infinite coupling for repulsive (attractive) interactions. It is

thus tempting to conjecture a globally increasing/decreasing flow continuously interpolating

between the two asymptotic regimes. (Application of the machinery of conformal field

theory to the problem has indeed shown this conjecture to be true.)

Therefore, when put together, we arrive at a remarkable conclusion. For g > 1, the

strength of the potential flows to zero, implying that the asymptotic dependence at zero

temperature is free: the particle can tunnel freely between minima of the potential. How-

ever, for g < 1, the coupling constant flows to infinity, implying that the particle becomes

localized, confined to a minimum of the potential.

INFO Notwithstanding the limitation to small values of the coupling, we still have to discuss the

consistency of the fast field integration, i.e. to show that the re-exponentiation of the poten-

tial operator after the averaging over fast fluctuations (see Eq. (8.14)) underlying the previous

analysis is legitimate. According to Eq. (8.14), the functional average of the exponentiated action

can effectively be replaced by the exponential of the averaged action, 〈exp(−Sc)〉 ≈ exp(−〈Sc〉).
To explore the integrity of this assumption, let us explore the relevance of a typical correction.

For example, an expansion of the exponent to second order in the potential operator would lead

to expressions of the type

〈
c2

∫
dτ dτ ′ cos(θs(τ) + θf(τ)) cos(θs(τ

′) + θf(τ
′))

〉
c

,

where, here, we used the connected average 〈ÂB̂〉c ≡ 〈ÂB̂〉 − 〈Â〉〈B̂〉 since the square of the

averaged action ∼ (〈c
∫
d cos(θ)〉)2 is already included in our previous scheme. At first sight,

this expression looks worrisome. By averaging over the fast field θf we are bound to generate

a composite operator that depends in a non-local manner on two time arguments τ and τ ′.
Re-exponentiation of these objects would lead to an action much more complicated than the

original.

However, before losing hope, let us have a closer inspection of the fast field average of the

expression above. Representing the cos-functions as sums of exponentials, we are led to consider
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expressions of the type〈
exp [±i(θs(τ) + θf(τ))] exp

[
±i(θs(τ

′) + θf(τ
′))

]〉
c

∝
〈
exp

[
i

∫
f

dω

2π

&
±eiωτ ± eiωτ ′'

θ(ω)

]〉
−

(〈
exp

[
±i

∫
f

dω

2π
eiωτθ(ω)

]〉)2

= exp

[
−2πg

∫
f

dω

2π
|ω|−1  1± cos(ω(τ − τ ′))

!]
−
(
exp

[
−πg

∫
f

dω

2π
|ω|−1

])2

= b−2g

(
exp

"
∓4πg

∫ Λ

Λ/b

dω

2πω
cos(ω(τ − τ ′))

#
− 1

)
≈ 0.

Here, the ± signs in the first line indicate the four different possible combinations of signs; in the

second equality we have used our previous results on the integrals over the high-lying frequency

shell; and in the crucial third equality, we have noticed that, typically, (τ − τ ′) > b/Λ, 1/Λ such

that the oscillatory term integrates to something close to zero and can be neglected in comparison

with the constant.

The estimate above is limited to time arguments |τ − τ ′|Λ/b > 1 outside a narrow strip

|τ − τ ′| ∼ b/Λ. To show that the contribution of composite operators from these domains is also

negligible, we employ an argument that is symptomatic for RG analyses: consider the connected

average 〈
c2

∫
|τ−τ ′|<b/Λ

dτ dτ ′ cos(θs(τ) + θf(τ)) cos(θs(τ
′) + θf(τ

′))

〉
c

∝ b

∫
dτ

〈
cos2(θs(τ)) + θf(τ)

〉
c
∝ b−4g+1

∫
dτ cos2(θs(τ)) + const.,

where the notation highlights the fact that the integration area is proportional to b, and we

have used the fact that, for those narrow time windows, the field integration will be oblivious to

the difference between θ(τ) and θ(τ ′). The second proportionality is obtained by averaging the

integrand along the lines of our previous calculations.

After the rescaling of time and frequency to restore the old cutoff, the operator gets multiplied

by another factor of b, i.e. the overall scaling factor is given by b2(1−2g). This factor tells us that

the composite operator generated by higher-order cumulative expansion of the action is of less

operator relevance than the contributions we are keeping. For values of the interaction g ≈ 1

not too distant from unity, the relative value of the coupling constants of the anomalous operator

(∝ b2(1−2g)) and of the standard cos θ contribution (∝ b1−g) will scale to 0 as b is increased.

A classification of operators according to their relevance under the RG transformation indeed

forms the general basis for the limitation of low-energy actions to few contributions, namely

those contributions that promise to be of strongest scaling relevance as larger and larger field

fluctuations are probed. We will discuss this point more systematically in the next section.

Before leaving this section, let us make a few general observations about the renormalization

procedure. We first notice that it would have been futile to attack the problem by the

“plain” perturbation theory developed in Chapter 5. The reason is that the propagator

of the (0 + 1)-dimensional effective theory, |ω|−1, leads to logarithmic divergences when

integrated over unbounded frequency intervals, i.e. the present theory is again plagued by

the UV/IR divergences observed above in different contexts. In Section 5.1 we had argued
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that, in principle, a way to overcome these problems was to introduce a UV and, if needed,

an IR cutoff into the theory. However, we soon dismissed this option because it seemed

evident that it would lead to spurious non-universal cutoff dependences of physical results.

How do these observations relate to what we are doing presently? Obviously, the present10

version of the RG procedure also relies on the introduction of a cutoff regularizing the

logarithmic UV divergences mentioned above; apparently, the RG procedure shares a lot

of structures with the perturbative approach. But, somehow, we managed to extract the

information in which we were interested – the dependence of the potential strength on long-

range system parameters – in a manner independent of the cutoff.11 The key to obtaining

this information was to introduce not one, but an entire hierarchy of cutoffs and to integrate

over each of these domains recursively.

Now, a subtle and important point is that this procedure does not imply that the cutoff

or, more generally, short-scale fluctuations of the model have silently made their way out

of the theory. After all, the UV divergences mentioned before are manifestations of a large

“phase volume” of field fluctuations that are likely to somehow affect the behavior of the

system. To understand the “implicit” way through which these fluctuations enter our results,

let us return to a remark made on page 425. There, we had noted that, upon scaling

frequency/time, each operator changes according to its physical dimension. An operator

carrying the dimension [time]
d
would acquire a scaling factor bd. The scaling dimension of

an operator predicted by its “physical” dimension is called the naive scaling dimension,

the canonical scaling dimension, or, for obscure reasons, the engineering dimension.

The designations indicate, however, that these dimensions are not the last word on the

actual scaling behavior of an operator. Indeed, the net result of the RG analysis was that

our operator of interest,
∫
dτ cos θ, an object of engineering dimension 1, changes according

to b1−g. The correction to the naive scaling dimension (presently, g) is called the anoma-

lous dimension of an operator. Its origin lies in the (cutoff-dependent) phase volume of

fluctuations co-determining the change of an operator during each RG step. Put differently,

we can say that the cutoff Λ, by itself a quantity of dimension [time]
−1

, acts as a “gray

eminence” implicitly affecting the scaling behavior of an operator. The anomalous scal-

ing dimensions of the theory effectively determine its long-range observable behavior and,

therefore, represent quantities of prime interest.

8.3 Renormalization group: general theory

Having discussed two extended examples, we are in a position to attempt a reasonably

general outline of the RG strategy. Suppose we are given a field theory defined through the

10 Below we become acquainted with UV regularization procedures that are not based on introduction of a cutoff.
11 One may object that the solutions of the β-functions given above actually do contain the bare cutoff, through an

initial condition; they also depend on the bare coupling strength and, possibly, other “non-universal” parame-
ters. However, that need not worry us: in most applications (both experimental and theoretical) one is interested
not so much in the “absolute value” of physical observables (as these usually depend on unknown material
parameters anyway) but rather in the way these observables change as a relevant control parameter is var-
ied. The important feature found above is that the rate at which the effective potential strength varies with
temperature, say, is largely universal and cutoff-independent.
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action

S[φ] ≡
N∑

a=1

gaOa[φ],

where φ is some (generally multi-component) field, ga are coupling constants and Oa[φ]

a certain set of operators. For concreteness, one may think of these operators as Oa =∫
ddx (∇φ)nφm, i.e. as space–time local operators involving powers of the field and its

derivatives – although more general structures are conceivable.12 By “renormalization of

the theory,” we refer to a scheme to derive a set of Gell-Mann–Low equations describing

the change of the coupling constants {ga} as fast fluctuations of the theory are successively

integrated out.

8.3.1 Gell-Mann–Low equations

There are a number of methodologically different procedures whereby the set of flow equa-

tions can be obtained from the microscopic theory. Here, we formulate this step in a language

adjusted to applications in statistical field theory (as opposed to, say, particle physics).

While there is considerable freedom in the actual implementation of the RG procedure, all

methods share the feature that they proceed in a sequence of three more or less canonical

steps.

I: Subdivision of the field manifold

In the first step, one may decompose the integration manifold {φ} into a sector to be

integrated out, {φf}, and a complementary set, {φs}. For example:

� We may proceed according to a generalized block spin scheme and integrate over all

degrees of freedom located within a certain structural unit in the base manifold {x}.
(This scheme is adjusted to lattice problems where {x} = {xi} is a discrete set of points.

However, as pointed out above, even then it is difficult to implement analytically.)

� We could decide to integrate over a certain sector in momentum space. When this sector is

defined to be a shell Λ/b ≤ |p| < Λ, one speaks of a momentum shell integration. Nat-

urally, within this scheme, the theory will be explicitly cutoff-dependent at intermediate

stages.

� Alternatively, we may decide to integrate over all high-lying degrees of freedom λ−1 ≤ |p|.
In this case, we will of course encounter divergent integrals. An elegant way to handle these

divergences is to apply dimensional regularization. Within this approach one formally

generalizes from integer dimensions d to fractional values d± ε. One motivation for doing

so (for another, see below) is that, miraculously, the formal extension of the characteristic

integrals appearing during the RG step to non-integer dimensions are finite. As long as

one stays clear of the dangerous values d = integer one can then safely monitor the

12 In our previous example of the Luttinger liquid, there appeared an operator
∫
(dω/2π)θ(ω)|ω|θ(−ω). When

represented in space-time, this operator is highly non-local.
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dependence of the integrals on the IR cutoff λ−1. For a good introduction to dimensional

generalization we refer to the textbook by Ryder.13

� For a discussion of alternative schemes, such as the introduction of short-distance real

space cutoffs underlying the so-called operator product expansion, we refer to the

literature (see, e.g., the excellent text by Cardy.1)

II: RG step

The second, and central, part of the program is to actually integrate over short–range

fluctuations. As exemplified above, this step usually involves approximations. In most cases,

one will proceed by a so-called loop expansion, i.e. one organizes the integration over

the fast field φf according to the number of independent momentum integrals – loops14 –

that occur after the appropriate contractions. Of course, this strategy makes sense only if

we can guarantee that the contribution of loops of higher orders is in some sense small,

a precondition that is, alas, often difficult to meet. At any rate, to engage loop numbers

as an expansion parameter, we first need to understand the key role played by space-

dimensionality in the present context. We return to this point in Section 8.4.

Following the procedure, an expansion over the fast degrees of freedom gives an action

S′[φs] ≡
∑
a

g′aO′
a[φs],

in which coupling constants of the remaining slow fields are altered. Notice that the inte-

gration over fast field fluctuations may (and usually does) lead to the generation of “new”

operators, i.e. operators that have not been present in the bare action. In such cases one

has to investigate whether the newly generated operators are “relevant” (see below) in their

scaling behavior. If so, the appropriate way to proceed is to include these operators in the

action from the very beginning (with an a priori undetermined coupling constant). One

then verifies whether the augmented action represents a complete system, i.e. one that does

not lead to the generation of operators beyond those that are already present. If necessary,

one has to repeat this step until a closed system is obtained.

III: Rescaling

One next rescales frequency/momentum so that the rescaled field amplitude φ′ fluctuates
on the same scales as the original field φ, i.e. one sets

q → bq, ω → bzω.

Here, the frequency renormalization exponent or dynamical exponent z may be

unity, two, or sometimes a non-integer value, depending on the effective dispersion relating

frequency and momentum. We finally note that the field φ, as an integration variable, may

be rescaled arbitrarily. Using this freedom, we select a term in the action which we believe

governs the behavior of the “free” theory – in a theory with elastic coupling this might,

13 L. H. Ryder, Quantum Field Theory (Cambridge University Press, 1996).
14 For the definition of loops, see Section 5.1.
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for example, be the leading-order gradient operator ∼
∫
ddr(∇φ)2 – and require that it be

strictly invariant under the RG step. To this end we designate a dimension Ldφ for the

field, chosen so as to compensate for the factor bx arising after the renormalization of the

operator. The rescaling

φ → bdφφ,

is known as field renormalization. It renders the “leading” operator in the action scale

invariant.

As a result of all these manipulations, we obtain a renormalized action

S[φ] =
∑
a

g′aOa[φ],

which is entirely described by the set of changed coupling constants, i.e. the effect of the

RG step is fully encapsulated in the mapping

g′ = R̃(g),

relating the old value of the vector of coupling constants, g = {ga}, to the renormalized one,

g′ = {g′a}. By letting the control parameter, � ≡ ln b, of the RG step assume infinitesimal

values, one can make the difference between bare and renormalized coupling constants

arbitrarily small. It is then natural to express the difference g′ − g = R̃(g)− g in the form

of a generalized β-function or Gell-Mann–Low equation

dg

d�
= R(g), (8.17)

where the right-hand side is defined through the relation R(g) = lim�→0 �
−1(R̃(g)− g).

INFO As mentioned at the beginning of the section, the formulation of the RG step above is

actually not the only one possible. For instance, in high-energy physics, other renormalization

schemes appear to be more natural. In this area of physics, there is actually no reason to believe

in the existence of a well-defined “bare” action with finite coupling constants. (Contrary to the

situation in condensed matter physics, the bare action of quantum electrodynamics, say, is in

principle inaccessible.) However, one may legitimately require that, after an integration over

UV-divergent fluctuations, the “renormalized” coupling constants of the theory (which, in turn,

determine observables such as the physical electron mass) are finite. One may then postulate

that the bare coupling constants of the theory are actually infinite. The value of these infinities is

fine-tuned so as to combine with the fluctuation-induced “infinities” to realize finite renormalized

coupling constants. Alternatively, one may deliberately add extra operators, counter-terms, to

the action which are designed so as to cancel divergences due to fluctuations. However, the net

result of all these RG schemes (which are by and large equivalent) is a mapping describing the

flow of the coupling constants upon variation of a control parameter.
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Figure 8.4 The fractal Julia set is self-similar in the sense that any sub-region of it contains the
full information of the original set.

8.3.2 Analysis of the Gell-Mann–Low equation

The Gell-Mann–Low equation (8.17) represents the principal result of an RG analysis.

Thinking of the control parameter � as a kind of “flow parameter,” one may identify this

equation as a generalized dynamical system, namely the system describing the evolution of

the effective coupling constants of a model upon changing length or time scales. As with any

dynamical system, the prime structural characteristic of the set of equations (8.17) is the set

of fixed points, i.e. the submanifold {g∗} of points in coupling constant space which are

stationary under the flow: R(g∗) = 0. Once the coupling constants are fine-tuned to a fixed

point, the system no longer changes under subsequent RG transformations. In particular it

remains invariant under the change of space/time scale associated with the transformation.

Alluding to the fact that they look the same no matter how large a magnifying glass is

used, systems with this property are referred to as self-similar. (For example, fractals

such as the Julia set shown in Fig. 8.4 are paradigmatic examples of self-similar systems;

the magnification of any sub-region of the fractal looks identical to the full system.)

Now, to each system, one can attribute at least one intrinsic length scale, namely the

length ξ determining the exponential decay of field correlations. However, the existence of a

finite, and pre-determined, intrinsic length scale clearly does not go together with invariance

under scale transformations. We thus conclude that, at a fixed point, either ξ = 0 (not so

interesting), or ξ = ∞. However, a diverging correlation length ξ → ∞ is a hallmark of
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Figure 8.5 Showing the RG flow in the vicinity of a fixed point with two irrelevant (φ1, φ3) and
one relevant (φ2) scaling fields. The manifold S defined through the vanishing of the relevant field,
φ2 = 0, is called a critical surface. On this submanifold, the RG flow is directed towards the fixed
point f . Deviations off criticality make the system approach one of the stable fixed points f1 and
f2.

a second-order phase transition. We thus tentatively identify fixed points of the RG flow

as candidates for “transition points” of the physical system. (For a more comprehensive

review of phase transitions and the critical phenomena accompanying them, see the Info

block starting on page 436 below.) This being so, it is natural to pay special attention to

the behavior of the flow in the immediate vicinity of the fixed-point manifolds. If the set

of coupling constants, g, is only close enough to a fixed point, g∗, it will be sufficient to

consider the linearized mapping

R(g) ≡ R((g − g∗) + g∗) � W (g − g∗), Wab =
∂Ra

∂gb

∣∣∣∣
g=g∗

.

To explore the properties of flow, let us assume that we had managed to diagonalize the

matrix W . Denoting the eigenvalues by λα, α = 1, . . . , N , and the left-eigenvectors15 by φα,

we have

φT
αW = φT

αλα.

The advantage of proceeding via the unconventional set of left-eigenvectors is that it allows

us to conveniently express the flow of the physical coupling constants under renormalization.

To this end, let vα be the αth component of the vector g−g∗ when represented in the basis

{φα}:

vα = φT
α(g − g∗).

15 Since there is no reason for W being symmetric, the left- and right-eigenvectors may be different.
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These components display a particularly simple behavior under renormalization:

dvα
d�

= φT
α

d

d�
(g − g∗) = φT

αW (g − g∗) = λαφ
T
α(g − g∗) = λαvα.

Under renormalization, the coefficients vα change by a mere scaling factor λα, wherefore

they are called scaling fields – a somewhat unfortunate nomenclature. (The coefficients

vα are actually not fields but simply a set of �-dependent coefficients, the vector of coupling

constants when expressed in the basis of eigenvectors φα.) These equations are trivially

integrated to obtain

vα(�) ∼ exp(�λα).

This result suggests a discrimination between at least three different types of scaling fields:

� For λα > 0 the flow is directed away from the critical point. The associated scaling field

is said to be relevant (in the sense that it forcefully drives the system away from the

critical region). In Fig. 8.5, v2 is a relevant scaling field.

� In the complementary case, λα < 0, the flow is attracted by the fixed point. Scaling fields

with this property (v1, v3) are said to be irrelevant.16

� Finally, scaling fields which are invariant under the flow, λα = 0, are termed marginal.17

The distinction of relevant/irrelevant/marginal scaling fields in turn implies a classification

of different types of fixed points:

� Firstly, there are stable fixed points, i.e. fixed points whose scaling fields are all irrel-

evant or, at worst, marginal. These points define what we might call “stable phases of

matter”: when you release a system somewhere in the parameter space surrounding any

of these attractors, it will scale towards the fixed point and eventually sit there. Or,

expressed in more physical terms, looking at the problem at larger and larger scales will

make it more and more resemble the infinitely correlated self-similar fixed-point configu-

ration. (Recall the example of the high-temperature fixed line of the one-dimensional Ising

model encountered earlier.) By construction, the fixed point is impervious to moderate

variations in the microscopic morphology of the system, i.e. it genuinely represents what

one might call a “state of matter.”

� Complementary to stable fixed points, there are unstable fixed points. Here, all scaling

fields are relevant (cf. the T = 0 fixed point of the 1-D Ising model). These fixed points

represent the concept of a Platonic ideal: you can never get there and, even if you managed

16 The terminology “irrelevant” indicates that a scaling field of negative dimension usually does not play much of
a physical role. There are, however, exceptions to this rule. For instance, it may happen that the free energy
of the system depends in a singular manner on an irrelevant scaling variable – in which case the variable is
called dangerously irrelevant. Dangerously irrelevant scaling variables not only strongly affect the outcome
of the theory, but also invalidate the applicability of a number of established concepts of RG theory (such as
the scaling laws to be discussed below).

17 A marginal scaling field corresponds to a direction in coupling constant space with vanishing partial derivative,
∂φαR|g∗=0 = 0. In this case, to obtain a refined picture, one sometimes considers the second-order derivative,

∂2
φα

R|g∗=0 ≡ 2x. In the vicinity of the fixed point, the scaling field then behaves as d�vα = xv2
α. For x > 0

(x < 0) the field has the status of a marginally relevant (irrelevant) scaling field. It is relevant (irrelevant)
on account of the non-vanishing direction of the flow. However, it is also “marginal” because the speed of the
flow decreases upon approaching the critical regime.
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to approach it closely, the harsh conditions of reality will make you flow away from it.

Although unstable fixed points do not correspond to realizable forms of matter, they are

of importance inasmuch as they “orient” the global RG flow of the system.

� Finally, there is the generic class of fixed points with both relevant and irrelevant

scaling fields. These points are of particular interest inasmuch as they can be associated

with phase transitions. To understand this point, we first note that the r eigenvectors

Φα associated with irrelevant scaling fields span the tangent space of an (r)-dimensional

manifold known as the critical surface. (A schematic illustration for the case r = 2

is shown in Fig. 8.5.) This critical manifold forms the basin of attraction of the fixed

point, i.e. whenever a set of physical coupling constants g is fine-tuned so that g ∈ S, the

expansion in terms of scaling fields contains only irrelevant contributions and the system

will feel attracted to the fixed point as if it were a stable one.

However, the smallest deviation from the critical surface introduces a relevant compo-

nent driving the system exponentially away from the fixed point. A sketch of the resulting

flow is shown in Fig. 8.5 for the case of just one relevant scaling field. For example, in the

case of the ferromagnetic phase transition – discussed in more detail in the next section –

deviations from the critical temperature Tc are relevant. If we consider a system only

slightly above or below Tc, it may initially (on intermediate length scales) appear to be

critical. However, upon further increasing the scale, the relevant deviation will grow and

drive the system away from criticality, either towards the stable high-temperature fixed

point of the paramagnetic phase (T > Tc) or towards the ferromagnetic low-temperature

phase (T < Tc).

This picture actually suggests that systems with generic fixed points typically possess

complementary stable fixed points, i.e. fixed points towards which the flow is directed

after it has left the critical region. We also notice that a scaling direction that is relevant

at one fixed point (e.g. Φ2 at the critical fixed point) may be irrelevant at others (Φ2 at

the high- and low-temperature fixed points).

INFO The discussion above suggests that the concept of renormalization is intimately linked to

the theory of phase transitions and critical phenomena, the traditional platform for the

development of the subject in the literature. In view of the existing wealth of literature (and

acknowledging the fact that we are approaching the field from a more operational perspective),

we shall not endeavor to present another “introduction to the theory of critical phenomena.”

Rather, we will summarize in a concise, but hopefully self-contained, manner, those few tenets

and principles that are necessary to place the concept of renormalization into a larger physical

context.

The most fundamental18 signature of a phase transition is its order parameter, M , i.e., a

quantity whose value unambiguously identifies the phase of the system. Examples from classical

statistical mechanics include the magnetization for the ferromagnetic–paramagnetic transition,

the density for the liquid–vapor transition, the order parameter amplitude for the BCS transi-

tion, etc. (However, to keep the terminology concrete, we shall mostly use the language of the

ferromagnetic transition in the following.)

18 Notice that there are transitions whose order parameter is actually unknown. A famous example is the quantum
Hall transition discussed in more detail in Section 9.3.4.
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Figure 8.6 Phase diagram of the ferromagnetic transition. Tuning a magnetic field at fixed tem-
perature T < Tc through zero causes the magnetization to jump discontinuously: [0, Tc] is a line of
first-order transitions. This line terminates in the unique second-order transition point of the sys-
tem, (T = Tc, H = 0). Lowering the temperature at H = 0 causes the non-analytic, but continuous,
development of a finite magnetization at T < Tc.

Transitions between different phases of matter fall into two large categories.19 In first-order

phase transitions the order parameter exhibits a discontinuous jump across the transition line

while, in the complementary class of second-order transitions, the order parameter changes in

a non-analytic but continuous manner. (The two cases are exemplified in Fig. 8.6 by the classical

ferromagnet.)

The phenomenology of second-order transitions is generally richer than that of first-order

transitions. As a thermodynamic state variable, the order parameter is coupled to a conjugate

field, H : M = −∂HF , where F is the free energy. At a second-order transition, M changes non-

analytically, which means that the second-order derivative, a thermodynamic susceptibility,

χ = −∂2
HF, develops a singularity. Now, you may recall from the discussion of the fluctuation

dissipation theorem that the susceptibility is intimately linked to the field fluctuation behavior

of the system. More precisely, χ is proportional to the integral over the correlation function C

determining the fluctuation behavior of the fields (cf. Eq. (8.3)). A divergence of the susceptibility

implies the accumulation of infinitely long-range field fluctuations.

The divergence of the susceptibility goes hand in hand with non-analytic and/or singular

behavior of all sorts of other physical quantities. In fact, an even stronger statement can be made.

We have seen that, right at the transition/fixed point, the system is self-similar. This implies

that the behavior of its various characteristics must be described by power laws. Referring for

a more substantial discussion to Section 8.3.3 below, we here merely support this statement by

a heuristic argument. Consider a function f(t), where f is representative of an observable of

interest and t is a control parameter (a scaling field) determining the distance to the transition

point. In the immediate vicinity of the transition point, f is expected to “scale,” i.e. under a

change of the length scale x → x/b, t → tb−Dt , the function f must, at most, change by a factor

reflecting its own scaling dimension. f(t) = bDf f(tb−Dt). (A more serious, structural change of

the function would be in conflict with asymptotic self-similarity.) Mathematically speaking, this

equation amounts to homogeneity of the function f , equivalently expressed by f ∼ tDf/Dt .

19 Readers absolutely unfamiliar with the thermodynamics of phase transitions may wish to consult the corre-
sponding section of a textbook on statistical mechanics.
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The set of different exponents characterizing the relevant power laws occurring in the vicinity

of the transition are known as critical exponents. For at least four different reasons, the set

of critical exponents represents the most important structural fingerprint of a transition:

1. They carry universal significance, i.e. we do not have to invent a set of critical exponents for

each transition anew. (For example, the divergence of the correlation length, ξ ∼ |t|−ν , is

characterized by a critical exponent commonly, and irrespective of the particular transition

under consideration, denoted by ν.)

2. The set of critical exponents carries the same information as the set of exponents of the

scaling fields, i.e. knowledge of the critical exponents is equivalent to the knowledge of the

linear dynamical system characterizing the flow in the transition region. (In fact, the set of

critical exponents overdetermines the scaling field exponents, i.e. it contains redundancy. For

example, of the six critical exponents characterizing the magnetic transition, only two are

independent. The others are interrelated by20 scaling laws or exponent identities to be

discussed below.

3. Critical exponents are fully universal; they are numbers depending, at most, on dimensionless

characteristics such as the space-time dimensionality or number of components of the order

parameter.

4. Perhaps most importantly, the critical exponents represent quantities that can be measured. In

fact, their universality and structural importance make them quantities of prime experimental

interest.

In the following, let us briefly enumerate the list of the most relevant exponents, α, β, γ, δ, η,

ν, and z.21 Although we shall again make use of the language of the magnetic transition, it is

clear that (and, indeed, how) the definitions of most exponents generalize to other systems.

α: In the vicinity of the critical temperature, the specific heat C = −T∂2
TF scales as C ∼ |t|−α,

where t = (T − Tc)/Tc measures the distance to the critical point. Note that, by virtue of

this definition, a non-trivial statement has been made: although the phases above and below

the transition are essentially different, the scaling exponents controlling the behavior of C are

identical. The same applies to most other exponents listed below.

β: Approaching the transition temperature from below, the magnetization vanishes as M ≡
−∂HF

∣∣
H�0

∼ (−t)β .

γ: The magnetic susceptibility behaves as χ ≡ ∂hM |h�0 ∼ |t|−γ .

δ: At the critical temperature, t = 0, the field dependence of the magnetization is given by

M ∼ |h|1/δ.
ν: Upon approaching the transition point, the correlation length diverges as ξ ∼ |t|−ν .

η: This implies that the correlation function,

C(r) ∼
{

1
|r|d−2+η , |r| 	 ξ,

exp[−|r|/ξ], |r| � ξ,

crosses over from exponential to a power law scaling behaviour at the length scale ξ. To

motivate the power, one may notice that C ∼ 〈φφ〉 carries twice the dimension of the field

20 Unfortunately, the language used in the field of critical phenomena makes excessive use of the prefix “scaling.”
21 Historically, the exponents are drawn from the first six letters of the Greek alphabet. The exceptional designation

of the last exponent, z, betrays the fact that quantum dynamical fluctuations were considered only later.
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φ. The engineering dimension of the latter follows from the requirement that the gradient

operator ∼
∫
ddr (∇φ)2 be dimensionless: [φ] = L(2−d)/2, according to which C(r) has canon-

ical dimension L2−d. The exponent η, commonly referred to as the anomalous dimension

of the correlation function, measures the mismatch between the observed and the canonical

dimension.

z: A quantum theory can, to a large extent, be viewed as a kind of classical theory in d + 1

dimensions. The theory is “quantum critical” if the effective classical theory contains a critical

point. In the vicinity of that point large fluctuations are observed in both the d spatial direc-

tions and the temporal “direction.” However, the different physical origin of these dimensions

manifests itself in the scaling being anisotropic. Denoting the correlation length in the tem-

poral direction by τ , we define τ ∼ ξz, where deviations z �= 1 in the dynamical exponent

measure the degree of anisotropy.

Now, a moment’s thought shows that, of the six classical exponents, only a few can be truly

independent. Previously we have noted that, modulo irrelevant perturbations, the flow in the

vicinity of a transition point is controlled by the relevant scaling fields. Referring for a more

quantitative discussion to Section 8.4 below, we anticipate that, for the magnetic transition, the

magnetic field will certainly represent a relevant perturbation (a fact readily expressed by the

positivity of the exponent δ). Moreover, deviations from the critical temperature, t �= 0, are also

relevant.22 However, for the magnetic transition, that exhausts the list; in the asymptotic vicinity

of the transition, the flow is controlled by a two-dimensional dynamical system. This suggests

that four constraining equations should reduce the set of six classical exponents to only two

independent ones. Historically, these scaling laws were discovered one by one (at a time when

the underlying connections to the system of “scaling fields” had not been fully appreciated).

For the sake of reference, these constraint equations (along with the names of the people who

discovered them) are listed below. In Section 8.3.3 below, we exemplify how the scaling laws can

be transparently derived from the intrinsic structure of the theory.

Fisher ν(2− η) = γ
Rushbrooke α+ 2β + γ = 2
Widom β(δ − 1) = γ
Josephson 2− α = νd

For practical purposes, we need only compute/measure two exponents – no matter which – to

fully specify the scaling structure of the theory.

In the next section we discover that the dynamical system of scaling fields encapsulates

practically all information about “critical” fluctuation phenomena accompanying a phase

transition. However, for the moment, we shall restrict ourselves to the discussion of one

more aspect of conceptual importance, namely universality. In fact, the majority of critical

systems can be classified into a relatively small number of universality classes. Crudely

speaking, leaving apart more esoteric classes of phase transitions there are O(101) funda-

mentally different types of flow recurrently appearing in practical applications. This has to

22 If you find it difficult to think of temperature as a “coupling constant,” remember that, in our derivation of
the φ4-model as the relevant theory of the magnetic transition, the coupling constant of the “mass operator”
r
∫
ddr φ2 turned out to be proportional to the reduced temperature t = |T − Tc|/Tc.
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be compared with the near infinity of different physical systems that display critical phe-

nomena. Why, then, is it that the plethora of all these transitions can be grouped into a

very limited set of different universality classes? Remarkably, the origin of this universality

can readily be understood from the concept of critical surfaces.

systems
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Imagine, then, an experimentalist exploring a system

that is known to exhibit a phase transition. Motivated

by the critical phenomena that accompany phase transi-

tions, the available control parameters Xi (temperature,

pressure, magnetic field, etc.) will be varied until the sys-

tem begins to exhibit large fluctuations. On a theoretical

level, the variation of the control parameters determines

the initial values of the coupling constants of the model

(as they functionally depend on the Xis through their

connection to the microscopic Hamiltonian). In Fig. 8.5

the curve in coupling constant space defined in this way

is indicated by γ. For microscopic parameters corresponding to a point above or below the

critical manifold, the system asymptotically (i.e. when looked at at sufficiently large scales)

falls into either the “high-” or the “low-temperature” regime (as indicated by the curves

branching out from γ in Fig. 8.5). However, eventually the trajectory through parameter

space will intersect the critical surface. For this particular set of coupling constants, the

system is critical. As we look at it on larger and larger length scales, it will be attracted by

the fixed point at S, i.e. it will display the universal behavior characteristic of this particular

point. This is the origin of universality: variation of the system parameters in a different

manner (or for that matter considering a second system with different material constants)

will generate a different trajectory gα({Xi}) = γ′. However, as long as this trajectory inter-

sects with S, it is guaranteed that the critical behavior will exhibit the same universal

characteristics (controlled by the unique fixed point).

In fact a more far-reaching statement can be made. Given that there is an infinity of

systems exhibiting transition behavior (symbolically indicated by the row of boxes in the

upper part of the figure above) while there is only a very limited set of universality classes

(the set of boxes on the left), many systems of very different microscopic morphology must

have the same universal behavior. More formally, different microscopic systems must map

onto the same critical low-energy theory. Examples of these coincidences include (to mention

but a few entries of an endless list) the equivalence of the disordered Luttinger liquid to

a Josephson junction (cf. Problem 6.7), the equivalence of models of planar magnets (see

Section 8.6 below) to two-dimensional classical Coulomb plasmas, and the equivalence of the

liquid–gas transition to the ferromagnetic transition. (In all cases, “equivalence” means that

the systems exhibit identical scaling behavior and, therefore, fall into the same universality

class.) Further coincidences of this type will be encountered below.
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8.3.3 Scaling theory

Previously, we have seen that the dynamical system of scaling fields encodes a wealth of

information on the large-scale structure and on the phases of a physical system. However, we

have not yet established a connection between the concept of renormalization and concrete

(i.e. experimentally accessible) data. This is the subject of the present section. Imagine,

then, that we had represented some observable of experimental interest, X, in the language

of the functional integral. According to the discussion of the previous chapter this means

that we have managed to express

X =
∑
p

C(pi, gα),

as the sum over an n-point correlation function C(pi, gα) = 〈(· · · )φφ · · ·φ〉φ, where the

(symbolic) notation indicates that C may depend both on the momentum scale at which it

is evaluated (e.g. through the explicit momentum dependence of current operators, etc.) and

on the coupling constants. The ellipsis (· · · ) stand for optional algebraic elements entering

the definition of the correlation function.

We next build on our assumption of renormalizability of the theory, i.e. we make use of

the fact that we can evaluate C before or after an RG step; the result must be the same. On

the other hand, the RG transformation will, of course, not leave the individual constituents

entering the definition of C invariant; it will change coupling constants, gα, the momenta

pi, and the field amplitudes φ according to the prescriptions formulated in the previous

section. Expressed in a single formula,

C(pi, gα) = bndφC(pib, gαb
λα), (8.18)

where we have simplified the notation by assuming that the coupling constants themselves

scale (for, otherwise, the matrix elements of a linear transformation mediating between the

coupling constants and the scaling fields would appear). For notational convenience, let us

also assume that the fixed point values of the coupling constants are specified in such a way

that g∗ = 0. The factor bndφ accounts for the explicit rescaling of the n fields entering the

definition of C.

Notice that Eq. (8.18) presents a remarkable statement. Although the three different

elements (φ, pi, gα) contributing to the correlation function change under the transformation

in seemingly unrelated manners, the net result of the concerted rescaling is nil. Indeed,

Eq. (8.18) serves as a starting point for the derivation of various relations of immediate

practical relevance.

Scaling functions

Let us return to a principle already employed in connection with the one-dimensional Ising

model. For concreteness, imagine that we are working under conditions where there is just a
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single relevant scaling field g1, while all gα>1 are irrelevant (or, for that matter, marginal).

We can then write

C(pi, g1, gα) = bndφC(pib, g1b
λ1 , gαb

λα) = g
−ndφ/λ1

1 C(pig
−1/λ1

1 , 1, gαg
−λα/λ1

1 )

g1�1
≈ g

−ndφ/λ1

1 C(pig
−1/λ1

1 , 1, 0) ≡ g
−ndφ/λ1

1 F (pig
−1/λ1

1 ).

Here, we have used the freedom of arbitrarily choosing the parameter b to set g1b
λ1 = 1

while, in the third equality, we have assumed that we are sufficiently close to the transition

that the dependence of C on irrelevant scaling fields is inessential. The function F defined

through the relation

C(pi, g1) = g
−ndφ/λ1

1 F (pig
−1/λ1

1 ), (8.19)

is an example of a scaling function. Alternatively (for example, if C represents a thermody-

namic observable or a global transport coefficient) we might be interested in the correlation

function C(g1, gα) ≡ C(pi = 0, g1, gα) at zero external momentum pi = 0. In this case, a

typical question to ask would be the dependence of C on the most relevant and the sec-

ond most relevant control parameter g2 (where we leave unspecified whether g2 is relevant,

marginal, or irrelevant). Following the same logic as above, one obtains

C(g1, g2) = g
−ndφ/λ1

1 F̃ (g2g
−λ2/λ1

1 ),

with some different scaling function F̃ .

INFO As an example particularly relevant to the comparison between analytical theory and

numerics, we note the concept of finite-size scaling. While analytical theories are most conve-

niently formulated in the thermodynamic limit, numerical simulations are carried out for systems

of still very limited size. The need to compare theory and numerical simulations motivates the

need to explicitly keep track of the system size under renormalization. Indeed, the system size

L has dimension [length] and, therefore, gets rescaled as L → L/b. Setting L/b = 1, we obtain a

scaling function

G(gα, L) = LndφFfs(gαL
λα),

with explicit system size dependence.

While the construction of any particular scaling function may be context-dependent, the

principle behind the derivation is general: once the scaling behavior of a correlation function

is known, the arbitrariness of the scaling parameter b can be used to reduce the number of

independent variables by one. The reduced correlation function is called a scaling function.

As with the response functions discussed in the previous chapter, scaling functions also

represent a prime interface between theory and experiment. Experimentally, the mea-

surement of an observable X in its dependence on a number of relevant system parameters,

t and h say, results in a multi-parameter function X(t, h). In fact, a better way to think

about this object is as a set of one-dimensional functions Xh(t) depending on a parameter

h. (This is because, in experiment, one typically varies only a single control parameter, e.g.

temperature at fixed magnetic field.) Scaling implies that all these functions collapse onto
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a generic one-dimensional23 profile, if only the data are plotted as a function of the relevant

scaling parameter thx.

This mechanism can be exploited in several different ways. For example, if there is not

yet a theory of the transition phenomenon in question, an experimentalist may empirically

identify the relevant scaling parameters and pose the explanation of the observed scaling

exponent x – by construction a fully universal number – as a challenge to theorists.24

Conversely, theorists may suggest a scaling exponent that can be put to the test by checking

whether the experimental data collapse onto this exponent. Summarizing, one of the great

virtues of the concept of scaling is that it condenses the information exchange between

experiment and theory (and analytical theory and numerics for that matter) into a small

set of universal numbers.

INFO For the sake of completeness we mention that, especially in the field theoretical community,

the information encapsulated in the scale-dependent correlation functions is often represented in

a different manner. Starting out from the relation

C(pi, gα) = en�dφC(pie
�, gα(�)),

where we have set b = e�, we can use the �-independence of the left-hand side to write 0 =
d
d�
en�dφC(pie

�, gα(�)). (Notice that, here, we do not need to be in the asymptotic scaling regime,

i.e., for the sake of the present construction, the �-dependence of the coupling constants need

not be explicitly exponential.) We next carry out the �-differentiation to obtain

&
n
&
de,φ +

η

2

'
+ ∂� + βα(gα)∂gα

'
C(pie

�, gα(�)) = 0. (8.20)

Here, de,φ is the engineering dimension of the field φ and η/2 = dφ−de,φ its anomalous dimension

(see the definition of η in the Info block starting on page 436). Further, the partial derivative ∂�

acts on the explicit scale dependence of the momentum arguments (or any other explicitly scale-

dependent argument for that matter). Finally, βα(gα) is the β-function defined above. Equation

(8.20) is known as a renormalization group equation. Both the RG equation and the scaling

form that we used to derive it equivalently express the scaling behavior of the correlation function.

Scaling functions and critical exponents

Another important aspect of scaling theory is that it can be used to disclose relations

between the seemingly independent25 critical exponents of the theory. For the sake of con-

creteness, let us consider the case of the ferromagnetic transition, i.e. a transition we have

previously characterized in terms of six critical exponents α, . . . , η (see page 438). However,

the flow in the vicinity of the magnetic fixed point is controlled by only two relevant scaling

fields, the (reduced) temperature t and the reduced magnetic field h ≡ H/T . Neglecting

23 For an n-dimensional data set, the collapse is to an (n − 1)-dimensional functional set.
24 Parenthetically, one may note that the empirical collapse of experimental data onto scaling functions requires

a lot of skill. For example, if the data set consists of a number of functional “patches” of only limited overlap,
it is quite “easy” to construct a scaling function of, in fact, almost any desired power law dependence. Data of
this type tend to contain a lot of statistical uncertainty, which can easily lead to erroneous conclusions.

25 After all, the critical exponents describe the behavior of quite different physical observables in the transition
region.
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irrelevant perturbations, we thus conclude that, under a renormalization group transforma-

tion, the reduced free energy f = F/TLd will behave as26 f(t, h) = b−df(tbyt , hbyh). We

next fix tbyt = 1 to reduce the number of independent variables to one:

f(t, h) = td/yt f̃(h/tyh/yt). (8.21)

Containing the complete thermodynamic information, Eq. (8.21) is all that we need to

compute the critical exponents. Indeed, comparing with the definitions summarized on

page 438, it is straightforward to show that

α = 2− d

yt
, β =

d− yh
yt

, γ =
2yh − d

yt
,

δ =
yh

d− yh
, ν =

1

yt
, η = 2 + d− 2yh,

⎫⎪⎪⎬⎪⎪⎭ (8.22)

from where follow the cross-relations summarized in the table on page 439 by direct com-

parison. These relations illustrate our previous assertion that, conceptually, the dimensions

of the relevant scaling fields have a more fundamental status than the critical exponents.

EXERCISE Verify these statements. To obtain the fifth relation, the hyperscaling relation,

notice that, under a change of scale, ξ → bξ. On the other hand, we know that t ∼ ξ−1/ν . The

sixth relation is obtained from Eq. (8.3) by a substitution of the definition of the spatial profile of

the correlation function in terms of the critical exponent η into the integral to obtain a relation

between the critical exponents γ and η (Fisher’s scaling law).

8.4 RG analysis of the ferromagnetic transition

In the previous section, we became acquainted with some fundamental elements of the

structure of RG analyses, and their connection to the theory of critical phenomena. Being

kept at a general and conceptual level, the discussion may have seemed somewhat abstract.

Therefore, to elucidate the concepts introduced above, and to introduce some more elements

of the RG, we turn now to a concrete application of the approach to the classical theory

of the (uniaxial) ferromagnetic (or liquid–gas) transition. In Section 5.1, the φ4-theory was

identified as an effective low-energy model of the ferromagnetic system. However, beyond

the mean-field, we have not yet applied the model to explore the universal characteristics

of the transition. In the following, we shall see that RG methods, and only RG methods,

can be applied to successfully understand much of the intriguing behavior displayed by the

(d > 2)-dimensional Ising model in the vicinity of its phase transition.

26 Here we have made use of the fact that the reduced free energy does not carry an anomalous dimension. By
definition, the free energy F = −T lnZ does not change under renormalization (which after all, merely amounts
to representing the number Z through functional integrals of different space-time resolution). Thus, the scaling

of the reduced free energy is entirely carried by the prefactor L−d.
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8.4.1 Preliminary dimensional analysis

The first question that we wish to address has a somewhat technical status: with what

justification was the Ising model represented in terms of the model action27

S[φ] =

∫
ddr

[
r

2
φ2 +

1

2
(∇φ)2 +

λ

4!
φ4 − hφ

]
, (8.23)

i.e. why was it possible to neglect both higher powers and gradients of the field φ that are

surely present in the exact reformulation of the Ising problem in terms of φ-variables? To

rationalize the neglect of these terms, we proceed by dimensional analysis. Anticipating that

the “real” dimensions carried by the operators in the action will be not too far from their

engineering dimensions (see below), we begin by exploring the latter. We proceed along

the lines of the general scheme outlined in the previous chapter and attribute a dimension

of unity to the leading gradient term
∫
(∇φ)2 in the action. This entails the choice [φ] =

L(2−d)/2, from where it is straightforward to attribute engineering dimensions to all other

operators:[∫
φ2

]
= L2,

[∫
φ4

]
= L−d+4,

[∫
φn

]
= Ld+(2−d)n/2,

[∫
(∇mφ)2

]
= L2(1−m).

These relations convey much about the potential significance of all structurally allowed

operators:

� The engineering dimension of the non-gradient operator ∼ φ2 is positive in all dimensions,

indicating general relevance.

� The φ4 operator is relevant (irrelevant) in dimensions d < 4 (d > 4). This suggests that for

d > 4 a harmonic approximation (λ = 0) of the model should be reasonable. It also gives

us a preliminary clue as to how we might want to approach the φ4-model on a technical

level: while for dimensions “much” smaller than d = 4 the interaction operator ∼ φ4 is

strongly relevant, the dimension d = 4 itself is borderline. This suggests that we analyze

the model at d = 4, or maybe “close”28 to d = 4 where the φ4 operator is not yet that

virulent, and then try to extrapolate to infer what happens at the “physical dimensions”

of d = 2 and 3.

� Operators φn>4 become relevant only in dimensions d < (−1/n + 1/2)−1 < 4. However,

even below these threshold dimensions, operators of high powers in the field variable are

much less relevant than the dominant non-harmonic operator
∫
φ4. This is the a posteriori

justification for the neglect of φn>4 operators in the derivation of the model.

� Similarly, operators with more than two gradients are generally irrelevant and can be

neglected in all dimensions.

� In contrast, the operator
∫
φ coupling to the magnetic field carries dimension 1+d/2 and

is therefore always strongly relevant.

27 Generalizing our discussion from Section 5.1, we have incorporated a coupling to an external field. (Exercise:
Recapitulate the construction of Section 5.1 to convince yourself that, to lowest order in an expansion in terms
of φ, coupling the system to a magnetic field leads to the fourth term of Eq. (8.23). In case you are too impatient
to do this: justify the structure of the term on physical grounds.)

28 As we see shortly, the analysis of the problem is readily generalized to non-integer dimensions.
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Dimensional analysis provides us with some valuable hints as to the importance of various

operators appearing in the theory. It also indicates that, in the present context, dimension

d = 4 might play a special role. Guided by this information, we now proceed to analyze the

model in a sequence of steps of increasing sophistication.

8.4.2 Landau mean-field theory

Given an action of the form (8.23), the first thing one might try is a mean-field analysis.

That is, assuming that our coupling constants r and λ are sufficiently large we might assume

that the functional integral over φ is centered around solutions of the equation δS[φ]

δφ̄
= 0,

or

rφ̄+
λ

6
φ̄3 − h = 0, (8.24)

where we have used the fact that the low-energy mean-field configuration will be spatially

constant. Just by inspecting the potential part of the field-free Lagrangian, r
2φ

2+ λ
4!φ

4, it is

clear that, depending on the sign of r, the mean-field equation possesses two fundamentally

different types of solution. For r > 0, the action has a global minimum at φ = 0, implying

that φ̄ = 0 is the unique mean-field (see Fig. 8.7). Noticing that the amplitude of φ represents

a measure of the magnetization of the system (which is clear from the way the φ4-action

was derived from the Ising model on page 196), we identify r > 0 as a phase of zero net

magnetism, the paramagnetic phase.

In contrast, for r < 0, the action has two degenerate minima at non-zero values, φ̄ =

±φ0 ≡ ±(6|r|/λ)1/2 (see Fig. 8.7). The system then has to make a choice as to whether

it wants to sit in the ground state configuration φ̄ = φ0 or φ̄ = −φ0. This is the state of

spontaneous symmetry breaking indicative of the low-temperature ferromagnetic phase.

(Notice that, upon the switching on of a small magnetic field, the degeneracy between the

two ground states is lifted and the system will populate a state of predetermined magneti-

zation, φ̄ = ±φ0, depending on the sign of h.)

The preliminary analysis above indicates that r has the status of a fundamental parameter

tuning the system through the ferromagnetic transition. Indeed, the microscopic analysis

in Section 5.1 had indicated that r ∼ T − Tc was a function of temperature that changed

sign at some critical temperature Tc, the mean-field critical temperature of the transition.

However, even if we did not know the microscopics, it would be clear that r(T ) is (i) some

S

φ φ

r > 0 r < 0

S

(a) (b)

Figure 8.7 Action of the φ4-theory evaluated on a constant field configuration above (a) and below
(b) the critical point.
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Table 8.1 Critical exponents of the ferromagnetic transition

obtained through different methods. Experimental exponents

represent cumulative data from various three-dimensional

ferromagnetic materials.

Exponent Experiment Mean-field Gaussian ε1 ε5

α 0–0.14 0 1/2 1/6 0.109

β 0.32–0.39 1/2 1/4 1/3 0.327

γ 1.3–1.4 1 1 7/6 1.238

δ 4–5 3 5 4 4.786

ν 0.6–0.7 — 1/2 7/12 0.631

η 0.05 — 0 0 0.037

Source: Data taken from K. Huang, Statistical Mechanics (Wiley, 1987).

function of temperature which (ii) must have a zero at some temperature T = Tc (otherwise

there would be no transition to begin with). Therefore, in the vicinity of T = Tc, we can

set r ∼ T − Tc as our prime measure of the distance to the critical point. (This observation

is, in fact, in perfect agreement with our earlier observation that the operator
∫
φ2 coupled

to r is relevant – see the discussion in Section 8.3.2.)

What can mean-field theory say about the prime descriptors of the transition, the critical

exponents? Identifying the field amplitude φ (alias the magnetization) with the order

parameter of the transition, and referring back to our list of exponents on page 438, the

low-temperature profile is given by |φ̄| = (12|r|/λ)1/2 ∼ |t|1/2, implying that β = 1/2. The

exponent γ is obtained by differentiating Eq. (8.24) with respect to h. With χ ∼ ∂hφ, it

is then straightforward to verify that, on approaching the critical point from either side

of the transition, χ ∼ |t|−1, implying an exponent γ = 1. The action evaluated on the

mean-field-configuration takes the form

S[φ̄]

Ld
=

r

2
φ̄2 +

λ

4!
φ̄4 ∼

{
λ−1t2, t < 0,

0, t > 0.
(8.25)

With the mean-field free energy F = TS[φ̄] we find that the specific heat C = −T 2∂2
TF ∼

∂2
t S behaves as a step function at the transition point, implying α = 0. Right at the critical

temperature, r = 0, the mean-field magnetization depends on h as φ̄ ∼ h1/3, implying that

δ = 3. Finally, the correlation length exponents ν, η cannot directly be computed from plain

mean-field theory as they are tied to the spatial profile of fluctuating field configurations.

For the sake of later comparison, the mean-field critical exponents are summarized in

Table 8.1. At first sight the differences between the experimentally observed exponents

(second column) and the mean-field exponents (third column) do not look too dramatic –

apparently the primitive mean-field approach pursued here fares reasonably favorably –

which, in view of the accumulation of pronounced fluctuations at the critical point, should

come as something of a surprise. On the other hand we must keep in mind that the exponents

describe singular power laws in the transition region. In view of that, the difference between
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1.3 and 1 does look quite significant. At any rate, we should try to refine our theoretical

understanding of the transition and search for the source of the discrepancy with experiment.

8.4.3 Gaussian model

As a first improvement on the mean-field approximation, let us explore the effect of quadratic

fluctuations around the constant field configuration φ̄. Approaching the transition point

from above, we set φ̄ = 0 and approximate the action through its quadratic expansion29

S[φ] ≈
∫

ddr

[
r

2
φ2 +

1

2
(∇φ)2 − hφ

]
. (8.26)

In this form, one may effect the Gaussian integral over field fluctuations and evaluate the

dependence of the free energy on the external parameters h and r. However, in anticipation

of our analysis of the full problem below, we here pursue a slighly different, renormalization-

group-oriented approach, i.e., pretending that we did not know how to do the Gaussian

integral, we subject the quadratic action to a momentum shell RG analysis.

Proceeding along the lines of the canonical scheme, we split our field into fast and slow

degrees of freedom φ = φs + φf resulting in the, now familiar, fragmentation of the action

S[φs, φf ] = Ss[φs] + Sf [φf ] + Sc[φs, φf ]. However, the crucial simplification, characteristic

of a Gaussian theory, is that the action Sc coupling fast and slow components vanishes

(exercise), implying that the integration over the fast field merely leads to an inessential

constant. The effect of the RG step on the action is then entirely contained in the rescaling

of the slow action. According to our previous discussion, the scaling factors thus appearing

are determined by the engineering dimensions of the operators appearing in the action, i.e.

r → b2r and h → bd/2+1h. Using the fact that r ∼ t we can then readily write down the

two relevant scaling dimensions of the problem, yt = 2 and yh = d/2 + 1. Comparison with

Eq. (8.22) finally leads to the list of exponents,

α = 2− d

2
, β =

d

4
− 1

2
, γ = 1, δ =

d+ 2

d− 2
, ν =

1

2
, η = 0.

Notice that the exponents now explicitly depend on the dimensionality of the system, a nat-

ural consequence of the fact that they describe the effect of spatial fluctuations. Table 8.1

contains the values of the exponents for a three-dimensional system. We cannot really say

that the results are any better than those obtained by the mean-field analysis. Some expo-

nents (e.g. δ) agree better with the experimental data, while others (e.g. α) are decidedly

worse.

As a corollary to this section, we note that the Gaussian model possesses only one fixed

point, namely r = h = 0, which in the context of φ4-theory is called the Gaussian fixed

point.

29 The appearance of a linear term indicates that we are expanding not around the “true” mean-field, i.e. the
exact solution of (8.24), but rather around the solution φ̄ = 0 of the field-free system. However, in view of the
fact that h has the status of an external perturbation, this choice of the reference configuration is quite natural.
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8.4.4 Renormalization group analysis

In the present analysis of the model, we have not really touched upon its principal source of

complexity, namely the effect of the “interaction operator” φ4 on the fluctuation behavior

of the field. It seems likely that the neglect of this term is responsible for the comparatively

poor predictive power both of the straightforward mean-field analysis, and of the Gaussian

model. Indeed, the dimensional analysis of Section 8.4.1 indicated that the φ4 addition to

the action becomes relevant below four dimensions. A more physical argument, to the same

effect, is given in the Info block below.

Although the solution of the general problem posed by the action (8.23) still appears to

be hopelessly difficult, there is one aspect we can turn to our advantage. While physical

systems exist in integer dimensions d = 1, . . . , 4, . . . , there is actually no reason why we

should not be allowed to evaluate our theory, i.e. the functional integral with action (8.23),

in fractional dimensions. In the present context, this seemingly academic freedom turns out

to be of concrete practical relevance. The point is that the nonlinear φ4 operator was found

to be marginal at d = 4 and relevant below. One may thus expect that, in dimensions

d = 4 − ε, ε � 1, the operator is relevant but not that relevant, i.e. one may expect that,

for sufficiently small deviations off the threshold dimension, four, the theory knows of an

expansion parameter, somehow related to ε, which will enable us to control the interaction

operator. Of course, at the end of the day, we will have to “analytically continue” to dimen-

sions of interest, ε = 1 or even ε = 2, but, for the present, we will see what we can learn

from a d = 4− ε representation of the theory.

INFO Our previous analysis relied on the assumption that the field integration is tightly bound

to the vicinity of the extrema of the action. But let us now ask under what conditions this

assumption is actually justified. We should develop some intuition as to the relative importance

of the mean-field content of the theory and of the fluctuations around the mean-field. While

there are several ways to proceed with this program, we will focus on the analysis of the magnetic

susceptibility. (At this point, we should warn the reader that the arguments formulated below,

while technically straightforward, are conceptually involved. The critical contemplation of the

logical steps of the construction is time well invested.) Firstly, let us recall the definition of the

susceptibility,

χ = −∂2
HF ∼

∫
ddr 〈φ(r)φ(0)〉c ∼ G(k = 0),

where we have used the fact that 〈φ(r)φ(r′)〉 = G(r−r′) is the Green function of the model. Given

this identification, we note that a formal criterion of the transition – divergent susceptibility! –

is synonymous with a singularity of the zero-momentum Green function.

On the level of the Gaussian theory (see Eq. (8.26)) G(k) = (r + k2)−1, i.e. χ ∼ r−1. Antici-

pating troubling observations to come, we reiterate that the mean-field transition temperature is

identified by the condition r ∼ t = 0. Now, let us move on to explore corrections to the mean-field

susceptibility on the level of a perturbative one-loop calculation. To this end, we recall that (if

necessary, recapitulate the discussion of Section 5.1), due to the presence of the φ4 operator, the

Green function acquires a self-energy which, at the one-loop level, is given by Σ = −λ
2

∑
k′

1
r+k′2 .
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As a consequence, one can identify the susceptibility as

χ−1 ∼ (G(k = 0))−1 = r − Σ = r +
λ

2

∑
k′

1

r + k′2 .

A first observation to be made is that non-Gaussian fluctuations (physically: interactions between

harmonic fluctuations around the mean-field amplitude) lower the transition amplitude, i.e.,

setting r ∼ T − Tc, it now takes a smaller temperature T to reach the critical point; in accord

with the intuitive expectation that fluctuations tend to “disorder” the system. Frustratingly, one

may also observe that the cutoff Λ is needed to prevent the “correction”,

−λ

2

∑
k′

1

r + k′2 ∼ λ

∫ Λ

ddk′ 1

r + k′2 ,

from diverging in dimensions d ≥ 2. To deal with this singularity, we have to realize that the effect

of fluctuations is actually two-fold: the transition temperature gets shifted and the temperature

dependence of the inverse susceptibility is apparently no longer simply linear (by virtue of the

r-dependence of the integrand). The two effects can be disentangled by writing

χ−1 = r̃ +
λ

2

(
L

2π

)d ∫ Λ

ddk′
(

1

r + k′2 − 1

k′2

)
≈ r̃ − λr̃

2

(
L

2π

)d ∫ Λ ddk′

(r̃ + k′2)k′2 , (8.27)

where

r̃ ≡ r +
λ

2

(
L

2π

)d ∫ Λ ddk′

k′2 ,

represents the shifted transition temperature while the integral describing the deviation from the

linear temperature dependence of the susceptibility is now UV-convergent in dimensions d < 4.

Notice that in the second equality of Eq. (8.27) we have replaced the parameter r in the integrand

by the modified parameter r̃. To the accuracy of a one-loop calculation, this manipulation is

permissible.

Naively, it looks as if this sequence of manipulations has led to a catastrophe: the fluctuation-

renormalized transition temperature appears to diverge as one sends the cutoff to infinity, clearly

a nonsensical prediction! However, one may note that there was actually no justification for

identifying the physical transition temperature through the parameter r in the first place. This

identification was based on mean-field theory alone, i.e. an approach to the problem which

neglected altogether the key effect of fluctuations. However, the bare parameter r appearing in

the action carries as little “universal” meaning as the cutoff Λ, or any other microscopic system

parameter for that matter!

Once we have acknowledged this interpretation, we should then identify the transition tem-

perature through the singularity of the macroscopically observable properties (e.g. divergence of

the susceptibility leads to the vanishing of the modified parameter r̃ at the one-loop level) while

the microscopic parameters carry no significance by themselves.

EXERCISE This interpretation closely parallels the philosophy of renormalization in high-

energy physics. There, the bare parameters of the action are fundamentally undetermined,

while the inverse of the Green function at zero external momentum represents a physical

observable, e.g. the mass of the electron. Since the loop corrections to this physical quantity

appear to be infinite (and the theory does not enjoy the luxury of the presence of a physically

motivated cutoff), one postulates that the bare parameters of the action have been infinite by

themselves. These singularities are deliberately adjusted so as to cancel the divergence of the
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fluctuation corrections and to produce finite “physical” quantities. It is instructive to consult

a textbook on renormalization in high-energy physics (such as Ryder30) to become acquainted

with the functioning of this strategy, and with the enormous success it has had in the context

of QED and other sub-branches of particle physics.

We now turn to the second effect of the fluctuation correction, namely the deviation from the

linear temperature dependence, as described by the integral contribution to Eq. (8.27). On

dimensional grounds, the integral depends on the parameter r̃ as ∼ λLdr̃(d−4)/2. The (mean-field

+ quadratic fluctuations) approach to the problem breaks down when this contribution becomes

more important than the leading-order contribution to the susceptibility, i.e. for dimensions

d ≤ 4. This observation is the essence of the so-called Ginzburg criterion. The criterion states

that mean-field theory becomes inapplicable below the so-called upper critical dimension

dc = 4. While we have derived this statement for the particular case of the φ4-model, it is clear

that similar estimates can be performed for every nonlinear field theory, i.e. as with the lower

critical dimension, the upper critical dimension also represents an important threshold separating

the mean-field dominated d > dc from the fluctuation dominated d < dc behavior. Also notice

that the analysis above conforms with our previous observation that the nonlinear φ4 operator is

relevant in dimensions d < 4. (Convince yourself that the two lines of argument reflect the same

principle, namely the dependence of fluctuations on the accessible phase volume, as determined

by the dimensionality of the system.)

Before proceeding to the details of the RG program, let us try to predict a number of general

elements of the φ4 phase diagram on dimensional grounds. We saw that in dimensions d > 4

the φ4 operator is irrelevant and that the Gaussian model essentially dictates the behavior

of the system. Specifically, for d > 4, the Gaussian fixed point r = λ = h = 0 is the only

fixed point of the system. Below four dimensions, the φ4 operator becomes relevant and

the emergence of a richer fixed point structure may be expected. However, for ε = 4 − d

sufficiently small, we also expect that, whatever new fixed points appear, they should be

close to the Gaussian point. This means that we can conduct our search for new fixed points

within a double expansion in ε, and the small deviation of the coupling constants r, λ, h

around the Gaussian fixed point. (In fact, we will momentarily identify a third expansion

parameter, namely the number of momentum loops appearing in fast-field integration.)

Step I

We next proceed to formulate the steps of the RG in detail. To keep things simple, the RG

transformation will be carried out to lowest order in a triple expansion in ε, the coupling

constants, and the number of momentum loops. The rationale behind the loop expansion can

be best understood if we assume that the entire action31 is multiplied by a large parameter

(which, in the case of a quantum theory, might be �−1). The expansion in the number of

loops is then equivalent to an expansion in the inverse of that parameter (for a quantum

theory, an expansion away from the classical limit).

30 L. H. Ryder, Quantum Field Theory, (Cambridge University Press, 1996).
31 Before we rescaled the fields so as to make the leading-order coefficient equal to 1/2.
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EXERCISE Verify this statement; to this end, notice that a diagram of nth order in perturbation

theory in the φ4 vertex contains a prefactor an involving the large parameter. On the other hand,

each of the I internal lines, or propagators, contained by the diagrams contributes a factor a−1,

so that the overall power is an−I . Next relate the number of internal lines to the number L of

loops. Notice that each line corresponds to a momentum summation. However, the number of

independent summations is constrained by the n δ-functions carried by the vertices. Use this

information to show that the overall power of the graph is a−L+1, i.e. an expansion in L is

equivalent to an expansion in the inverse of a.

Let us now decompose the action in the standard manner, setting S[φs, φf ] = Sf [φf ] +

Ss[φs] + Sc[φs, φf ], where

Sf [φf ] =

∫
ddr

[
r

2
φ2
f +

1

2
(∇φf)

2

]
,

Ss[φs] =

∫
ddr

[
r

2
φ2
s +

1

2
(∇φs)

2 +
λ

4!
φ4
s − hφs

]
,

Sc[φs, φf ] =
λ

4

∫
ddrφ2

sφ
2
f + · · ·

Several approximations related to the loop order of the expansion are already imposed at

this level. We have neglected terms of O(φ4
f ) because their contraction leads to two loop

diagrams. The same applies to terms ofO(φsφ
3
f ) (exercise). Terms of O(φ3

sφf) do not arise

because the addition of a fast momentum and three slow momenta is incompatible with

momentum conservation.

Steps II and III

To simplify the notation, let us rescale the momentum according to q → q/Λ, implying

that coordinates are measured in units of the inverse cutoff r → rΛ. With the coupling

constants rescaled according to their engineering dimensions, r → rΛ2, λ → λΛ4−d, the

action remains unchanged, while the fast and slow momenta are now integrated over the

dimensionless intervals |qs| ∈ [0, b−1] and |qf | ∈ [b−1, 1], respectively. We next construct

an effective action by integration over the fast field: e−Seff [φs] = e−Ss[φs]
〈
e−Sc[φs,φf ]

〉
f
. In

performing the average over fast fluctuations, 〈· · · 〉f , we shall (a) retain only contributions of

one-loop order while (b) neglecting terms that lead to the appearance of φn>4
s contributions

in the action. (For example, the contraction 〈
(∫

φ2
sφ

2
f

)3〉 would lead to such a term.) To this

level of approximation, one obtains

e−Seff [φs] = e−Ss[φs]exp

[
−〈Sc[φs, φf ]〉f +

1

2

〈
Sc[φs, φf ]

2
〉c
f

]
,

where the superscript c denotes a connected average. (Exercise: It is instructive to check

the consistency of this expansion for yourself.) The two diagrams corresponding to the

contractions 〈Sc[φs, φf ]〉f and 〈Sc[φs, φf ]
2〉cf are shown in parts (a) and (b) of the figure

below, respectively, where the external line segments indicate the passive φs amplitudes.
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According to the standard rules of perturbation theory, the first of the two diagrams, (a),

evaluates to

〈Sc[φs, φf ]〉f =
λ

4

∫
f

ddq′

(2π)d
1

r + q′2

∫
s

ddq

(2π)d
φs(q)φs(−q).

We now consider the summation over fast momenta appearing in this expression. Using

the fact that we are in the near vicinity of the critical point and anticipating that we are

interested in no more than the expansion of the β-function for small values of the coupling,

we now expand the integrand to first order in r,
∫
f

ddq
(2π)d

1
r+q2 = I1 − rI2, where we have

introduced the shorthand notation,

Iα ≡
∫
f

ddq

(2π)d
1

q2α
. (8.28)

These integrals are straightforwardly computed by switching to polar coordinates,

Iα = Ωd

∫ 1

b−1

dq qd−2α−1 =
Ωd

d− 2α
(1− b2α−d),

where Ωd = (2πd/2/Γ(d/2))/(2π)d denotes the volume of the d-dimensional unit sphere

(measured in units of 2π). We thus find that, after the integration over fast modes, and the

standard rescaling operation, q → bq, φ → b(d−2)/2φ, the quadratic part of the action takes

the form

S(2)[φ] =
b2

2

[
r +

λΩd

2(d− 2)
(1− b2−d)− rλΩd

2(d− 4)
(1− b4−d)

] ∫
ddr φ2. (8.29)

(a)

(b)

Turning to the second diagram (b) in the figure, we notice that,

owing to the presence of four external legs, its contribution will be

proportional to φ4
s . Further, momentum conservation implies that the

momenta carried by the internal lines of the diagram will depend on

both the fast “internal” momentum and the external momenta carried

by the fields φs. However, we can simplify the analysis by neglecting

the dependence on the latter from the outset. The reason is that the integration over the

internal momentum followed by Taylor expansion in the slow momenta would generate

expressions of the structure F (q1,q2,q3)φ(q1)φ(q2)φ(q3)φ(−q1 − q2 − q3), where q1,2,3

represent slow momenta and F is some polynomial. Taking account of the small momenta

would thus generate derivatives acting on an operator of fourth order in φ, a combination

that we saw above is irrelevant.

Neglecting the external momenta, diagram (b) leads to the result

1

2
〈Sc[φs, φf ]

2〉f �
λ2

16

∫
ddr φ4

s

∫
f

ddq

(2π)d
1

(r + q2)2
=

λ2I2
16

∫
ddr φ4

s +O(λ2r).

Evaluating the integral and rescaling, we find that the quartic contribution to the renor-

malized action reads

S(4)[φ] = b4−d

(
λ

4!
− λ2Ωd

16

1− b4−d

d− 4

)∫
ddr φ4.
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Finally, there are no one-loop diagrams affecting the linear part of the action, i.e.

S(1)[φ] = hbd/2+1

∫
ddr φ,

rescales according to its engineering dimension.

Combining everything, we find that, to one-loop order, the coupling constants scale

according to the relations r → b2(r + λΩd

2(d−2) (1 − b2−d) − rλΩd

2(d−4) (1 − b4−d)), λ → b4−d(λ −
3
2λ

2Ωd
1−b4−d

d−4 ), and h → hbd/2+1. We next set d = 4 − ε and evaluate the right-hand sides

of these expressions to leading order in ε. With Ω4−ε ≈ Ω4 = 1
8π2 , we thus obtain

r → b2
(
r +

λ

32π2
(1− b−2)− rλ

16π2
ln b

)
,

λ → (1 + ε ln b)

(
λ− 3λ2

16π2
ln b

)
,

h → hb3−ε/2,

which, setting b = e�, lead to the Gell-Mann–Low equations:

dr

d�
= 2r +

λ

16π2
− rλ

16π2
,

dλ

d�
= ελ− 3λ2

16π2
,

dh

d�
=

6− ε

2
h.

(8.30)

These equations clearly illustrate the meaning of the ε-expansion. According to the second

equation, a perturbation away from the Gaussian fixed point will initially grow at a rate

set by the engineering dimension ε. While, on the level of the classical, zero-loop theory, λ

would grow indefinitely, the one-loop contribution ∼ λ2 stops the flow at a value λ ∼ ε.

(ε)

β (λ)

ε > 0

ε < 0

λ

Equating the right-hand sides of Eq. (8.30) to zero (and

temporarily ignoring the magnetic field), we indeed find that

besides the Gaussian fixed point (r∗1 , λ
∗
1) = (0, 0) a non-

trivial fixed point (r∗2 , λ
∗
2) = (− 1

6ε,
16π2

3 ε) has appeared.

Notice that, in accord with the schematic considerations made

at the beginning of the section, the second fixed point is O(ε)

and coalesces with the Gaussian fixed point as ε is sent to

zero. Plotting the β-function for the coupling constant λ (see

figure), we further find that, for ε > 0, λ is relevant around

the Gaussian fixed point but irrelevant at the non-trivial fixed point.

To understand the full flow diagram of the system, one may linearize the β-function

around both the Gaussian and the non-trivial fixed point. Denoting the linearized mappings

by W1,2, we find

W1 =

(
2 1

16π2

0 ε

)
, W2 =

(
2− 1

3ε
1+ε/6
16π2

0 −ε

)
.



8.4 RG analysis of the ferromagnetic transition 455

λ

r

fe
rr

om
ag

ne
tic

pa
ra

m
ag

ne
tic

unphysical

non-trivial

Gaussian

Figure 8.8 Phase diagram of the φ4-model as obtained from the ε-expansion.

Figure 8.8 shows the flow in the vicinity of the two fixed points, as described by the matrices

W1,2 as well as the extrapolation to a global flow chart. Notice that the critical surface of

the system – the straight line interpolating between the two fixed points – is tilted with

respect to the r ∼ temperature axis of the phase diagram. This implies that it is not the

physical temperature alone that decides whether the system will eventually wind up in the

paramagnetic (r � 0) or ferromagnetic (r � 0) sector of the phase diagram. Rather one has

to relate temperature (∼ r) to the strength of the nonlinearity (∼ λ) to decide on which side

of the critical surface we are. For example, for strong enough λ, even a system with r initially

negative may eventually flow towards the disordered phase. This type of behavior cannot

be predicted from the mean-field analysis of the model (which would generally predict a

ferromagnetic state for r < 0). Rather it represents a non-trivial effect of fluctuations.

Finally notice that, while we can formally extend the flow into the lower portion of the

diagram, λ < 0, this region is actually unphysical. The reason is that, for λ < 0, the action is

fundamentally unstable and, in the absence of a sixth-order contribution, does not describe

a physical system.

What are the critical exponents associated with the one-loop approximation? Of the two

eigenvalues of W2, 2− ε/3 and −ε, only the former is relevant. As with the Gaussian fixed

point, it is tied to the scaling of the coupling constant, r ∼ t, i.e. we have yt = 2− ε/3 and,

as before, yh = (d + 2)/2 = (6 − ε)/2. An expansion of the exponents summarized in Eq.

(8.22) to first order in ε then yields the list

α =
ε

6
, β =

1

2
− ε

6
, γ = 1 +

ε

6
, δ = 3 + ε, ν =

1

2
+

ε

12
, η = 0.

If we are now reckless enough to extend the radius of the expansion to ε = 1, i.e. d = 3,

we obtain the fifth column of Table 8.1. Apparently the agreement with the experimental

results has improved – even in spite of the fact that we have driven the ε-expansion well

beyond its range of applicability! (For ε = 1, terms of O(ε2) can, of course, no longer be

neglected!)
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How can one rationalize the success of the ε-expansion? Trusting in the principle

that good theories tend to work well beyond their regime of applicability, we might simply

speculate that nature seems to be sympathetic to the concept of renormalization and the

loop expansion. Of course, a more qualified approach to the question is to explore what

happens at higher order in the ε-expansion. Needless to say, the price to be paid for this

ambition is that, at orders O(εn>1), the analysis indeed becomes laborious. Nonetheless,

the success of the first-order expansion prompted researchers to drive the ε-expansion up to

fifth order! The results of this analysis are summarized in the last column of Table 8.1. In

view of the fact that we are still extending a series beyond its radius of convergence,32 the

level of agreement with the experimental data is striking. In fact, the exponents obtained by

the ε-expansion even agree – to an accuracy better than one percent – with the exponents

of the two-dimensional model,33 i.e. for a situation where the “small” parameter ε has to

be set to two.

However, it is important to stress that the ε-expansion is not just a computational tool

for the calculation of exponents. On a more conceptual level, its merit is that it enables

one to explore the phase diagram of nonlinear theories in a more or less controlled manner.

In fact, the ε-expansion not only is useful in the study of field theories close to the upper

critical dimension (i.e. close to the mean-field threshold) but can equally well be applied

to the analysis of systems in the vicinity of the lower critical dimension. In the following

section, we consider a problem of this type, i.e. we will apply an ε-expansion around d = 2

to detect the onset of global thermal disorder in models with continuous symmetries.

8.5 RG analysis of the nonlinear σ-model

The scalar field theory encapsulates a wide class of systems encompassing a single-

component order parameter. However, throughout the text, we have encountered problems

where the order parameter involves more than one component, e.g. the complex field

associated with condensation phenomena, the matrix field associated with the quantum

disordered metallic system, or the field theories involving spin. In such cases, one very

often finds that the low-energy content of the theory involves a projection which imparts

a constraint to the field integral. In the context of condensation phenomena, we saw that,

at low temperatures, one can neglect the massive amplitude fluctuations of the order

parameter, while the collective fluctuations of the phase mode impacted significantly on the

low-energy properties of the system. In this case, the phase degree of freedom is constrained

by its topology to lie on the unit circle. Similarly, if we neglect the “high-energy” physics

of local moment formation, classical and quantum spin theories are constrained by the

normalization of the local spin. When subjected to an auxiliary constraint, theories that

are otherwise free are known as nonlinear σ-models. The aim of the present section is to

apply methods of the RG to explore the critical properties of a general class of nonlinear

32 Indeed, it is believed that we are dealing with a series that is only asymptotically convergent. That is, beyond
a certain order of the expansion, the agreement with the “true” exponents will presumably become worse.

33 The latter are known from the exact solution of the two-dimensional model, see L. Omsager, Crystal statistics
I. A two-dimensional model with an order–disorder transition. Phys. Rev. 65 (1944), 117–49.
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σ-models. Later, in the next section and in Chapter 9, we will consider the way topological

considerations can impact on the nature of the system.

Let us then consider the nonlinear σ-model defined by the partition function Z =∫
Dg e−S[g], where

S[g] =
1

λ

∫
ddr tr

[
∇g∇g−1

]
, (8.31)

g ∈ G takes values in some compact Lie group G and the integration
∫
Dg =

∏
x

∫
dμg(x)

extends over the Haar measure dμg of G. (Later in this section, we will specialize to the

case G = O(3) relevant to the case of the three-component spin models, the Heisenberg

magnet. Other realizations of G will be met in the next chapter.)

INFO The Haar measure dμg of a compact Lie group G is a (uniquely specified) integration

measure that is (a) unit normalized, i.e.
∫
G
dμg · 1 = 1, and (b) invariant under left and right

multiplication by a fixed group element:∫
G

dμg f(g) =

∫
G

dμg f(gh
−1) =

∫
G

dμg f(h
−1g)

for any h ∈ G. Upon translation of the integration variable g → hg or g → gh, these equations

assume the form
∫
G
dμ(gh) f(g) =

∫
G
dμg f(g) =

∫
G
dμ(hg) f(g). Holding for any f , this implies

that dμ(hg) = dμg = dμ(gh), which tells us that the Haar measure assigns equal volume density

to any point on the group manifold. Owing to this homogeneity property, integrations over

groups are almost always performed with respect to the Haar measure. Details on the explicit

construction of this measure can be found in textbooks on Lie group theory.34

Alexander M. Polyakov 1945–
He has made several important
contributions to quantum field
theory from non-abelian gauge
theory to conformal field theory.
His path integral formulation of
string theory had profound and
lasting impacts in the conceptual
and mathematical understanding of the theory. He
also played an important role in elucidating the con-
ceptual framework behind renormalization indepen-
dent of Kenneth Wilson’s Nobel prize winning work.
He formulated pioneering ideas in gauge/string dual-
ity long before the breakthrough of AdS/CFT using
D-branes.

As we have seen above, the presence

of a continuous symmetry identifies

the lower critical dimension of the

theory at dc = 2. At dimensions

of dc and below, massless Gold-

stone fluctuations of the field destroy

long-range order at any non-zero

temperature. However, in the range

2 < d < 4, one expects an ordered

phase to persist at low temperatures,

while the critical characteristics of

the phase in the vicinity of the tran-

sition are fluctuation dominated. For

reasons that will become clear, in

the following we develop an ε-expansion around the lower critical dimension to detect the

fixed point structure of the model. (Such an ε-expansion was proposed in a seminal work

34 See, e.g., J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, a Graduate Course for
Physicists (Cambridge University Press, 1997).
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by Polyakov.35). However, before turning to the actual formulation of the RG analysis, we

need to do a bit of preparatory work.

As usual, let us split the matrix fields g into “slow” and “fast” components. This is

achieved by defining g(r) = gs(r)gf(r), where gs(r) and gf(r) have momentum components

in the ranges [0,Λb−1] and [Λb−1,Λ], respectively. Substituting this decomposition into the

action, one obtains S[gsgf ] = S[gs] + S[gf ] + Sc[gs, gf ], where the coupling action

Sc[gs, gf ] =
2

λ

∫
ddr tr

[
g−1
s ∇gsgf∇g−1

f

]
. (8.32)

In the next step, one must integrate over the fast field gf . Since, of course, this integration

cannot be performed exactly, we will have to resort to an approximation scheme based

on the loop expansion. Yet, before doing so, we need to provide a little more background

information on field integration over group-valued variables in general.

8.5.1 Field integrals over groups

As with any other nonlinear integration space, to perform an integral over a group one first

needs to introduce a set of suitable coordinates. Of course, with the choice of these variables

one can exercise some freedom. However, in most applications, one will employ exponential

coordinates, i.e. one may start out from g = eW , where W ∈ G lives in the Lie algebra of

the group, and then expand W = i
∑

a π
aT a in the Hermitian group generators.

INFO Recall that the generators T a of a Lie group are M elements of the Lie algebra G
specified by the following two conditions. (i) The set {T a|a = 1, . . . ,M} is a basis of G.36 (ii)

The commutators translate to the relation [T a, T b] = −ifabcT c, where the so-called structure

constants fabc encode the geometry of the group. For example, the structure constants of the

three-dimensional (M = 3) groups SU(2) and O(3) are given by fabc = εabc, a, b, c = 1, 2, 3,

where εabc is the antisymmetric tensor. For SU(2), the generators T a = 1
2
σa can be identified

with (one half of) the Pauli matrices, for O(3) with the angular momentum operators familiar

from quantum mechanics.

For later reference, we note that the generators of the group families U(N ), SU(N ) and O(N )

obey the completeness relations

M∑
a=1

T a
ijT

a
kl =

1

2
δilδjk, U(N ), (8.33)

M∑
a=1

T a
ijT

a
kl =

1

2
δilδjk − 1

2N
δijδkl, SU(N ), (8.34)

M∑
a=1

T a
ijT

a
kl = δilδjk − δikδjl, O(N). (8.35)

35 A. M. Polyakov, Interactions of Goldstone particles in two dimensions. Applications to ferromagnets and massive
Yang–Mills fields, Phys. Lett. B 59 (1975), 79–81.

36 The Lie algebra of an M-dimensional Lie group is a vector space, so it has a basis. The “vectors” of this space
are realized by (N × N)-dimensional matrices Ta.
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(Here, the upper summation limits are set by M = N2 for G = U(N), M = N2 − 1 for

G = SU(N), and M = N(N − 1)/2 for G = O(N) – exercise: why?)

In general, the generators can be chosen so as to obey the normalization condition tr(T aT b) =

cδab, where c is a normalization constant. Interpreting 〈W |W ′〉 ≡ tr(WW ′) as a scalar product

on the Lie algebra (exercise: convince yourself that 〈 | 〉 meets all the criteria required of a scalar

product), the equation above tells us that the set {Ta} forms an orthonormal basis. In the cases

U(N ), SU(N ) and O(N ), consistency with the orthonormalization relation above enforces the

normalization c = 1/2, 1/2, and 1, i.e.

tr(T aT b) =
δab

2
, U(N), SU(N),

⎫⎪⎬
⎪⎭

tr(T aT b) = δab, O(N).
(8.36)

Integration over all N real coefficients πa will cover the full group G. Yet there remains

one non-trivial problem to be solved: we need to understand how to express the Haar

measure dμg → dπ J(π) in terms of the new integration variables. Here, the “flat measure”

dπ =
∏

a dπ
a comprises the integration over all Lie algebra coefficients while the function

J(π) encapsulates both the geometry of the Haar measure and the Jacobian associated with

the transformation g →
∑

a π
aTa. Referring for a more detailed discussion of the function J

to text books on group theory, we here merely note that its Taylor expansion in π starts as

J(π) = 1 +O(π4) where the O(π4) term will not play a role in the context of the one-loop

analysis below. Thus, at the level of approximation discussed in this text, the integration

measure of the fast-field components can be approximated by the “flat” measure dπ.

Using the RG application above as an example, let us now discuss how integrals over

fluctuations in the group space are performed in practice. Substitution of the expansion

gf = eW = 1 + W + W 2/2 + · · · into S[gf ] and Sc[gf , gs], gives a series of contributions

S =
∑

n S
(n) where S(n) is of nth order in the local field amplitudes W . As usual, we will

organize our analysis around the fully solvable sector of the theory, i.e. the action quadratic

in W . A straightforward substitution into S[gf ] gives

S(2)[W ] = − 1

λ

∫
ddr tr [∇W ∇W ] =

1

λ

∫
ddr∇πa∇πb tr

[
T aT b

]
(8.36)
=

1

λ

∫
ddr∇πa∇πa =

1

2

∑
p∈f

πa
pΠ

−1
p πa

−p,

where we have used the normalization condition (8.36),
∑

p∈f stands for a summation over

the fast momentum sector and we have introduced Πp ≡ λ
2Ldp2 as the propagator of the

fast fields πa.

Below, we engage integrals of the type 〈tr(F (W (π))tr(G(W (π)) · · · 〉W , where F,G, . . .

are functions of the generators W and 〈· · · 〉π ≡ N
∫
dπ exp(−S(2)[π])(· · · ) denotes averag-

ing over the quadratic action. These integrals may be evaluated with the help of Wick’s

theorem and the completeness relation (8.35). Wick’s theorem states that we need to form

all possible pairings of π-variables or, equivalently, W -matrices. Each pairing is of the form

either 〈tr(AW )tr(A′W )〉 or 〈tr(AWA′W )〉, where the matrices A and A′ may contain W -
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matrices themselves (however, when computing an individual pairing, these matrices are

temporarily kept fixed). Specifically, for G = O(N ) the Gaussian integrals give37

〈tr(AWp)tr(A
′Wp′)〉W = −〈πa

pπ
a′
p′〉W tr(AT a)tr(A′T a′

)

= −δp,−p′Πp tr(AT a) tr(A′T a)
(8.35)
= −δp,−p′Πp

[
tr(AA′)− tr(AA′T )

]
,

〈tr(AWpA
′Wp′)〉W = −

>
πa
pπ

a′
p′

?
W

tr (AT aA′T a′
)

= −δp,−p′Πp tr(AT aA′T a)
(8.35)
= −δp,−p′Πp

[
tr(A)tr(A′)− tr(AA′T )

]
.

Integrals over W -matrices are computed by applying these contraction rules until all pos-

sible pairings have been exhausted. Probably the best way to become acquainted with this

procedure is to work through an example.

EXERCISE Consider the expression X ≡
〈
tr(Aq,pWp+qW−p)tr

 
A′

q′,p′Wp′+q′W−p′
!〉

W
, where

A,A′ ∈ o(N ) belong to the Lie algebra of O(N ) (which implies, in particular, that they are

traceless). Show that the pair contraction of the first W -matrix with the second (the third and the

fourth) vanishes due to the tracelessness of A and A′. Next perform the contractions (1−4)(2−3)

and (1− 3)(2− 4) to obtain the result X = (N − 2)ΠpΠp+qtr
[
Ap,q

 
A′

−q,p+q −A′
−q,−p

!]
.

8.5.2 One-loop expansion

With this background, let us now return to the actual RG program for the O(N)-model.

As a first step, we need to identify all contractions that lead to no more than one fast

momentum integration (one-loop order). Since the contraction of terms of O(W (x)n>4) will

generate at least two fast integrations, it suffices 38 to consider the action S[gs,W ] at order

W 2. Substitution of gf = 1 +W +W 2/2 into the action (8.32) gives

S(2)
c [gs,W ] =

1

λ

∫
ddr tr (Φμ[∇μW,W ]) � −2iLd

λ

∑
q

∑
p∈f

pμ tr [Φμ,−qWp+qW−p] ,

where we have introduced the abbreviation Φμ = g−1
s ∂μgs and, in the last representation,

neglected the small momentum in comparison with the fast, 2p+q � 2p. To obtain all one-

loop corrections, we have to expand the functional in powers of S
(2)
c [gs,W ] and integrate

over W . However, since each power of S
(2)
c comes with one derivative acting on a slow field,

and terms of more than two such derivatives are irrelevant, it suffices to consider terms of

order O((S
(2)
c )2). To one-loop order, the RG step thus effects the replacement

S[g] → S[gs]− ln

(
1 +

1

2

〈 (
S(2)
c [gs,W ]

)2 〉
W

)
� S[gs]−

1

2

〈 (
S(2)
c [gs,W ]

)2 〉
W
.

37 Although we are primarily interested in the case N = 3, it will be instructive to monitor the RG flow for general
values of N .

38 Convince yourself that contributions to the action of O(W 3) also do not contribute at the one-loop level. (A
good way to do this is to invent some prototypical diagrammatic code that keeps track of the momentum
flow.) As in our previous analysis of the φ4-model, the expansion of S[gs,W ] to linear order in W vanishes.
(Momentum conservation implies that it is not possible to integrate a single fast field against a single slow
field.)
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W

W

Φ

i

j

k

i

j

k
(a) (b)

Figure 8.9 (a) Graphical visualization of the matrix vertex tr(ΦWW ). The line segments con-
necting the boxes represent the matrix indices. (b) One-loop diagram representing the contraction
〈tr(ΦWW ) tr (ΦWW )〉 → N tr(ΦΦ). The factor of N stems from the free summation over the
central index j.

Written more explicitly,

〈 (
S(2)
c [gs,W ]

)2 〉
W

=
∑
q,q′

∑
p,p′∈f

〈tr(Aq,pWp+qW−p)tr(Aq′,p′Wp′+q′W−p′)〉W ,

where Ap,q = − 2iLd

λ pμΦμ,−q, i.e. an expression of the type considered in the exercise above.

Drawing on that analysis (see Fig. 8.9), one obtains

〈 (
S(2)
c [gs,W ]

)2 〉
W

� −8(N − 2)L2d

λ2

∑
p∈f

(Πp)
2pμpν

∑
q

tr(Φμ,q Φν,−q)

� −2(N − 2)

∫
ddp

(2π)d
pμpν
p4

Ld
∑
q

tr(Φμ,qΦν,−q)

= −C

∫
ddr tr [Φμ Φμ] = C

∫
ddr tr

[
∇gs∇g−1

s

]
= CλS[gs],

where the constant

C =
2(N − 2)

d

∫
ddp

(2π)d
1

p2
=

2(N − 2)Ωd

d(2π)d

∫ Λ

Λ/b

dp pd−3

=
2(N − 2)Ωd(Λd−2 − (Λ/b)d−2)

(2π)dd(d− 2)

d=2+ε� (N − 2) ln b

2π
.

Substituting this result back into the action, one obtains

S[g] →
(
1− (N − 2) ln bλ

4π

)
S[gs] �→

(
1− (N − 2) ln bλ

4π

)
bεS[g],

where in the second step we performed the rescaling of the momenta (i.e. we rescaled

q → bq, in such a way that the formerly “slow” momenta again take values up to the cutoff

Λ, and noted that ε ≡ d − 2. As expected, the RG reproduces the action up to a global
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scaling factor. Absorbing this factor in a renormalized coupling constant, λr, we obtain

λ−1
r =

(
1− (N−2) ln bλ

2π

)
bελ−1, or

λr =

(
1− (N − 2) ln bλ

4π

)−1

b−ελ � ln bλ

(
(N − 2)λ

4π
− ε

)
+ λ.

Here, in the last equality, we have made use of the fact that both λ and ε are small.39

Finally, differentiating this result one obtains the RG equation

d lnλ

d ln b
� (N − 2)λ

4π
− ε+O(λ2, ε2, λε). (8.37)

The figure below shows the RG flow for generic (N > 2) group dimensions and different

values of ε. As expected, for dimensions two and below, the coupling constant inexorably

flows towards a phase with large λ where fluctuations are large (and our perturbative

analysis loses its basis) – the “disordered” type of behavior pervasive in the physics of

low-dimensional systems with continuous symmetries. However, for dimensions d > 2, the

model exhibits a fixed point at finite coupling strength λc = 2πε/(N − 2). Linearizing in

the vicinity of the fixed point, one finds a thermal exponent yλ = ε from which, making use

of the scaling relations, one can deduce a correlation length exponent ν ≈ 1/ε and a heat

capacity exponent α ≈ 2− 2/ε.

EXERCISE To complete the analysis of the O(3) model, one may explore the magnetic exponent.

Introducing a magnetic field perturbation into the action, i.e. h
∫
ddr tr [g + g−1], show that,

under renormalization, h′ = byhh, where yh = 1 + N−3
2(N−2)

+ O(ε2). From this result, use the

exponent identities to show that the correlation length exponent η ≈ ε/(N − 2).

d<2

d>2

β (λ)

λ

Notice that, for d = 2 and N = 2, the coupling constant does

not renormalize. This is because, for O(2) – the abelian group

of planar rotations – the action of the σ-model simplifies to

S = 1
λ

∫
d2r (∇φ)2, where φ(r) is the field of local rotation

angles. This is a free action which is not renormalized by

small fluctuations. (However, in the following section, we see

that the situation is not quite as simple as it seems. The O(2)

model admits large fluctuations – vortex configurations of the angular field – which do have

a non-trivial impact on its behavior. However, being topological in nature, these excitations

are beyond the scope of our present analysis.)

39 The smallness of λ is needed to justify the perturbative loop expansion. In the opposite regime λ � 1, the
fields g fluctuate wildly and perturbative expansions are not an option.
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EXERCISE Repeat the analysis above for the SU(N )-model. First derive the intermediate iden-

tities,

〈tr(AWp)tr(A
′Wp′)〉W = −δp,−p′

Πp

2

[
tr(AA′)− 1

N
tr(A)tr(A′)

]
,

〈tr(AWpA
′Wp′)〉W = −δp,−p′

Πp

2

[
tr(A)tr(A′)− 1

N
tr(AA′)

]
,

where Πq = λ/Ldp2, and

pμpμ′〈tr(Φμ,qWp+qW−p)tr(Φμ′,q′Wp′+q′W−p′)〉W = N
ΠpΠp+q

4
pμpμ′tr(Φμ,qΦμ′,−q).

Use these results to obtain the RG equation

d lnλ

d ln b
� Nλ

8π
− ε+O(λ2, ε2, λε). (8.38)

Notice that the right-hand side of the SU(N = 2) equation coincides with the right-hand side of

the O(N = 3) equation. This reflects the (local) isomorphism of the groups O(3) and SU(2).

8.6 Berezinskii–Kosterlitz–Thouless transition

The majority of theories discussed in earlier chapters were defined on essentially structure-

less target spaces – the real line, the complex plane, or, more generally, vector spaces of

arbitrary dimensionality. Although we have encountered a number of models with more com-

plex target manifolds (such as the superconductor, the Luttinger action with fields defined

on the unit circle, and the nonlinear σ-model theories discussed in the previous section),

the global geometric structure of the target space did not seem to play such an important

role: the phase behavior of the O(N )-theory appears to differ little from an unconstrained

N -component vector φ4-theory. However, the large-scale geometry, or topology of the field

manifold, may have a striking influence on the long-range behavior of a system, and it is one

of the objectives of the present section to illustrate this phenomenon on a particular exam-

ple. (A more comprehensive discussion of the role of geometry and topology in quantum

field theory will be developed in the next chapter.)

Consider then a two-dimensional square lattice with a phase-like variable exp(iθi) ∈ S1

defined on each of its sites i. Demanding that the Hamiltonian or action of the system be

periodic in all θi and minimal on homogeneous field configurations, the most elementary

action we can formulate reads

S[θ] = −J
∑
〈ij〉

cos(θi − θj), (8.39)

where
∑

〈ij〉 denotes the usual sum over nearest neighbor sites of a lattice. Equation (8.39) is

known as the action of the two-dimensional XY -model. (Its incarnation as a continuum

field theory is the U(1) version of the nonlinear σ-model discussed above.) To motivate the

terminology, one may regard θi as an angle parameterizing the direction of a unimodular

vector (a classical “spin”) in the two-dimensional XY -plane. Indeed, the model Eq. (8.39)
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can be viewed as a two-dimensional descendant of the classical Heisenberg model, i.e. as a

model where the Heisenberg spin is confined to a two-dimensional plane (a condition in fact

realized for a number of magnetic materials).

INFO Besides its natural occurrence in magnetism, the XY -model appears in many applications

in condensed matter physics. By way of an example, we mention here the physics of granulated

metals and the Josephson junction array.
Imagine then a system of small metallic (or superconducting)

islands (see figure), which are connected by poorly conducting tun-

neling barriers. (Arrays of this structure are believed to mimic the

mesoscopic morphology of structurally disordered metals. However,

they can also be manufactured artificially, with islands as small as

several nanometers.) On a microscopic level, the state of the system

is essentially determined by the number Ni of electronic charges

populating each island i. However, unless the inter-grain tunneling

conductance, gT, is small (i.e. gT < e2/h, the fundamental quantum

unit of conductance), temporal fluctuations of the charge degrees of freedom are vast. It is

then more favorable to characterize the state of the system in terms of the variable canonically

conjugate to the charge variable, i.e. the phase θi. (Remember that [θi, N̂j ] = −iδij form a

canonically conjugate pair.) The model action S[θ] then, of course, depends on the microscopic

structure of the system. However, for the case of a superconductor array, in the classical limit

(where temporal fluctuations of the phase field θ(τ) are suppressed), and neglecting charging

effects, the action collapses to that of the XY -action shown above. (Recapitulate the structure

of the single-junction Josephson action discussed in Problem 6.7 to convince yourself that this

is true.)

Amongst the class of classical spin models, the two-dimensionalXY -model assumes a unique

status – a fact already hinted at in consideration of the RG in the previous section. To

understand why, it is helpful to explore the high- and low-temperature expansions of the

theory. In the high-temperature phase, J → 0, one may expect that the classical partition

function for the lattice system can be developed as a series expansion in J ,

Z =

∫ 2π

0

∏
i

dθi
2π

e−S[θi] =

∫ 2π

0

∏
i

dθi
2π

∏
〈ij〉

[
1 + J cos(θi − θj) +O(J2)

]
.

Here each term in the product can be represented by a “bond” that connects neighboring

sites i and j. To the lowest order in J , each bond on the lattice contributes a factor of either

one or J cos(θi − θj). But, since
∫ 2π

0
dθ1 cos(θ1 − θ2) = 0, any graph with a single bond

emanating from a site vanishes. On the other hand, a site at which two bonds meet yields

a factor
∫ 2π

0
(dθ2/2π) cos(θ1 − θ2) cos(θ2 − θ3) = (1/2) cos(θ1 − θ3). Therefore, in this way,

the classical partition function can be presented as a closed “loop” expansion. Similarly,

the high-temperature expansion can be used to estimate the spin–spin correlation function

〈S0 · Sr〉 = 〈cos(θr − θ0)〉. To leading order, only those graphs that join sites 0 and r will

survive, implying an exponential decay of the correlation function,

〈S0 · Sx〉 ∼
(
J

2

)|x|
∼ exp

[
−|x|

ξ

]
,
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with a correlation length ξ−1 = ln(2/J ). Conversely, in the low-temperature phase, where

fluctuations of neighboring phases θi are strongly penalized, the lattice model can be safely

replaced by the continuum theory 1
2

∫
d2r J(∇φ)2. Taking only harmonic fluctuations of

the field φ(r), i.e. neglecting the topological constraint placed by the geometry, the spin–

spin correlation function can be inferred from the rules of Gaussian integration, to wit

〈S(0) · S(r)〉 = Re〈ei(θ(0)−θ(r))〉 = e−〈(θ(0)−θ(r))2〉/2. Since, in two dimensions, Gaussian

fluctuations grow logarithmically, 〈(θ(0) − θ(r))2〉/2 = ln(|r|/a)/2πJ , where a denotes a

short-distance cutoff (e.g. the lattice spacing), one can infer a spin–spin correlation function

that decays algebraically,

〈S(0) · S(r)〉 �
(

a

|r|

) 1
2πJ

,

a phase of quasi-long-range order.

The distinction between the nature of the asymptotic decays allows for the possibility

of a finite-temperature phase transition. However, these arguments are not specific to the

XY -model: any continuous spin model will exhibit exponential decay of correlations at high

temperature and, in two dimensions, a power law decay in a low-temperature Gaussian

approximation. Now, formally, to establish that “Gaussian” behavior persists at low tem-

peratures, one must prove that it is not modified by higher-order terms in the gradient

expansion (including those induced by the nonlinear constraint, S2
i = 1). However, while

the results of the (2 + ε)-expansion of the U(N ) theory show that the two-dimensional

model flows to a disordered phase for N > 2 (in accord with the Mermin–Wagner theo-

rem), for N = 2 the theory is non-committal. Indeed, in an extension of the perturbative

RG to higher loop order, the β-function remains zero. So we are left with the question,

is there indeed a phase transition that delineates between the high- and low-temperature

asymptotics, and what is the mechanism by which the quasi-long-range order is destroyed

at higher temperatures? Since the perturbative RG suggests that higher-order terms in the

gradient expansion are not relevant, it is necessary to search for other relevant operators.

8.6.1 Vortices and the topological phase transition

The gradient expansion describes the energy cost of small deformations around the ground

state, and applies to configurations that can be continuously deformed to the uniformly

ordered state. In separate and seminal works,40 Berezinskii, and Kosterlitz and Thouless,

proposed that the disordering is facilitated by the “condensation” of topological defects or

vortices. Since the angle describing the orientation of a spin is defined up to an integer

multiple of 2π, it is possible to construct spin configurations in which the traversal of a closed

path will see the angle rotate by 2πn. The integer n defines a topological charge enclosed

by the path. The discrete nature of the charge makes it impossible to find a continuous

40 V. L. Berezinskii, Violation of long range order in one-dimensional and two-dimensional systems with a con-
tinuous symmetry group. I. Classical systems, Sov. Phys. JETP 32 (1971), 493–500; J. M. Kosterlitz and D.
J. Thouless, Ordering, metastability, and phase transitions in two-dimensional systems, J. Phys. C 6 (1973),
1181–203.
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deformation that returns the state to the uniformly ordered configuration in which the

charge is zero. (More generally, topological defects arise in many models with a compact

group describing the order parameter – e.g., a domain wall defect (e.g. an instanton) in a

model with Z2 symmetry, or a “skyrmion” configuration in an O(3) three-component spin

Heisenberg ferromagnet; see the next chapter for a discussion of topological defects.)

David J. Thouless, 1934–
co-recipient with John Michael
Kosterlitz of the 2000 Lars
Onsager Prize “for the introduc-
tion of the theory of topologi-
cal phase transitions, as well as
their subsequent quantitative pre-
dictions by means of early and ingenious applica-
tions of the renormalization group, and advancing
the understanding of electron localization and the
behavior of spin glasses.”

The elementary defect, known in

the present context as a vortex

configuration, has a unit “charge”:

in completing a circle centered on

the defect, the orientation of the spin

changes by ±2π (see Fig. 8.10). If the

radius r of the circle is sufficiently

large, the variations in angle will

be small and the underlying lattice

structure of the spin model can be

neglected. By symmetry ∇θ has uni-

form magnitude and points along the azimuthal direction. The magnitude of the distortion

can be obtained by integrating around a path that encloses the defect,
∮
∇θ · dl = 2πn, i.e.

∇θ = n
r êz× êr, where êr and êz are unit vectors respectively in the plane and perpendicular

to it. This continuum approximation fails close to the center (core) of the vortex where the

lattice structure becomes important.

Although the defect-driven topological phase transition can be described within the frame-

work of the RG (see below), the nature of the transition can be understood from a simpler

and intuitive line of reasoning that one can find in the original paper by Kosterlitz and

Thouless. The energy cost of a single vortex of charge n can be divided into contributions

from the core region as well as from the relatively uniform distortions away from the center.

The distinction between regions inside and outside the core is arbitrary (see below) and, for

simplicity, we shall use a circle of radius a to distinguish the two, i.e. for a vortex of charge

n, the associated action is given by

Sn = Score
n (a) +

J

2

∫
a

d2r (∇θ)2 = Score
n (a) + πJn2 ln

(
L

a

)
.

The dominant contribution to the action arises from the region outside the core and diverges

logarithmically with the system size L.41 The large energy cost associated with the defects

inhibits their spontaneous formation at low temperatures and protects the integrity of the

quasi-long-range ordered phase. To explore the range over which vortices are suppressed,

one may explore the partition function for a configuration with just a single vortex of unit

41 Notice that, if the spin degrees of freedom have three components or more, the energy cost of a defect is
only finite. Following the arguments below, one may reflect on the implications of this fact for the inability of
topological defects to effect a topological transition in systems with N > 2.
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Figure 8.10 Spin configurations of the two-dimensional XY -model showing vortices of charge ±1.

charge n = 1,

Z1 ≈
(
L

a

)2

exp

[
−Score

1 (a)− πJ ln

(
L

a

)]
. (8.40)

Here the factor of (L/a)2 results from the configurational entropy associated with the range

of possible vortex locations in an area of size L2. The entropy and energy of a vortex both

grow as lnL, and the free energy is dominated by one or the other. At low temperatures (i.e.

large J) the potential energy dominates over the entropy and Z1, a measure of the weight

of configurations with a single vortex, vanishes. However, when J < Jc = 2/π, the entropic

contribution overwhelms the potential and one may expect the spontaneous formation of

vortices and a transition to the disordered phase.

In fact one might expect that this estimate of Jc represents only a lower bound for the

stability of the system towards the condensation of topological defects. This is because pairs

(dipoles) of defects may appear at larger couplings. Consider a pair of charges ±1 separated

by a distance d (see Fig. 8.10). Distortions far from the core |r| � d can be obtained by

superposing those of the individual vortices, i.e. ∇θ = ∇θ(r + d/2) − ∇θ(r − d/2) ≈ d ·
∇(êr× êz/|r|) ∼ d/|r|2. Integrating this distortion, one may infer that the energy cost of the

configuration is only finite, and hence dipoles appear with the appropriate Boltzmann weight

at any non-zero temperature. The low-temperature phase should therefore be visualized as

a “gas” of tightly bound dipoles, their density and size increasing with temperature. The

high-temperature phase constitutes a plasma of unbound vortices.

To a large extent, the argument above conveys much of the phenomenology of the

Berezinskii–Kosterlitz–Thouless (BKT) phase transition. However, one may justifiably ques-

tion the impact of harmonic fluctuations and dipole interactions in suppressing or even

destroying the transition. To explore these effects, one has to turn to a more rigorous line

of reasoning. To do so, we will once again draw on the RG.
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8.6.2 RG analysis of the BKT transition

To prepare for the application of the RG, we must first reorganize the action to emphasize

the different channels of fluctuations. Fortunately, for the two-dimensional XY -model, the

different channels (harmonic and topological) can be neatly separated. To understand why,

it is helpful to draw an analogy, noting that the distortion field, u ≡ ∇θ, is similar to the

velocity of a fluid. In the absence of vorticity, the flow is potential, i.e. u = u0 = ∇φ,

and ∇ × u0 = 0. The topological charge can be related to the vorticity ∇ × u by noting

that, for any closed path,
∮
dl · u =

∫
d2r êz · ∇ × u, where the second integral is over the

area enclosed by the path. Since the left-hand side is an integer multiple of 2π, one can set

∇×u = 2πêz
∑

i niδ
2(r− ri), describing a collection of vortices of charge {ni} at locations

{ri}. The solution to this equation can be obtained by setting u = u0 −∇× (êzψ), leading

to

∇× u = êz∇2ψ ⇒ ∇2ψ = 2π
∑
i

niδ
2(r− ri). (8.41)

Thus, the field ψ behaves as the potential due to a set of point charges {2πni} while the

solution, ψ(r) =
∑

i ni ln(|r − ri|), is simply a superposition of the potentials. Any two-

dimensional distortion can therefore be written as u = u0 + u1 = ∇φ −∇× (êzψ), where

u0 accommodates the harmonic field fluctuations while u1 includes the topological defects.

The corresponding action, S[u] = 1
2

∫
d2r Ju2, can be decomposed as

S[u] =
J

2

∫
d2r

[
(∇φ)2 − 2∇φ · ∇ × (êzψ) + (∇× êzψ)

2
]
.

An integration by parts shows that the second term vanishes (∇ · ∇ × u = 0), while the

third term can be simplified by noting that ∇ψ and ∇ × (êzψ) are orthogonal vectors of

equal length. Hence, making use of Eq. (8.41), the action associated with the topological

defects takes the form

St ≡
J

2

∫
d2r (∇× êzψ)

2 = −J

2

∫
d2r ψ∇2ψ = −2π2J

∑
ij

ninjC(ri − rj),

where C(x) = ln |x|/2π is the two-dimensional Coulomb potential. Once again, the unphys-

ical divergence of the potential for i = j must be regularized by the core energy, whence

St =
∑
i

Score
ni

− 4π2J
∑
i<j

ninjC(ri − rj). (8.42)

Conveniently, the configuration space of the XY -model can thus be partitioned into

different topological regions: one set arises from the degrees of freedom associated with the

charges, {ni}, while the other reflects the harmonic spin-wave excitations associated with

the field φ(r). The partition function of the lattice model is then approximately given by

Z ≈ Zs.w.Zt where

Zs.w. =

∫
Dφ exp

[
−J

2

∫
d2r (∇φ)2

]
, Zt =

∞∑
N=0

1

(N !)2

∫ (
2N∏
i=1

d2ri

)
e−St ,



8.6 Berezinskii–Kosterlitz–Thouless transition 469

and the ri are dimensionless integration variables ri = xi/a where xi is the position of

the vortex centre. (Exercise: Consider why the combinatorial factors (N !)2 are needed to

prevent overcounting of identical charge configurations.) To summarize, Zt describes a grand

canonical ensemble of “charges” with a two-dimensional Coulomb interaction. In fact, our

derivation of the action relied on an integration by parts. The surface integral that was

neglected in the process in fact grows with the system size as lnL
∑

i ni. Therefore, one

must impose on the field configurations contributing to Zt the constraint of overall charge

neutrality. In the following, to simplify our analysis further, we will limit considerations to

only elementary excitations with ni = ±1.42 Then, if we define the fugacity of the vortices

as y0 ≡ exp[−Score
±1 ], the partition function

Zt =

∞∑
N=0

y2N0
(N !)2

∫ (
2N∏
i=1

d2ri

)
exp

⎡⎣4π2J
∑
i<j

σiσjC(ri − rj)

⎤⎦ , (8.43)

reduces to that of a neutral Coulomb plasma of 2N unit charges ni = ±1.

EXERCISE The low-temperature physics of many two-dimensional systems is effectively reduced

to that of the XY -model or of the two-dimensional Coulomb plasma. For this reason, the equiv-

alence XY -model ⇔ Coulomb plasma demonstrated above represents an important result in its

own right. In fact, there exists a third important system falling into this universality class: the

two-dimensional sine–Gordon model defined by the action

S[θ] =
c

2

∫
d2r ∇θ ∇θ + g

∫
d2r cos(θ), (8.44)

where θ is a real scalar field. To demonstrate its equivalence to the Coulomb gas model, expand

the partition function in powers of g and show that

Z =
∞∑

N=0

y2N
0

(N !)2

2N∏
i=1

∫
ddri

〈
exp

(
i

2N∑
i=1

(−)iθ(ri)

)〉
,

where y0 = g/2 and the angular brackets denote averaging over the free action. (To prove that

positive and negative phases appear in equal numbers, consider the role of the integration over

the zero mode θ(r) = const.) Using the fact that 〈θ(r)θ(r′)〉 = C(|r − r′|)/c, and neglecting

the infinite self-interaction of the fields at coinciding points, show that the partition function

becomes identical to Eq. (8.43) when c = 1/8π2J .

Since Zs.w. and Zt involve independent degrees of freedom, they can be treated separately.

Further, as the Gaussian partition function Zs.w. is everywhere analytic, any phase transition

of the XY -model must originate from the Coulomb gas. Now, as mentioned above, in the

low-temperature phase, charges appear only as tightly bound dipole pairs while, at high

temperatures, the dipoles dissociate, forming a plasma. The two phases can be distinguished

42 A charge two vortex costs about as much energy as two unit-charge vortices. However, its entropy ∼ 2T ln(L/a)
is much lower than the entropy ∼ 4T ln(L/a) of the two-vortex configuration. This is why vortices of high
winding number are negligible in the low-temperature limit.
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by examining the interaction between two external test charges at some large separation X.

In the absence of internal charges, the two particles interact by the bare Coulomb interaction

C(X). The presence of internal charges provides a mechanism to screen the interaction,

namely C(X)/ε, where ε is an effective dielectric constant. With this interpretation, the

transition with increasing temperature (or increasing y0) can be viewed as a transition from

an insulating (dipolar) phase to a metallic (plasma) phase in which the external charges are

completely screened and their effective interaction decays exponentially.

To quantify this picture, one can compute the effective interaction between two external

charges at r and r′ perturbatively in the fugacity y0. To lowest order, the effects of screening

can be incorporated by including configurations with only two internal charges (positioned

at s and s′). In this case, the effective interaction can be written as

e−Seff.(r−r′) ≡ 〈e−4π2JC(r−r′)〉t =

(r⊕−& r′) + y20
∫
d2s d2s′

⎛⎝ s ⊕ − & s′

| × |
r ⊕ − & r′

⎞⎠+O(y40)

1 + y20
∫
d2s d2s′ (s⊕−& s′) +O(y40)

,

from which one obtains

e−Seff.(r−r′)+4π2JC(r−r′)

=
1 + y20

∫
d2s d2y′ e−4π2JC(s−s′)+4π2J[C(r−s)−C(r−s′)−C(r′−s)+C(r′−s′)] +O(y40)

1 + y20
∫
d2s d2s′ e−4π2JC(s−s′) +O(y40)

= 1 + y20

∫
d2s d2s′ e−4π2JC(s−s′)

(
e4π

2JD(r,r′,s,s′) − 1
)
+O(y40). (8.45)

Here, D(r, r′, s, s′) = C(r− s)− C(r− s′)− C(r′ − s) + C(r′ − s′) denotes the interaction

between the internal and external dipoles, while the direct interaction C(s − s′) tends to

keep the separation x = s′ − s small. Defining the center of mass X = (s + s′)/2, we can

change variables to s = X−x/2 and s′ = X+x/2, and expand the dipole–dipole interaction

in small x as D(r, r′, s, s′) � −x · ∇XC(r − X) + x · ∇XC(r′ − X) + O(x3). To the same

order

e4π
2JD(r,r′,s,s′) − 1 � −4π2 Jx · ∇X(C(r−X)− C(r′ −X))

+ 8π4J2[x · ∇X(C(r−X)− C(r′ −X))]2 +O(x3).

Substituting this expression into Eq. (8.45), and changing integration variables, one finds

that the term linear in x integrates to zero while the angular average of (x · ∇XC)2 leads

to x2(∇XC)2/2. Thus, to O(r4), one obtains

e−Seff (r−r′) � e−4π2JC(r−r′)

×
[
1 + y20

∫
(dx 2π x)e−4π2JC(x)8πJ2x

2

2

∫
d2X (∇X(C(r−X)− C(r′ −X)))

2
]
.

Using the identity ∇2C(r) = δ2(r), one may note that
∫
d2X [∇X(C(r−X)−C(r′−X))]2 =

2(C(r − r′) − C(0)). Finally, absorbing the short-distance divergence into an appropriate
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cutoff with C(x) → ln(x/a)/2π, one arrives at the expression

e−Seff (r−r′) = e−4π2JC(r−r′)
[
1 + 16π5J2y20C(r− r′)

∫ ∞

1

dx x3 e−2πJ ln x +O(y40)

]
,

where the variable x has been rescaled to absorb the short distance cutoff. Exponentiating

the second term, one obtains the effective interaction Seff(r− r′) � 4π2JeffC(r− r′), where

Jeff = J − 4π3J2y20

∫ ∞

1

dx x3−2πJ +O(y40), (8.46)

From this result, to leading order in y20 , one can infer the dielectric constant of the medium

as ε = J/Jeff . However, while the integral remains convergent at large x, the perturbative

correction is small. The breakdown of the perturbation theory for J < Jc = 2/π occurs

precisely at the point where the free energy of an isolated vortex changes sign. Indeed, this

breakdown of the perturbation theory is reminiscent of that encountered in the φ4-theory

for d < 4. This being so, one may propose a reorganization of the perturbation series into

a RG calculation for the parameters J and y0.

The difficulty associated with the divergence at small J can be overcome by employing a

renormalization procedure first used by José et al.43 By breaking the integral in Eq. (8.46)

into two parts, i.e.
∫∞
1

→
∫ b

1
+

∫∞
b

, the non-singular short-distance contribution to the

integral can be evaluated and incorporated into J . This procedure can be carried out order

by order in y0 even though the coefficient of y20 is formally divergent. This leads to a new

equation J−1
eff = J̃−1+4π3y20

∫∞
b

dx x3−2πJ+O(y40), where J̃
−1 = J−1+4π3y20

∫ b

1
dx x3−2πJ+

O(y40). The variables in the remaining integral can be rescaled (x → x/b) to yield an equation

for J−1
eff equivalent to Eq. (8.46) but with shifted and rescaled parameters J and y0:

J−1
eff = J̃−1 + 4π3ỹ20

∫ ∞

1

dx x3−2π �J +O(y40),

where ỹ0 = b2−πJy. By choosing an infinitesimal renormalization, i.e. b = e� ≈ 1 + �, one

obtains the differential recursion relations

dJ−1

d�
= 4π3y20 +O(y40),

dy0
d�

= (2− πJ)y0 +O(y30).

(8.47)

From these equations, one may note that the (inverse) coupling constant J−1 increases

monotonically with � while the recursion relation for y0 changes sign at J−1
c = π/2. At

high temperatures, when J is small, y0 is relevant, while at lower temperatures it becomes

irrelevant. The RG flows, shown in Fig. 8.11(a), separate the parameter space into two

regions. At low temperatures, and small y0, flows terminate on a fixed line at y0 = 0 and

Jeff ≥ 2/π. This is the insulating phase, in which only dipoles of finite size occur (hence the

vanishing of y0 under coarse-graining). The strength of the effective interaction is given by

the point on the fixed line at which the flow terminates. Flows that do not terminate on the

43 J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Renormalization, vortices, and symmetry-breaking
perturbations in the two-dimensional planar model, Phys. Rev. B 16 (1977), 1217–41.
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Figure 8.11 Schematic RG flow diagram for the XY -model. (a) Far from the critical point, and
(b) close to the critical point.

fixed line asymptote to larger values of J−1 and y0 where perturbation theory eventually

breaks down. This is the signal of the high-temperature phase where vortices proliferate.

The critical trajectory that separates the two regions of the phase diagram flows to a

fixed point at (J−1
c = π/2, y0 = 0). To explore the critical behavior at the transition, one

must expand the recursion relations in the vicinity of this point. Setting t = J−1 − π/2, to

lowest order, Eq. (8.47) simplifies to

dt

d�
= 4π3y2 +O(ty2, y4),

dy

d�
=

4

π
ty +O(t2y, y3).

In contrast to those discussed in previous sections, the recursion relations here are inherently

nonlinear in the vicinity of the fixed point (see Fig. 8.11(b)), suggesting that the critical

behavior is likely to be novel. To uncover the structure, one may note that t2 − π4y2 is a

conserved quantity, i.e. the flow proceeds along hyperbolae characterized by different values

of c ≡ t2 − π4y2. For c < 0, the focus of the hyperbola is along the y-axis, and the flows

proceed to (t, y) → ∞. Conversely, hyperbolae with c > 0 have foci along the t-axis, and

have two branches in the half plane y ≥ 0: the branches for t < 0 flow to the fixed line,

while those in the t > 0 quadrant flow to infinity. The critical trajectory separating flows

to zero and infinite y corresponds to c = 0, i.e. tc = −π2yc. Therefore, a small but finite

fugacity y0 reduces the critical temperature to J−1
c = π/2− π2y0 +O(y20).

In terms of the original XY -model, the low-temperature phase is characterized by a

line of fixed points with Jeff = lim�→∞ J(�) ≥ 2/π. Here the phase correlations decay as a

power law, i.e. 〈cos(θ(r)− θ(0))〉 ∼ 1/|r|η, with η = 1/2πJeff ≤ 1/4. Since the parameter c

is negative in the low-temperature phase, and vanishes at the critical point, we can set

c = −b2(Tc − T ) close to the transition. In other words, the trajectory of initial points

tracks a line (t(T ), y(T )). The resulting c = t2 − π4y2 ∝ (Tc − T ) is a linear measure of the

proximity of the phase transition. Under renormalization, such trajectories flow to a fixed

point at y = 0, and t = −b
√
Tc − T . Thus, in the vicinity of the transition, the effective

interaction parameter,

Jeff =
2

π
− 4

π2
lim
�→∞

t(�) =
2

π
+

4b

π2

√
Tc − T ,

exhibits a square root singularity.
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Figure 8.12 Measurement of the superfluid density ρs(Tc) as a function of Tc. The approximate lin-
earity ρs ∼ Tc demonstrates the universality of the stiffness constant J at the transition. (Reprinted
with permission from D. J. Bishop and J. D. Reppy, Study of the superfluid transition in two-
dimensional 4He films, Phys. Rev. Lett. 40 (1978), p. 1727–30. Copyright (1978) by the American
Physical Society.)

INFO The stiffness, Jeff , can be measured directly in experiments on superfluid films. As

we have seen in Chapter 6, in the superfluid phase, the low temperature of neutral superfluids

is described by a phase action with a stiffness J = βρs/m
2 determined by the superfluid density

of the system. The density ρs is measured by examining the changes in the inertia of a torsional

oscillator; the superfluid fraction, ρs experiences no friction and does not oscillate.

Bishop and Reppy examined ρs for a variety of superfluid films (of different thickness, 4He

concentration, etc.) wrapped around a torsional cylinder. By inferring the effective stiffness J as

a function of temperature, they found that, for all films, it undergoes a universal jump of 2/π at

the transition while the behavior of J for T < Tc was consistent with a square root singularity.

They also observed (see Fig. 8.12) that the ratio ρs(Tc)/Tc = Jcm
2 = 2m2/π is a universal

quantity independent of the material parameters of the film.

In the high-temperature phase, the correlations decay exponentially. In this phase the

parameter c = t2 − π4y2 = b2(T − Tc) is positive all along the hyperbolic trajectory. Here

the recursion relation dt
d� = 4π3y2 = 4

π (t
2 + b2(T − Tc)) can be integrated to give

4

π
� � 1

b
√
T − Tc

arctan

(
t

b
√
T − Tc

)
.

The integration must be terminated when t(�) ∼ y(�) ∼ 1 since, beyond there, the pertur-

bative calculation is invalid. This occurs for a value �∗ ≈ π
4b

√
T−Tc

π
2 , where we have used

the fact that arctan(1/b
√
T − Tc) ≈ π/2. The resulting correlation length is given by

ξ ≈ ael
∗ ≈ a exp

[
π2

8b
√
T − Tc

]
, (8.48)
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i.e. in contrast to the usual behavior described in previous sections, the divergence of the

correlation length is not a power law, a consequence of the nonlinear nature of the recursion

relations in the vicinity of the fixed point.

Finally, vortices occur in bound pairs for distances smaller than ξ while there can be an

excess of vortices of one sign or the other at larger separations. The interactions between

vortices at large distances can be obtained from the Debye–Hückel theory of polyelectrolytes.

According to this theory, the free charges screen each other, leading to a screened Coulomb

interaction exp(−x/ξ)C(x). On approaching the transition from the high-temperature side,

the singular part of the free energy

fsing ∝ ξ−2 ∝ exp

(
− π2

4b
√
T − Tc

)
, (8.49)

has only an essential singularity. All derivatives of this function are finite at Tc. Thus the

predicted heat capacity is quite smooth at the transition. Numerical results based on the

RG equations indicate a smooth maximum in the heat capacity at a temperature higher

than Tc corresponding to the point at which the majority of dipoles unbind.

8.7 Summary and outlook

This concludes our preliminary introduction to the theory of the “renormalization group.”

It should be emphasized that our approach to the subject was biased in that it introduced

the RG in a manner tailored to applications in quantum statistical physics; a more particle-

physics-oriented introduction (see Ryder13) would have focused on the principal issues of

renormalizability, different regularization schemes, renormalization through counter-terms

and, of course, the many great triumphs renormalization group methods have had in QED

and QCD. However, even with regard to statistical/condensed matter physics, our discus-

sion has been far from complete (arguably the most serious omission being that of conformal

symmetries – see the Info block below). We trust, however, that the discussion was sub-

stantial enough to convince the reader of the enormous power and versatility RG methods

have in disclosing “deep” physical information and to motivate further exploration of the

subject.

INFO While, for the most part, previous chapters were guided by symmetry principles, little

has been said so far about the role of symmetries in connection with renormalization. At the

same time it is quite obvious that, at a point of self-similarity, a physical system will have more

symmetries than the ubiquitous global scale invariance: it will, at least, also be rotationally

and translationally invariant: In fact, we expect these symmetries to be local symmetries, e.g.

provided the system is described by a short-range effective theory, a local rescaling of coordinates

r → b(r)r should not cause any effect; a point on which you might like to reflect.

More generally, we expect self-similar systems to be invariant under general conformal map-

pings r → r′(r), i.e. mappings that leave angles between vectors locally invariant. (In a more

mathematical language, a mapping is conformal if it leaves the metric tensor gμν(r) invariant, up

to an optional scale factor, i.e. g′μν(r
′) = Ω(r)gμν(r).) In general dimensions, the three classes of
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transformations mentioned above, dilatations, rotations, and translations, essentially44 exhaust

the list of conformal mappings. It turns out, however, that the information gain due to the pres-

ence of these symmetries is rather restricted. However, a radically different situation arises in

d = 2. Introducing complex coordinates, z = z0 + iz1, it can be shown45 that every holomorphic

mapping z → w(z) is automatically conformal. This means that two-dimensional systems at a

fixed point are invariant under a vast group of symmetry operations. These symmetry conditions

can be employed – the subject of conformal field theory – to obtain very far-reaching infor-

mation about the behavior of correlation functions. In fact, it is customary in two-dimensional

conformal field theory to characterize the behavior of a theory “indirectly,” by the transforma-

tion characteristics of its correlation functions, rather than by specifying concrete microscopic

actions. At any rate, a discussion of the foundations and applications of conformal field theory,

and its ramifications in various branches of mathematical physics, is beyond the scope of the

present text. For a very accessible first introduction to the subject we refer to Cardy.1 Readers

who want to learn more about the subject are referred to di Francesco et al.46

In Section 8.6 we saw the way large-scale topological defects render the physical behavior of

a model, as seemingly innocuous as the two-dimensional XY -model, utterly non-trivial. Our

observations made in connection with the XY -model exemplify a very general phenomenon:

in physical systems admitting the formation of topologically stabilized excitations, a con-

spiracy of large-scale geometry-related structures and local fluctuations leads to intriguing

physical effects. An introductory discussion of topological structures in quantum field the-

ory, and of their ramifications in concrete physical phenomena, is the subject of the next

chapter.

8.8 Problems

8.8.1 Dissipative quantum tunneling: strong potential limit

In Section 8.2, we considered a quantum particle subject to a periodic potential and a dissipative

damping mechanism. A combination of perturbative methods and the renormalization group was applied

to show that, for dissipation rates above a certain critical threshold, the external potential effectively

grows. Eventually, however, the potential height will reach values at which a perturbative treatment is

no longer valid. In this problem we explore the fate of the quantum particle in the high-potential limit.

As a result, we obtain the upper portion of the flow diagram discussed in Section 8.2.

Let us consider the action (8.11) in the limit where the potential strength c is large in

comparison with the high-frequency cutoff Λ of the theory. To explicitly implement the

condition ωn < Λ, we add a “kinetic energy term” Skin[θ] =
l2m
2

∫
dτ θ̇2 to the action, where

l is some fixed parameter of dimensionality [length]. The mass parameter is chosen such

44 The so-called special conformal transformation, r !→ r/r2, also belongs to the family of conformal mappings.
45 Under a change of coordinates, z → w, the metric tensor changes according to gμν → ∂wμ

∂zσ
∂wν

∂zρ gσρ. It is
straightforward to show (exercise) that the condition that the standard metric gμν = δμν change only by a

global factor is equivalent to the Cauchy–Riemann equations ∂w1

∂z0
= − ∂w0

∂z1
and ∂w0

∂z0
= − ∂w1

∂z1
.

46 P. di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer-Verlag, 1999).
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that at the maximum value of the frequency, ωn = Λ, the kinetic energy term becomes of

the same order as the dissipative term (i.e. for frequencies beyond Λ, the system is no longer

effectively described by Eq. (8.11)): ml2 ∼ 1/Λg. We are thus led to consider the imaginary

time action

S[θ] =
1

4πTg

∑
ωn

|ωn||θn|2 +
∫

dτ

[
ml2

2
θ̇2 + cos(θ(τ))

]
,

describing a particle in a periodic potential and subject to a weak damping mechanism.

Assuming the damping to be weak, we begin by exploring the solutions to the equations

of motion of the undamped (g = ∞) problem. Varying the action, we obtain the equations

of motion ml2d2τ θ̄ + sin(θ̄) = 0, i.e. the Newton equation of the mathematical pendulum.

Although these equations can be solved in closed form, there is actually no need to do so.

We need note only that extended periods where the classical particle rests at the maxima of

the potential are interrupted by occasional events where it rolls through one of the potential

minima (see the figure overleaf). Throughout, it will be convenient to characterize the profile

of a general trajectory θ̄ in terms of its time-derivative h = dτ θ̄ (see the bottom part of

the figure). For a function θ̄ containing n+ instanton events and n− anti-instanton events,

h(τ) =
∑n

i=1 eif(τ − τi), where τi is the time of the event, ei = +1 (−1) for an instanton

(anti-instanton), n = n− + n+, and f(τ) is a function that is peaked around zero, has a

width ∼ c and integrates to 2π:
∫∞
−∞ dτ f(τ) = h(∞)− h(−∞) = 2π.

(a) Show that the action of a general instanton trajectory is given by

S[θ̄] =
1

4πTg

∑
ωm

n∑
i,j=1

eieje
iωm(τi−τj)

|fm|2
|ωm| + nSinst,

where Sinst. is the action of a single instanton event.

(b) Apply a Hubbard–Stratonovich transformation to bring the partition function to the

form

Z =
∑
n

∑
{ei=±1}

e−nSinst

∫
Dq e−

g
4πT

∑
m |qm|2|ωm| 1

n!

n∏
i=1

∫
dτi e

i
∑n

i=1 eiq(τi),

where we have neglected the contribution from the fluctuation determinant. (Hint: Use

the fact that, in the frequency range of interest, fm � fm=0 = 2πT .)

(c) Sum over all configurations of the “charges” ei to obtain

Z =

∫
Dq exp

(
− g

4πT

∑
ωm

|qm|2|ωm|+ γ

∫
dτ cos(q(τ))

)
, (8.50)

where γ = 2e−Sinst . Intriguingly, we have arrived at a functional integral with an action

structurally equivalent to our starting point (8.11). The “only” difference is a change in

the coupling constants, g → gdual ≡ 1
g and c → γ = 2e−Sinst . In words: very large values

of the potential c map onto a very small potential in the “dual problem”; dissipation

strengths g > 1 map into gdual < 1 and vice versa. Use this information to convince

yourself of the validity of the upper portion of the flow diagram discussed in Section 8.2.
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What we have achieved by the construc-

tion above is a duality transformation:

a field theory subject to a strong potential

(more generally, a field theory at strong

interactions, or “strong coupling”) has been

mapped onto a weakly perturbed field the-

ory (a theory at “weak coupling”). Duality

transformations “boost” theories from one

corner of their phase diagram into another

and, therefore, establish links between sec-

tors of the problem at hand that cannot be

linked by perturbative means. This explains

why the identification of its dual partners

represents an important step in the analysis of any field theory. The problem above is spe-

cial in that it is self-dual, i.e. the theory obtained after the transformation is structurally

equivalent to the starting theory.

Answer:

(a) The result is obtained by substitution of θ̄m = − ifm
ωm

∑
i eie

iωmτi into the action.

(b) Substituting q(τ) =
∑

m eiωmτqm into the Hubbard–Stratonovich transformed represen-

tation and performing the Gaussian integral over qm, we arrive at

Z =
∑
n

∑
{ei=±1}

e−nSinst
1

n!

n∏
i=1

∫
dτi e

−S[θ̄],

i.e. the action of the previous line, integrated over all instanton coordinates and all

“charge configurations” {ei = ±1}.
(c) Starting from the representation derived in (b) and reorganizing terms, we obtain

Z =

∫
Dq e−

g
4πT

∑
m |qm|2|ωm| ∑

n

1

n!

[
e−Sinst.

∑
e=±1

∫
dτ eieq(τ)

]n

=

∫
Dq e−

g
4πT

∑
m |qm|2|ωm| ∑

n

1

n!

[
γ

∫
dτ cos(q(τ)

]n
.

Resumming the exponential series, we obtain Eq. (8.50).

8.8.2 Quantum criticality

So far, we have focused predominantly on scaling and critical phenomena associated with a thermally

induced phase transition. However, as we have seen in previous chapters, the quantum system affords

the possibility of a phase transition driven by some external parameter even in the zero-temperature

system. For example, a transition from the superconducting to the normal phase of a metal can be

driven by an external magnetic field. Similarly, the transition between a paramagnetic and a ferro-
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or anti-ferromagnetic itinerant electron phase can be driven by changing the strength of the effective

interaction (through, e.g., external pressure). In both cases, the application of the external parameter

leads to a substantial rearrangement of the ground state – a quantum phase transition. If this

is continuous, as with a thermally induced transition, one can expect the appearance of characteristic

critical phenomena analogous to, but potentially different from, the corresponding classical critical

theory. The aim of the present problem is to explore the nature of the critical phenomena when the

critical point is driven to zero temperature – a quantum critical point.

Motivated by the coherent state formulation of the quantum partition function of an inter-

acting system, it is tempting to associate directly the quantum statistical mechanics of a

d-dimensional system with the classical statistical mechanics of a (d + 1)-dimensional sys-

tem – the time coordinate would seem to just add one more dimension (albeit of finite extent

β). However, in most applications, time and space enter the action in an anisotropic man-

ner. As a result, one must consider scalings along the time and space directions separately.

This provides for a rich variety of new phenomena associated with the quantum critical

point. Although a general theoretical phenomenology of the quantum critical system was

formulated by Hertz47 soon after the development of the renormalization group method,

it is only relatively recently that experimentalists have been able to access and explore in

detail the quantum critical regime. Of these experimental developments, perhaps the most

systematic has been in the exploration of metallic magnetism in the wide class of heavy

fermion compounds. With this motivation in mind, let us then recall briefly our discussion

of the Stoner transition in Problem 6.7.

INFO Without going into detail, we note that heavy fermions are compounds containing rare-

earth elements such as Ce or Yb, or actinide elements such as U (examples including UBe13,

CeCu2Si2, and many more). Their inner shell conduction electrons often have effective masses

several hundred times as large as that of bare electrons. As a consequence, the Fermi energy

in heavy fermion materials is anomalously low (exercise). At low temperatures, many of these

materials are magnetically ordered, others show strong paramagnetic behavior, and some display

unconventional mechanisms of superconductivity.

Starting with the quantum partition function of the lattice Hubbard system, a field theory

of the Stoner transition was derived. Specifically, it was shown that, after an appropriate

rescaling of space and time, the quantum partition function of the interacting electron

system could be presented as a functional field integral over a scalar magnetization field

m(x), weighted by the Euclidean time action48

S[m] =
1

2βV

∑
q

[
δ + q2 +

|ωn|
Γq

]
|mq|2 +

u

4

∫
dxm4(x).

In the quantum critical system, the parameter δ measures the distance from the critical

point while the Landau damping factor Γq = Γ|q| for the ferromagnetic transition and

47 J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976), 1165–84.
48 Here, to facilitate the RG, it is helpful to adopt the Fourier convention m(x) = T

Ld

∑
q mqe

i(q·r−ωτ), mq =∫
dxm(x)e−i(q·r−ωτ), where dx ≡ ∫

ddr
∫ β
0

dτ .
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Γq = Γ, a constant, in the antiferromagnetic case. Finally, to regularize the theory, one

may suppose that the momentum integration is cut off at the lattice scale Λ = 1/a. More

generally, in the absence of an external magnetic field, one may consider a generalization

from the scalar to a vectorial field m. However, keeping our discussion simple, we focus on a

system with uniaxial symmetry (such as a metamagnetic system49) where the field is scalar

(uniaxial).

At the level of Landau mean-field theory, the magnetization field acquires a non-zero

expectation value when δ < 0. In the classical system, our analysis of the φ4-theory (to

which the present action collapses at high temperatures) has shown that, in dimensions

d ≥ du = 4, the critical system is controlled by the Gaussian fixed point while in dimensions

1 > d > du the critical properties are controlled by a new fixed point. Here, in the low-

temperature system, one can expect the critical properties to be influenced by quantum

dynamical fluctuations. Drawing on the seminal work of Hertz and, later, by Millis,50 our

aim here is to explore the ramifications of scaling in the quantum critical system.

(a) As a warm-up exercise, show that, up to a temperature-independent constant, the free

energy of the Gaussian theory (i.e. δ > 0, u = 0) takes the form

FGauss = Ld

∫
ddq

(2π)d

∫ Γq

0

dω

π
coth

(
ωβ

2

)
tan−1

(
ω/Γq

δ + q2

)
.

(Hint: Functional integration over the Gaussian field fluctuations leads to a formally

divergent expression. To extract the finite δ-dependent contribution above, first differ-

entiate, ∂δF , to later regain the δ-sensitive part of F by integration,
∫
dδ ∂δF .)

(b) Although, as we have seen above, the free energy can be obtained directly from the func-

tional integral, to guide our analysis of the non-Gaussian theory it is helpful to develop

the RG on the Gaussian model first. Using the standard coarse-graining procedure,

m(q) =

{
ms(q), 0 < |q| < Λ/b,

mf(q), Λ/b ≤ |q| < Λ,

show that the scaling exponent yδ = 2 and, from the temperature, identify the value of

the dynamical exponent z for the ferromagnetic and antiferromagnetic models. Focusing

on the Gaussian fixed point, show that the RG implies the scaling dimension yu = 4−d−z

from which one obtains the upper critical dimension du = 4− z.

(c) To accommodate the effect of a general interaction U , one may make use of the pertur-

bative RG expansion

Z =

∫
Dms e

−S[ms]〈e−U [ms,mf ]〉f ,

49 As derived in Problem 6.7, the Stoner transition takes place from a paramagnetic to a ferromagnetic phase.
However, experimentally, one often finds that, while the paramagnetic phase is stable at zero external magnetic
field, the magnetization can change abruptly at some non-zero field – a metamagnetic transition. The develop-
ment of a Landau expansion of the action in the vicinity of the metamagnetic critical point leads to a theory
with uniaxial symmetry.

50 A. J. Millis, Effect of a non-zero temperature on quantum critical points in itinerant fermion systems, Phys.
Rev. B 48 (1993), 7183–96.
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where U [ms,mf ] =
3u
2

∫
dxm2

sm
2
f and 〈· · · 〉f =

∫
Dmfe

−S(2)[mf ](· · · ) denotes averaging
over the quadratic action of the fast field. Keeping terms to first order in the quartic

interaction,51 obtain the RG equations

dT (b)

d ln b
= zT (b),

dδ(b)

d ln b
= 2δ(b) + 12u(b)f (2)[T (b)],

du(b)

d ln b
= (4− d− z)u(b),

where

f (2)[T (b)] = ΛdΩdΓΛ

∫ 1

0

ds

π

[
coth

(
sΓΛβ

2

)
s

(δ + Λ2)2 + s2
+ z coth

(
sz−2ΓΛβ

2

)
sd−3+z

(δ + s2Λ)2 + 1

]

denotes a dimensionless integral function of the temperature and Ωd is the surface of

the d-dimensional unit ball divided by (2π)d. (Hint: Notice that, for a given value of the

cutoff Λ, the integration domain in frequency–momentum space is set by |ω| < Γq, |q| ≤
Λ. This means that the “shell” of fast fluctuations obtained by a gradual lowering of the

cutoff is of the form shown in the figure. Introduce the integration boundaries imposed

on the fast-field integration after you have analytically continued to real frequencies.)

ΓΛ

ΓΛ / b /bz

Λ /bΛ

ω

q

Already, from these differential recursion relations,

one can recover much of the phenomenology of the

quantum critical system. Integrating the last of the

recursion relations, one finds that for d + z ≥ 4, the

interaction u(b) = ub4−(d+z) initially decreases under

renormalization. Therefore, over at least some range of

parameters, one may expect the theory to be controlled

by the Gaussian fixed point T ∗ = r∗ = 0. However, it

is evident from the first of the scaling relations that the

temperature increases under renormalization scaling as

T (b) = Tbz. Crucially, referring to the expression for

f (2)[T (b)] (and, indeed, its higher-order descendants) – setting Λ = ΓΛ = 1 for simplicity –

one may see that the character of the renormalization changes when T (b) � 1 (i.e. when

b � b0 = T−1/z). Here, the effect of the confinement in the Euclidean time direction begins

to impact. Whether this scaling regime is reached depends on the physical bare parameters.

To stay within the scaling regime, we require δ(b) < 1. Therefore, defining b1: δ(b1) = 1,

one may identify two regimes of behavior. Firstly, in a low-temperature regime where 1 �
b1 � b0, the system is characterized by quantum critical behavior controlled by the T = 0

51 Comparing with the RG analysis of the standard φ4-model in Section 8.4.4, consider which fluctuation effects
are kept at this level of approximation and which are not.
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fixed point. Here, approximating f (2)[T (b)] � f (2)[0], an integration of the scaling equation

gives

δ(b) = b2
[
δ +

12uf (2)(0)

z + d− 2

]
≡ b2r,

the renormalization of δ recording the effect of quantum dynamical and spatial fluctuations

on the critical point. Referred through b1, this implies a “quantum critical regime” bounded

by the inequality T � rz/2.

However, if this inequality is reversed (i.e. b1 > b0), the scaling behavior must be separated

into regimes where b < b0 (T (b) < 1) and b > b0 (T (b) > 1). Noting that, for T (b) � 1,

f (2)[T (b)] ∝ T (b), the recursion relations may be simplified (and, indeed, their nature

elucidated) by defining v(b) = u(b)T (b), whence they take a more familiar form,

dδ(b)

d ln b
= 2δ(b) + Cv(b),

dv(b)

d ln b
= (4− d)v(b),

with C relating the constant of proportionality. These are nothing but the differential recur-

sion relations associated with the leading order of perturbation theory of the d-dimensional

classical φ4-theory with the familiar upper critical dimension du = 4. Integrating these

equations from b0 to b > b0, we obtain

δ(b) =

(
δ(b0)−

Cv(b0)

2− d

)(
b

b0

)2

+
Cv(b0)

2− d

(
b

b0

)4−d

, v(b) = v(b0)

(
b

b0

)4−d

.

To determine the initial values (δ, v)(b0), we need to integrate the low-temperature (b < b0,

or T (b) < 1) scaling relations up to b0. Setting f (2)(Tezx) = f (2)(0)+ [f (2)(Tezx)−f (2)(0)],

the constant f (2)(0) recovers the result above while the term in rectangular brackets effects

a temperature-dependent correction such that

δ(b0) = T−2/z[r +BuT (d+z−2)/z], v(b0) = uT (d+z−4)/z,

where B = 12
z

∫ 1

0
dT T [2−(d+2z)]/z[f (2)(T )− f (2)(0)].

We now have to distinguish between two very different scenarios. (i) If the scaling is halted

(δ(b) = 1) while v(b) remains small, the perturbative expansion remains valid. However,

(ii) if v(b) grows to order unity while δ(b) remains small, the scaling behavior moves into a

region potentially controlled by non-Gaussian fluctuations. From the equations above, the

condition for Gaussian behavior, i.e. δ(b) = 1 and v(b) � 1, translates to the Ginzburg

criterion

uT (d+z−3)/z

[r + (B + C)uT (d+z−2)/z]1/2
� 1.

From the same result, one can infer a transition temperature

Tc(r < 0, u) =

[
− r

(B + C)u

]z/(d+z−2)

.

Notice that at the transition temperature we are always in regime (ii), i.e. a regime governed

by strong non-Gaussian fluctuations. Gathered together, the results of this analysis are

summarized in Fig. 8.13.
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T

δδc

disordered quantum
regime

classical
regime

ordered regime

Tc = (δ  – δc)
z / (d + z

 
–

 
2)

(δ  – δc)
z /  2

Gaussian

Figure 8.13 Phase diagram associated with a quantum critical point. The solid line denotes the
locus of the transition temperature while the hatched area denotes the Ginzburg region where the
scaling behavior is controlled by critical fluctuations.

INFO Although this completes our formal discussion of the renormalization properties of the

quantum critical theory, it is instructive to question how these results can be translated to

experiment. From the scaling behavior, one can infer directly a number of physical manifesta-

tions. Of these, the most straightforward relates to the temperature dependence of the magnetic

susceptibility. Focusing on the classical Gaussian regime, in the disordered phase, we have seen

that the mass scales as δ(b0) = T−2/z[r + BuT (d+z−2)/z]. The latter translates to a zero-field

susceptibility

χ(T ) = χ0(r +BuT (d+z−2)/z).

Once the bare temperature crosses into the disordered quantum regime, one expects the suscep-

tibility to become temperature-independent.

Now, in the clean system, magnetic fluctuations present the dominant mechanism of low-

temperature scattering. In this case, one can estimate their effect on the low-temperature resistiv-

ity. Referring to the literature, an estimate of the scattering rate based on the Born approximation

gives

1

2τ
= −Im ΣR(kF , 0) � g2

(
T

vF

)3
1

r +BuT (d+z−2)/z
,

where g denotes the coupling between the electrons and spin fluctuations. When the spin fluc-

tuations dominate, one finds a resistivity ρ(T ) ∼ T 3−(d+z−2)/z while, in the opposite regime,

the contribution from electron–electron scattering dominates and one recovers the Fermi-liquid

result ρ(T ) ∼ T 2.
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Answer:

(a) For the Gaussian theory, integration over the fields m(q) and subsequent differentiation

with respect to δ gives the free energy density

∂δFGauss = Ld

∫
ddq

(2π)d
T
∑
ωn

1

δ + q2 + |ωn|
Γq

= Ld

∫
ddq

(2π)d
P

∫ Γq

−Γq

dω

2πi

tanh(βε/2)

δ + q2 − i ω
Γq

= −Ld

∫
ddq

(2π)d
P

∫ Γq

0

dω

π

tanh(βε/2) ω/Γq

(δ + q2)2 + (ω/Γq)
2 .

To arrive at the first integral, we have converted the sum over positive frequencies ωn

into a contour integral running parallel to the real axis, surrounding the pole at ωm = 0

along an infinitesimal semicircle in the upper complex half plane, and closing it at

infinity through the upper complex half plane as usual. Noting that the infinitesimal

integral around zero cancels against the contribution ωm = 0, the integral reduces to the

principal value integral given above. (The integration is restricted to |ω| < Γq because

outside this interval the low-frequency approximation of the polarization operator no

longer applies.) Using the relation that ∂δ tan
−1

(
ω/Γq

δ+q2

)
= − ω/Γq

(δ+q2)2+(ω/Γq)2
, we arrive

at the required result.

(b) Since, at the level of the Gaussian theory, fast and slow fluctuations decouple, the

effective action of the slow fields is given by

S[ms] =
1

2β

∫ Λ/b ddq

(2π)d

∑
ωn

(
δ + q2 +

|ωn|
Γq

)
|ms(q)|2,

i.e. the original action with lowered cutoffs. (The presence of a cutoff in the frequency

summation is implicit in the notation.) To restore the cutoffs to their original values, one

must implement the rescaling q′ = qb, ω′
n = bzωn, where z denotes the dynamical expo-

nent. Notice that the frequency scaling is tantamount to a redefinition of temperature,

T ′ = bzT . The final step of the RG involves the renormalization of the magnetization

field, m′(q′) = ms(q
′)/y. As a result, the action assumes the form

S[m] = −1

2

∫ Λ ddq′

(2π)d
T ′ ∑

ω′
n

(
δ + q′2b−2 +

|ω′
n|bz

Γq′/b

)
b−(d+z)y2|m′(q′)|2.

Requiring that the gradient term remain invariant, one finds that y = b(d+z+2)/2.

Further, requiring that the damping term maintain the same form ensures that

(1/Γq′/b/b
z)b−(d+z)y2 = 1/Γq′ , fixing the dynamical exponent. In particular, for the

ferromagnetic system (Γq = Γ|q|), z = 3 while, for the antiferromagnetic system

(Γq = Γ), z = 2. Finally, applied to the coefficient δ, invariance of the action requires

δ′ = y2b−(d+z)δ = byδδ with yδ = 2. As expected, the Gaussian fixed point lies at

T ∗ = δ∗ = 0 and has the fixed point action

S[m] =
1

2

∫ Λ ddq

(2π)d
1

2π

∫ ΓΛ

dω

(
q2 +

|ωn|
Γq

)
|m(q)|2,
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where ΓΛ sets the cutoff in frequency direction.

To identify the upper critical dimension, one must consider the effect of the quartic

interactions. Firstly, applied to the gradient component of the fixed action
∫
dx (∇m)2,

the relation m′(x′) = ms(x
′)/η allows us to deduce the field renormalization η =

b(2−d−z)/2. Applied to the quartic interaction, the renormalization procedure leads to

the relation

u

4

∫
dxm4(x) �→ u

4
bd+zη4

∫
dx′ m′4(x′),

from which one obtains u′ = b4−d−zu. Therefore, in dimensions d + z < 4 the interac-

tion coefficient diminishes under renormalization and the properties of the system are

governed by the mean-field exponents. Since the dynamical exponent z = 2 or 3, one

finds that the majority of physical systems fall above the upper critical dimension and

are controlled by the Gaussian fixed point.

(c) The first term in the u-expansion, (3u/2)
∫
dxm2

s 〈m2
f 〉, gives rise to a renormalization of

the coefficient δ. Evaluating this contribution, and expressing the frequency summation

by a contour integral as in (a), we obtain

〈m2
f 〉 =

1

π(2π)d

∫
∂Λ

dd q dω coth

(
ωβ

2

)
ω/Γq

(δ + q2)2 + (ω/Γq)2
,

where the integral runs over the momentum shell ∂Λ (see the figure on page 480). Taking

each component of the integral in turn, one obtains

〈m2
f 〉 =

(
Λ− Λ

b

)
Λd−1Ωd

∫ ΓΛ

0

dω

π
coth

(
ωβ

2

)
ω/ΓΛ

(δ + Λ2)2 + (ω/ΓΛ)2

+
1

π

∫ Λ ddq

(2π)d

(
Γq −

Γq

bz

)
coth

(
Γqβ

2

)
1

(δ + q2)2 + 1
.

Noting that Λ(1 − e− ln b) � Λ ln b + · · · and Λ(1 − e−z ln b) � Λz ln b + · · · , the latter

can be expressed as 〈m2
f 〉 = f (2)[T (b)] ln b, where, applying the rescaling s = ω/ΓΛ or

s = |q|/Λ as appropriate, one obtains the required expression for f (2)[T (b)]. Therefore,

to first order in u, one obtains the scaling relation δ′ = δ(1+2 ln b)+12uf (2)[T (b)] ln b. At

first order in perturbation theory, the coupling constant u is not modified by fluctuation-

induced corrections, i.e. u changes according to its engineering dimension, u′ = u(1 +

(4− d− z) ln b). Similarly, T ′ = bzT . Differentiating these expressions, we arrive at the

required differential recursion relations.

8.8.3 RG analysis of the nonlinear σ-model II

Previously, we have argued that, below the lower critical dimension, Goldstone mode fluctuations become

unbounded and induce a crossover of systems with spontaneously broken continuous symmetries into a

“disordered” state. Technically, the long-distance fluctuation behavior of Goldstone modes is described

by nonlinear σ-models with coset-space valued fields. In this problem, we apply RG methods to show

that, at and below the dimension two, these models indeed flow towards a disordered phase.
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Consider a situation where the symmetry of a model is broken from a “large” compact group

G down to some subgroup H. On physical grounds, we expect that (i) the action of the

associated Goldstone modes g ∈ G/H is space(-time) rotationally invariant and starts at

O (two derivative operators). By symmetry (Exercise: Think why!) (ii) the action must be

invariant under global transformations by elements of the full symmetry group, S[g] = S[g̃g],

where g̃ ∈ G is constant. However, (iii) it must also be invariant under local transformations

S[g] = S[gh], where h(x) ∈ H is a field taking values in the “small” group H. (This last

condition simply states that g takes values in the (right) coset space G/H, i.e. is oblivious

to (right) transformations g → gh.)

How would one construct such an action in practice? An obvious recipe goes as follows.

Take any reference ground state |n0〉. (Think of |n0〉 as an element of some vector space,

e.g. a “spin up” state in a magnetic system.) Defining the symmetry transformed states

|n(x)〉 = g(x)|n0〉, the unique G-invariant action is then given by S[n] = c
∫
ddx 〈∇n|∇n〉.

This action obviously meets all three criteria above. However, by making explicit reference

to an arbitrarily chosen state (|n0〉) it partially obscures the symmetries of the model.

Thus, before turning to the RG formulation, let us briefly discuss an alternative, and more

symmetry-oriented, formulation.

Let Λ ∈ G be a group element that commutes with all h ∈ H, i.e. hΛh−1 = Λ.52 The

set {Q = gΛg−1|g ∈ G} is isomorphic to the coset space G/H (which is to say that two

elements g and g′ = gh differing by an element of the small group are represented by the

same Q). In the Q-language, the unique action meeting the criteria (i)–(iii) above (exercise:

check!) is given by

S[Q] =
1

λ

∫
ddr tr(∇Q∇Q).

Below, we will explore the long-range behavior of the field integral
∫
DQ exp(−S[Q]), where

DQ is the G invariant measure (DQ = D(gQg−1)) on the coset space.

INFO They being but different representations of the same coset space G/H it is, of

course, always possible to explicitly relate the n- to the Q-representation. Consider, for exam-

ple, the case G = SU(2), and H = U(1). Representing the group G through Euler angles

(see Section 3.3), g(φ, θ, ψ) = exp(iφŜ3) exp(iθŜ1) exp(iψŜ3), define the (spin-coherent) states

|n(φ, θ)〉 = g(φ, θ)| ↑〉, where | ↑〉 is the state of maximal eigenvalue S3 = S, and we noted that

the ψ degree of freedom (spanning the small group) leaves |S3〉 invariant (up to a phase) and

can be omitted. In Section 3.3 we used this representation to identify the phase space of spin as

the coset space SU(2)/U(1), the 2 sphere. In the Q language, the same sphere is represented as

Q = gσ3g
−1, where Ŝi = σi/2 are identified with the Pauli matrices. Again, the ψ factor, com-

mutative with σ3, drops out. The integration measure dQ = dφdθ sin θ reduces to the invariant

integration measure on the sphere.

52 It being a subgroup of the (matrix-)group G, we can always find a representation wherein the group H is
represented by block-diagonal matrices. In this representation, Λ will be a diagonal matrix that contains identical
elements on all sub-blocks defining H.
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(a) By way of example, let us consider the case (G,H) = (SU(2),U(1)), relevant to, e.g.,

the classical Heisenberg magnet.53 Defining g = gsgf where the fast field gf = exp(iW ),

W = zE12 + z̄E21, z ∈ C (explore the connection between this representation and

the Euler angle representation above), and Φμ ≡ g−1
s ∂μgs, show that the freedom to

transform gf by elements of the small group can be used to bring Φs to an off-diagonal

form, [Φs, σ3]+ = 0. Show that the expansion of the action to second order (→ one-loop

order) in the fast generators W is given by S[gs,W ] = S[gs] + Sf [z, z̄] + Sfs[gs, z, z̄],

where Sf [z, z̄] =
8
λ

∫
ddr∇z∇z̄ and

Sfs[gs, z, z̄] = − 8

λ

∫
ddr tr(Φμ(zE12 − z̄E21)Φμ(zE12 − z̄E21) + Φμσ3Φμσ3zz̄).

(b) Integrate over the fields z, z̄ to obtain the effective action S[gs] =
1
λr

∫
ddr tr(∇Qs∇Qs),

where λr is the renormalized coupling constant. Differentiate this constant with respect

to the scaling parameter b to obtain the RG equation of the σ-model on the 2-

sphere,

d lnλ

d ln b
=

λ

8π
− ε. (8.51)

According to this equation, the coset σ-model behaves very much like its group-valued

cousin explored in Section 8.5: at dimensions d = 2 and below it flows towards a dis-

ordered phase; at dimensions d > 2 there is a phase transition separating a disordered

regime from an ordered phase.

Answer:

(a) Substituting g = gsgf into the action and defining the shorthand notation Φ ≡ g−1
s ∇gs,

we obtain S[gs, gf ] =
1
λ

∫
ddr tr(∇[Φ]Qf∇[Φ]Qf), where Qf = gfσ3g

−1
f and the “covari-

ant derivative” ∇[Φ]Q = ∇Q + [Φ, Q]. We next transform the integration variables

W → hWh−1, where h ∈ H. (Notice that this really is a transformation of integration

variables, i.e. the off-diagonal form of the generators is preserved.) This transformation

induces a change ∇[Φ] → ∇[Φ+h−1∇h] and we may choose h so as to remove the matrix-

diagonal components of Φ. (Exercise: Explicitly construct a matrix h that does the job.

Why can the matrix h be defined only locally and why does the absence of a globally

defined h not matter in connection with a perturbative RG operation?)

53 Below the transition temperature, the symmetry of the Heisenberg magnet is broken from full rotational sym-

metry, O(3), to rotations around the magnetization axis, O(2). Since O(3)
locally� SU(2), and O(2) � U(1), the

example above covers the physics of the magnetic system. (We prefer to use the language of the unitary group,
as it is somewhat easier to implement, technically.)
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A straightforward expansion to second order in W , Qf = σ3(1 + 2iW − 2W 2 + · · · ),
now leads to the expressions

Sf [W ] =
4

λ

∫
ddr tr(∂μW∂μW ),

S[gs,W ] = − 8

λ

∫
ddr tr(ΦμWσ3ΦμWσ3 +Φμσ3Φμσ3W

2).

(8.52)

Substituting the z-representation of the generators W , we arrive at the action given

above.

(b) Every field Φμ contains a derivative acting on the slow field. Since we do not want to keep

terms with more than two derivatives, the effective action is given by Seff [gs] = S[gs] +

〈S(2)[gs, z, z̄]〉. Switching to a momentum representation, Sf [z, z̄] =
8Ld

λ

∑
p∈f zpz̄pp

2,

and doing the Gaussian integrals, we obtain

〈S(2)[gs, z, z̄]〉 = −I1
4

∫
ddr tr([Φμ, σ3]

2) = −I1
4

∫
ddr tr(∇Qs∇Qs),

where the constant I1 has been defined in Eq. (8.28). Substituting this result back into

the effective action, we obtain

Seff =

(
1

λ
− I1

4

)∫
ddr tr(∇Qs∇Qs) =

1

λr

∫
ddr tr(∇Qs∇Qs),

where we have rescaled momenta and λ−1
r = [λ−1−Ωd(1−b2−d)/4(d−2)]bd−2. Substitut-

ing d = 2 + ε and expanding in ε, we obtain λr = λ
(
1− ln bε+ λ

8π ln b
)
. Differentiating

with respect to ln b, we obtain the RG equation (8.51).

8.8.4 Scaling theory of the Anderson metal insulator transition

In Section 6.5 we derived the field theory of the disordered electron gas. Specifically, we showed that

the low-energy physics of the system is governed by a phase of a spontaneously broken continuous

symmetry. This being so we should expect d = 2 to be the “lower critical dimension” of the disordered

electron gas. At and below d = 2 Goldstone mode fluctuations are likely to drive a nominally conducting

system into a phase governed by unbounded Goldstone mode fluctuations – an insulator in fact. In

higher dimensions the effect of fluctuations is comparatively weaker and metallic phases have a chance

to prevail. In this problem we apply RG methods to obtain a semi-quantitative understanding of the

Anderson transition between these two phases.

INFO Before turning to the technology, let us discuss the notion of Anderson localization

in metals on a more qualitative level. Firstly, it is important to draw a distinction between

qualitatively different mechanisms of localization. Consider a d-dimensional electron system in

the presence of static disorder. Evidently, the lowest energy states in a disordered system will

be dictated by “optimal fluctuations” of the random impurity potential. These “tail states” can

be interpreted as bound states localized in regions where the potential is unusually low and

uniform. Instead, here we are interested in the localization properties of states with energies

greatly in excess of the typical magnitude of the impurity potential, i.e. EFτ � 1. Here, the
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mechanism of localization can derive only from the accumulation of interference corrections akin

to the corrections discussed in Section 6.5 above.

According to its energy E, Anderson proposed54 that a given state is either extended or local-

ized depending on the degree of disorder. Following an argument due to Mott, it is also plausible

that extended and localized states at the same energy do not coexist – in such circumstances, the

admixture of the former due to arbitrarily small perturbations would lead to the delocalization

of the latter. Moreover, it is natural that states at the band edge are more susceptible to the for-

mation of bound or localized states. These considerations suggest a profile for the DoS in which

the low-lying localized states are separated from higher-energy extended states by a mobility

edge. The transition signaled by the mobility edge is known as the Anderson transition.

Following the pioneering work of Anderson, it was almost two decades before a consistent

theory of localization emerged. Its basis was a simple yet powerful scaling hypothesis that followed

naturally from a conjecture made by Edwards and Thouless:55 the conductance g(L) of a d-

dimensional fragment of metal of size Ld (L � � � λF) is determined by the sensitivity of the

single-particle energy levels inside the sample to changes in the boundary conditions. Building

on this assumption, Abrahams et al. proposed56 a one-parameter scaling hypothesis of

localization. This hypothesis states that the conductance of a system of size bL is a function

of g(L) only: g(bL) = fb(g(L)). The important point is that fb does not explicitly depend on

the system size L. Independent of Thouless’ argument, this restriction can be made plausible by

dimensional analysis: since g is dimensionless, the only way for the parameter L to appear in

f is through a dimensionless ratio L/a, where a is some compensating scale of dimensionality

[length]. This, however, would imply explicit dependence of the conductance on a microscopic

reference scale, which conflicts with the presumption of universal scaling behavior.

Differentiation of the scaling form with respect to b gives the Gell–Mann–Low equation d ln g
d lnL

=

β(g). The scaling function β(g) ≡ f ′(g)/g is universal, i.e. independent of the microscopic prop-

erties of the sample, such as the bare microscopic conductance and �/λF. While these predictions

still have to find a truly rigorous mathematical proof, they definitely represent an important

milestone in phenomenology. Moreover, the scaling picture fits neatly into perturbative micro-

scopic approaches to localization, such as the one discussed below. However, before turning to

quantitative calculations, let us try to determine the profile of the β-function on qualitative

grounds.

For an ohmic conductor, g(L) ∼ Ld−2, implying that the scaling function takes a constant

value β = d−2. On the other hand, deep in the insulating regime, where states are exponentially

localized, β(g) ∼ ln g (i.e. g ∼ e−L/ξ). A smooth interpolation between these limits (see Fig. 8.14)

suggests that, below two dimensions, all states are localized, while, above, there is a critical

conductance, g∗, marking a phase transition between a localized and a delocalized phase – the

Anderson transition.

At the time when this scaling behavior was proposed, it was not yet known that the low-energy

theory of the disordered electron gas was a nonlinear σ-model. However, with the benefit of

hindsight, one may interpret the phenomenology outlined above as a ramification of the notorious

54 P. W. Anderson, The absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), 1492–505.
55 J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C 5 (1972),

807–20.
56 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization:

absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42 (1979), 673–6.
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d = 3

d = 2

d = 1

β

ln (g)

ln (gc)

Figure 8.14 Scaling function of the dimensionless conductance, β(g), in dimensions d = 1, 2, and 3.
At large values of the conductance, the scaling function approaches the asymptote β(g) → d −
2 corresponding to ohmic behavior. For very small values of conductance, the scaling function
approaches β(g) → ln g, which is characteristic of insulating behavior. According to the weak
localization expansion, a localization transition is predicted in dimensions greater than two.

scaling behavior displayed by these models. Below, we show that the one-loop β-function of the

replica σ-model fully complies with the predictions of the one-parameter scaling theory.

(a) Recapitulate the construction of the replica nonlinear σ-model in Section 6.5. Convince

yourself that, in order to explore the physical properties of a non-interacting disordered

system, we actually do not need the full information contained in that model; the

model introduced in Section 6.5 has been constructed to compute correlation functions

〈ĜnĜn′〉 for arbitrary Matsubara frequencies ωn and ωn′ . However, sufficiently far-

reaching information on the conduction behavior of a non-interacting system (cf. our

discussion of linear response in Section 7.4) is contained in correlation functions ∼
〈Ĝ+Ĝ−〉 involving the product of a retarded and an advanced Green function Ĝ± =

(EF ± (ω/2 + i0) − Ĥ)−1 at fixed energies EF ± ω/2. Retracing the derivation of the

σ-model, convince yourself that correlation functions of this type can be obtained from

the action Eq. (6.63), where the Q-matrices, Q = gΛg−1, are of dimension 4R (instead

of 2RM as in the Matsubara case) and Λ = {σ3δαα′} assumes the role of the matrix Λ =

{sgnnn′δαα′}, i.e. the effectively infinite-dimensional space of Matsubara frequencies has

been reduced to a two-component space discriminating between retarded and advanced

Green functions. (Here, α = (a, σ) are 2R-component indices comprising the replica

index a and the two-component “time-reversal” index σ introduced in Section 6.5.)

(b) Focusing on the case of zero external frequency and introducing the abbreviation λ−1 =
πDν
8 , we wish to explore the scaling behavior of the action

S[Q] =
1

λ

∫
ddr tr(∇Q)2.

To do so, we follow the same logic as in the previous problem: we decompose Q =

gsQfg
−1
s into fast and slow components and expand the former Qf = σ3(1+i2W−2W 2+
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· · · ). The matrices W anti-commute with σ3, and live in the Lie algebra sp(4R), i.e.

they obey the condition W = −σtr
2 W

Tσtr
2 where the Pauli matrices act in time-reversal

space. These two conditions are encapsulated in the representation (block structure in

advanced/retarded space)

W =

(
B

B†

)
, B = −σtr

2 B
Tσtr

2 ≡ −Bτ , (8.53)

where the matrices B are of dimension 2R and we have used the abbreviated notation

Bτ ≡ σtr
2 B

Tσtr
2 . Substituting this representation into the action, we obtain S[gs,W ] =

S[gs] + Sf [W ] + Sfs[gs,W ], where Sf and Sfs are given by Eq. (8.52).

Perform the Gaussian integrals over the matricesW . First show that 〈BpαβB
†
p′β′α′〉 =

λδαα′δββ′δq,q′
16Ldp2 . Use this result, and the symmetries of the B matrices, to verify the aux-

iliary identities

tr(BpAB
†
p′A

′) =
λ

16Ldp2
tr(A) tr(A′), (8.54)

tr(BpAB−p′A′) =
λ

16Ldp2
tr(AA′τ ). (8.55)

Use these relations to show that 〈S[gs,W ]〉 = − I1
4

∫
ddr tr(∇Q)2, where I1 has been

defined in Eq. (8.28). (Hint: Use the fact that Φτ
μ = −Φμ (exercise). Identify and neglect

terms that vanish in the replica limit.) Adding this contribution to the core action

S[gs] we obtain the same renormalized coupling constant as in the previous problem.

Thus, the RG equation of the σ-model of disordered systems (possessing spin

rotation and time reversal invariance, to be precise) is again given by Eq. (8.51). In 2+ε

dimensions, the constant λ ∝ (Dν)−1 ∝ g−1 is proportional to the physical conductance

and Eq. (8.51) describes the scaling of the latter. In accord with the phenomenological

expectations summarized above, the scaling equation depends only on the conductance

itself (one-parameter scaling) and predicts an (Anderson) transition point for d > 2. For

further discussion of the scaling behavior of the replica σ-model and its ramifications in

the physics of disordered systems we refer to, e.g., Efetov.57

Answer:

(a) Consider the Grassmann action
∫
ψ̄(EF + (ω + i0)σ3/2 − Ĥ)ψ, where ψ = {ψ±a} is a

2R-component Grassmann field and σ3 acts in the space of ±-indices. By introducing

suitably devised sources, this action can be employed to compute correlation functions

involving an advanced and a retarded Green function. Recapitulating the derivation of

the nonlinear σ-model, we notice that nothing changes except that the infinite vector

of Matsubara frequencies ω̂ gets replaced by the two-dimensional matrix (ω + i0)σ3/2.

Since the structure of the diagonal saddle-point, Λ, is solely determined by the sign of the

57 K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1996).
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imaginary part of the frequency vector, Λ = {sgnnn′δaa′} gets replaced by Λ = {σ3δaa′}.
The Q matrices reduce to Q = gΛg−1, where g ∈ Sp(4R).

(b) Switching to an index representation, S[B,B†] = 8Ld

λ

∑
αα′ Bαα′B†

α′α. From this rep-

resentation, one might naively conclude that 〈BqαβB
†
q′β′α′〉 = λ

8Ldq2
δαα′δββ′δq,q′ with

a right-hand side twice as large as the correct result. However, thanks to the relation

B = −σtr
2 B

Tσtr
2 , the matrix elements of B and B† are not independent complex vari-

ables. Using the symmetry relation (exercise), it is straightforward to show that all

complex integration variables appear in pairs, i.e. the coupling constant effectively dou-

bles. On the same basis, some matrix elements (Baσ,a′σ̄, where σ̄ = (σ + 1 mod2) turn

out to be real rather than complex. In either case, the Gaussian integration obtains a

result twice as small as for independent complex variables. This explains the factor 1/16

in the given formula.

The auxiliary identity (8.54) readily follows by representing the trace as a sum

over indices and using the Gaussian formula for the matrix indices above. To prove

Eq. (8.55), we first need to relate the 〈BB〉 contraction to a 〈BB†〉 contraction:

〈tr(BpAB−p′A′)〉 = 〈tr((σtr
2 A

′BpAσ
tr
2 )(σ

tr
2 B−p′σtr

2 ))〉
= 〈(σtr

2 A
′)αβBpβγ(Aσ

tr
2 )γδ(σ

tr
2 B−p′σtr

2 )δα〉

= −〈(σtr
2 A

′)αβBp,βγ(Aσtr
2 )γδB

†
p′αδ〉 = − λ

16Ldp2
(σtr

2 A
′)αβ(Aσtr

2 )αβ

= − λ

16Ldp2
(σtr

2 A
′)αβ(σtr

2 A
T )βα =

λ

16Ldp2
tr(AA′τ ).

Using these contraction rules to compute the second term in Eq. (8.52), 〈tr(Φμσ3Φμσ3

(BB†E11+B†BE22))〉 ∝ tr(1) ∝ R, we obtain an expression that vanishes in the replica

limit. As for the first term, noting that Φτ
μ =

(
g−1
s ∂μgs

)τ
= ∂μg

τ
s g

−1τ
s = ∂μg

−1
s gs = −Φμ

we obtain

− 8

λ

∫
ddr 〈tr(ΦμWσ3ΦμWσ3)〉 = − 8

λ

∫
ddr 〈tr(Φμ(BE12 −B†E21)

× Φμ(BE12 −B†E21))〉

→ −16

λ

∫
ddr 〈tr(ΦμBE12ΦμBE12)〉 = I1

∫
ddr tr(Φ12

μ (Φτ
μ)

21)

= −I1
4

∫
ddr tr([Φμ, σ3][Φμ, σ3]).

Here, the “→” indicates that we are omitting terms that lead to traces of Φii = 0.

We also note that, by virtue of the time reversal relation, contractions ∼ 〈BB〉 and

∼ 〈B†B†〉 lead to identical results. Expressing Φμ in terms of the original variables Qs,

we arrive at the formula above.
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8.8.5 Kondo effect: poor man’s scaling

In Problem 2.4 we saw that the low-energy properties of a metal, when it is coupled to a magnetic

Anderson impurity, are encapsulated by an effective sd-Hamiltonian Eq. (2.51) involving itinerant carriers

coupled to the spin of the magnetic impurity by an exchange coupling J . Applying a perturbative

analysis, in Problem 5.5 we saw that the effect of the magnetic impurity fluctuations was to impart a

contribution to the scattering rate which diverged at low temperatures – a phenomenon compatible with

the observed increase in low-temperature resistivity. However, it being perturbative in character, little

could be said about the effect of the magnetic impurity in the strong coupling regime. In the following,

we will implement a perturbative RG scheme to monitor the flow of the coupling constant and explore

the low-temperature properties of the Kondo impurity system.

Our starting point is the sd-Hamiltonian where, anticipating the capacity for anisotropy,

we treat the bare components of the exchange coupling as independent parameters,

Ĥsd =
∑
kσ

εkc
†
kσckσ +

∑
kk′

[
JzŜ

z
(
c†k↑ck′↑ − c†k↓ck′↓

)
+ J+Ŝ

+c†k↓ck′↑ + J−Ŝ−c†k↑ck′↓
]

where Ŝ denotes the spin of the local moment formed by the d-electron system.

In the following, we will implement an adaptation of the RG procedure which monitors

the effect of high-energy (fast) degrees of freedom on the low-energy (slow). Our analysis

is taken from the original paper by Anderson.58 (For a discussion of the generalization of

the RG scheme and a much more lengthy discussion of the subject as a whole, we refer to

the review by Hewson.59) To this end, let us divide the conduction band into high-lying

electron/hole states that occupy an energy shell D/b < |εk| < D, where D denotes the bare

bandwidth and b > 1, and the remaining states 0 < |εk| < D/b. To eliminate the high-

lying excitations that fall within the band edge, we may implement a general procedure

that mirrors the one exploited in the construction of the sd-Hamiltonian from the Anderson

model (Problem 2.4). Specifically, let us write the total wavefunction of the Hamiltonian

|ψ〉 as the sum of terms |ψ0〉, |ψ1〉, and |ψ2〉 where |ψ1〉 describes the component in which

there are no conduction electrons/holes in the upper/lower band edge, |ψ0〉 has at least one
hole in the lower band edge, and |ψ2〉 has at least one electron in the upper band edge.

Following the discussion in Problem 2.4, eliminating |ψ0〉 and |ψ2〉 from the Schrödinger

equation
∑2

n=0 Ĥmn|ψn〉 = E|ψm〉, one obtains[
Ĥ10

1

E − Ĥ00

Ĥ01 + Ĥ11 + Ĥ12
1

E − Ĥ22

Ĥ21

]
|ψ1〉 = E|ψ1〉.

(a) Taking into account the process that scatters a conduction electron into the upper band

edge, show that the term

Ĥ12
1

E − Ĥ22

Ĥ21|ψ1〉

58 P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3 (1970), 2436–41.
59 A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1993).
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is associated with eight possible contributions, which can be grouped in pairs. (You may

find it helpful to enumerate these possibilities diagrammatically.) In particular, show

that there exists a contribution

J+J−
∑

k′
skskf

Ŝ−c†k′
s↑ckf↓

1

E − Ĥ22

Ŝ+c†kf↓cks↑|ψ1〉,

where the wavevectors kf(ks) index states which lie within (outside) the band edge.

(b) Focusing on this contribution alone (for now), rearrange the operators to show that it

takes the form

J+J−
∑
k′
sks

ν0D(1− 1/b)Ŝ−Ŝ+c†k′
s↑cks↑

1

E −D + εks − Ĥ0

,

where ν0 denotes the (assumed constant) density of states at the band edge and Ĥ0 =∑
kσ εkc

†
kσckσ is the single-particle Hamiltonian of the band electrons. Now, measuring

the energy with respect to the ground state of the non-interacting electron gas, Ĥ0 may

be approximated by zero. Finally, noting that, for spin S = 1/2, Ŝ−Ŝ+ = 1/2− Ŝz, the

contribution takes the form

J+J−
∑
k′
sks

ν0D(1− 1/b)(1/2− Ŝz)c†k′
s↑cks↑

1

E −D + εks

.

We leave it as an unanswered part of the exercise to confirm that the parallel contribution

from the process in which a hole is created in the lower band edge leads to the expression

J+J−
∑
k′
sks

ν0D(1− 1/b)(1/2 + Ŝz)ck′
s↑c

†
ks↑

1

E −D − εks

.

(Try to use arguments based on particle/hole symmetry rather than developing a first

principles analysis.) Following a similar procedure, one may confirm that the second

class of spin conserving terms lead to the contributions

J2
z

4

∑
k′
sksσ

ν0D(1−1/b)c†k′
sσ
cksσ

1

E −D + εks

,
J2
z

4

∑
k′
sksσ

ν0D(1−1/b)ck′
sσ
c†ksσ

1

E −D − εks

.

This completes the analysis of contributions to the effective Hamiltonian for |ψ1〉
which leave the electron and impurity spin unchanged. The four remaining contributions

involve a spin flip. Following a similar procedure to the one outlined above, one may

identify two further contributions

−JzJ+
2

∑
k′
sks

ν0D(1− 1/b)Ŝ+c†k′
s↓cks↑

1

E −D + εks

,

JzJ+
2

∑
k′
sks

ν0D(1− 1/b)Ŝ+ck′
s↑c

†
ks↓

1

E −D − εks

,

where we have used the identity ŜzŜ+ = Ŝ+/2. One may confirm that the corresponding

terms with the order reversed generate an equal contribution.
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When combined with terms from a spin-reversed process, altogether one finds that

the components of the exchange constant become renormalized according to

J±(b) = J± − JzJ±ν0D(1− 1/b)

(
1

E −D + εk
+

1

E −D − εk′

)
,

Jz(b) = Jz − J+J−ν0D(1− 1/b)

(
1

E −D + εk
+

1

E −D − εk′

)
.

Now, since we are interested in the renormalization of the low-energy properties, we

may ignore E against D. Moreover, since the typical internal excitation energy εk � D,

we may approximate these equations by the differential recursion relations

dJ±
d�

= 2ν0JzJ±,
dJz
d�

= 2ν0J+J−,

where, as usual, b = e�.

(c) Starting with these differential recursion relations, show that the scaling trajectory obeys

the relation

J2
z − J2

± = const.

One may note that, on renormalization, the coupling constant Jz always increases.

Therefore, in a ferromagnetic model Jz < 0 with bare coupling constants such that

|Jz| < J±, J± will scale to zero. Conversely, when the bare constants |Jz| > J±, both
Jz and J± flow to strong coupling where the perturbation theory breaks down.

For Jz = J± ≡ J > 0, an integration of the scaling equations dJ/d� = 2ν0J
2 gives

1

J
− 1

J(�)
= 2ν0� = 2ν0 ln

(
D(�)

D

)
.

Therefore, we may set

D exp

[
− 1

ν0J

]
= D(�) exp

[
− 1

ν0J(�)

]
≡ TK,

where TK denotes the Kondo temperature.

Answer:

(a) Focusing on terms which scatter conduction electrons into the band edge, one may

identify

Ĥ21 =
∑
ks,kf

[
JzŜ

z
(
c†kf↑cks↑ − c†kf↓cks↓

)
+ J+Ŝ

+c†kf↓cks↑ + J−Ŝ−c†kf↑cks↓
]
,

where the wavevectors kf span the range of single-particle band energies εk within the

band edge while the components ks span the range of lower energies. Now, to evaluate

the contribution of the term Ĥ21(E − Ĥ22)
−1Ĥ21 to the effective Hamiltonian for |ψ1〉

we must identify all processes that are closed. Since the action of the Hamiltonian must

return us to the subspace in which the band edge states remain unoccupied, processes
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involved in a virtual occupation of the band edge are constrained by the conservation

of spin. From Ĥ12Ĥ21, one may identify eight allowed processes,

(1) J−Ŝ−c†k′
s↑ckf↓ × J+Ŝ

+c†kf↓cks↑,

(2) − JzŜ
zc†k′

s↓ckf↓ × J+Ŝ
+c†kf↓cks↑,

(3) JzŜ
zc†k′

s↑ckf↑ × J−Ŝ−c†kf↑cks↓,

(4) JzŜ
zc†k′

s↑ckf↑ × JzŜ
zc†kf↑cks↑,

and the four counterparts related by symmetry. Of the four kinds of process, terms

(2) and (3) involve a spin-flip process while terms (1) and (4) preserve the electron

spin orientation. Each of these terms can be represented diagrammatically. When com-

bined with the energy denominator, the particular contribution specified in the question

corresponds to the first process (1).

(b) Since the band edge occupancy of the reference state |ψ1〉 is zero, one can set∑
kf

c†k′
s↑ckf↓

1

E − Ĥ22

c†kf↓cks↑|ψ1〉 = ν0D(1− 1/b)c†k′
s↑cks↑

1

E −D + εks − Ĥ0

,

where Ĥ0 denotes the single-particle Hamiltonian of the band electrons,
∑

kf
=∫D

D/b
dεν(ε) � ν0D(1 − 1/b), and we have set εkf

� D. As a result, one obtains the

required formula.

(c) Dividing the differential recursion relations, one obtains

dJ±
dJz

=
Jz
J±

.

Integrating this equation, one obtains the required scaling trajectory.
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Topology

x In this chapter we discuss low-energy theories with non-trivial forms of long-range order. We learn

how to detect the presence of topologically non-trivial structures, and to understand their physical con-

sequences. Topological terms (θ-terms, Wess–Zumino terms, and Chern–Simons terms) are introduced

as contributions to the action, affecting the behavior of low-energy field theories through the topology

of the underlying field configurations. Applications discussed in this chapter include persistent currents,

quantum spin chains, and the quantum Hall effects.

In the preceding chapters we encountered a wide range of long-range orders, or, to put it

more technically, different types of mean–fields. Reflecting the feature of (average) transla-

tional invariance, the large majority of these mean-fields turned out to be spatially homo-

geneous. However, there have also been a number of exceptions: under certain conditions,

mean-field configurations with long-range1 spatial textures are likely to form. One mecha-

nism driving the formation of inhomogeneities is the perpetual competition of energy and

entropy: being in conflict with the (average) translational invariance of extended systems, a

spatially non-uniform mean-field is energetically costly. On the other hand, this very “dis-

advantage” implies a state of lowered degree of order, or higher entropy. (Remember, for

example, instanton formation in the quantum double well: although energetically unfavor-

able, once it has been created it can occur at any “time,” which brings about a huge entropic

factor.) It then depends on the spatio-temporal extension of the system whether or not an

entropic proliferation of mean-field textures is favorable.

A second mechanism behind the formation of inhomogeneities can be the topological

structure of the order parameter field; does the mean-field accommodate solutions that sim-

ply cannot be continuously deformed back into a uniform state? The XY -model discussed

at the end of the preceding chapter conveniently illustrates this principle: a vortex cannot be

eliminated by any smooth deformation of the field. One might argue that this irreducibility

is associated with the behavior of the core region of the vortex, where local order breaks

down and the mean-field theoretical description simply does not apply (i.e. the vortex can-

not be removed by manipulations of the phase field alone). However, an alternative, and

more generally valid, explanation of the phenomenon is that a vortex represents a field con-

figuration characterized by a non-vanishing winding number, i.e. an integer different from

1 For example, sometimes a system may find it energetically favorable to develop a micro-texture optimally
adjusted to the structure of the underlying Hamiltonian (a prominent example being charge density wave for-
mation in one-dimensional systems). Yet even these structures exhibit a discrete translational invariance.

496
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zero. But a non-vanishing integer cannot be continuously “deformed” to zero. (The vortex

example also illustrates that the two principles of topology and entropic proliferation tend

to cooperate. Once the energy necessary to form a mean-field of non-vanishing winding

number has been invested, the system can benefit from the freedom to place the core region

anywhere in the system.)

The remarks above touch upon but two of many interesting aspects of systems with

topologically non-trivial order parameters. In the next section we employ a trivial example

(namely a free particle on a ring) to set the stage for the discussion of further phenomena

hinging on topological concepts. Specifically, we introduce the concept of a topological term,

i.e. an operator which affects the low-energy behavior of a theory solely on the basis of

the topology of its fields. Turning to the more systematic development of the theory, we

then introduce homotopy as the key mathematical tool whereby fields can be topologically

classified. This discussion provides the conceptual platform on which the rest of the chapter

is based. It is followed by a discussion of different classes of topological terms (θ-terms,

Wess–Zumino terms, Chern–Simons terms), along with a number of applications. It turns

out that, whenever such terms are present in a theory, they tend to massively affect its

long-range behavior. At the same time, topological terms are notoriously easy to overlook

in “standard” schemes of distilling low-energy theories from their microscopic origins. For

this reason, some emphasis is placed on purely operational aspects; i.e. tricks that prevent

one from missing the presence of a topological term!

Before getting started, it is worthwhile emphasizing that we are about to plunge into a

wide subject area that simply cannot be satisfactorily covered in a single chapter.2 Conse-

quently, our discussion is example–oriented and often regrettably superficial (with regard

to both physical depth and, especially, mathematical structures). In fact, the aim of the

present text is to demystify the subject of topology in field theory, to arouse the interest of

readers and to motivate them to proceed to more profound and substantial discussions in

the literature!

9.1 Example: particle on a ring

Φ Consider the problem of a free quantum particle of charge e confined to one

dimension and subject to periodic boundary conditions – a particle on a

ring (see figure). To make the problem somewhat more interesting, let us

assume that the ring is threaded by a magnetic flux Φ. Measuring the coordinate of the

particle in terms of an angular variable φ ∈ [0, 2π], the free Hamiltonian of the system thus

takes the form (� = e = c = 1),

Ĥ =
1

2
(−i∂φ −A)2, (9.1)

2 For an advanced text specifically targeted on topological considerations in physics, and the underlying mathe-
matical structures, we refer to M. Nakahara, Geometry, Topology and Physics (IOP Publishing, 2003).
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where A = Φ/Φ0 denotes the vector potential corresponding to the magnetic field (exercise),

and Φ0 = hc/e = 2π represents the magnetic flux quantum. (Here, for notational simplicity,

we have set the radius of the ring and the particle mass to unity.) Periodicity implies that we

are working on a Hilbert space of wavefunctions ψ subject to the condition ψ(0) = ψ(2π).

Of course, the problem defined by Eq. (9.1) is embarrassingly simple. One may readily

verify that the eigenfunctions and spectrum of the Hamiltonian are given by

ψn(φ) =
1√
2π

exp(inφ), εn =
1

2

(
n− Φ

Φ0

)2

, n ∈ Z. (9.2)

On the other hand, this very simplicity is somewhat deceptive;3 we shall see in a moment

that many of the concepts of topological quantum field theory find a preliminary realization

in the problem above.

To explore these connections, let us reformulate the system in the language of the imag-

inary time path integral (cf. Problem 3.5):

Z =

∫
φ(β)−φ(0)∈2πZ

Dφe−
∫
dτ L(φ,φ̇), (9.3)

where the boundary condition φ(β)−φ(0) ∈ 2πZ expresses the fact that the phase is defined

only up to integer multiples of 2π, and the Lagrangian is given by

L(φ, φ̇) =
1

2
φ̇2 − iAφ̇. (9.4)

EXERCISE Verify by Legendre transformation that the Hamiltonian corresponding to this

Lagrangian is given by Eq. (9.1). Obtain the spectrum Eq. (9.2) from the path integral, i.e.

represent the partition function in the form Z =
∑

n exp(−βεn). (Hint: You may find the

Hubbard–Stratonovich decoupling of the quadratic term useful.)

Suppose that we were unaware of the exact solution of the problem. Our canonical approach

to controlling the integral would be to subject the theory to a saddle-point analysis. The

saddle-point (alias Euler–Lagrange) equations of the action S[φ] =
∫ β

0
dτ L(φ, φ̇),

δS[φ]

δφ(τ)
= 0 ⇔ φ̈ = 0,

have two interesting properties. (i) The vector potential does not enter the equations.

On the other hand, we saw above that it does have a physical effect (the spectrum

explicitly depends on A). We need to understand how these two seemingly contradic-

tory observations can be reconciled with each other. (ii) There exists a whole family of

solutions, φW (τ) ≡ W2πτ/β. The action of these configurations, S[φW]|A=0 = 1
2β (2πW )2,

varies discontinuously with W , i.e. by analogy with other cases where we found saddle-point

3 Note that the literature is full of erroneous statements on even this simple system. The most frequent of these is
that the periodic boundary conditions of the problem force the flux to be quantized in integer multiples of the
flux quantum Φ = nΦ0. This is, of course, incorrect. Even for non-integer Φ, the wavefunctions φn are perfectly
periodic. The statement is probably triggered by flux-quantization in superconducting systems (a phenomenon
that relies on energetic, and not topological, considerations).
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φ 

Figure 9.1 Showing mappings φ : S1 → S1 of different winding numbers.

configurations defined by an integer index (cf. instanton solutions in the quantum double

well), we may expect the different solutions to be separated by huge energy barriers.

However, the present problem is special insofar as, besides energy, there is a much more

“profound” principle separating configurations of different W .

To understand this point, let us note that, mathematically, the field φ is a mapping

φ : S1 → S1,

τ �→ φ(τ),

from the unit circle S1 (imaginary time with periodic boundary conditions4) into another

circle (φ is a phase!). Mappings of this type can be assigned to a winding number,

W , i.e. the number of times φ(τ) winds around the unit circle as τ progresses from 0 to

β: φ(β)− φ(0) = 2πW (see Fig. 9.1).

Indeed, it is not possible to change W by a continuous deformation of φ. Since continuity

is a paradigm implicit in field integration, the integration over all functions φ(τ) can be

organized as an integration over functions φ(τ) of different winding numbers, or different

topological sectors:

Z =
∑
W

∫
φ(β)−φ(0)=2πW

Dφe−
∫
dτ L(φ,φ̇) =

∑
W

e2πiWA

∫
φ(β)−φ(0)=2πW

Dφe−
1
2

∫
dτ φ̇2

. (9.5)

Here, we have noted that the A-dependent term in the action,

Stop[φ] ≡ iA

∫ β

0

dτ φ̇ = iA(φ(β)− φ(0)) = i2πWA,

involves only the index of the topological sector of φ. The representation (9.5) makes the topo-

logical aspects of the problem particularly transparent. Specifically, one may note that:

4 Strictly speaking, imaginary time should be identified with a “circle” of circumference β. However, for our present
purposes, all that matters is that the periodic boundary conditions render the interval [0, β] isomorphic to a
circle.
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� The functional integral assumes the form of a sum of integrals over disjoint topological

sectors.

� The contribution to the action, Stop, is our first example of a topological term. (More

precisely, it belongs to the class of “θ-terms.”)

� Since Stop is sensitive only to the topological sector of a field contribution, it cannot

affect the equations of motion. This is because these probe how the action responds to

an infinitesimal variation of the field configuration, an operation that cannot change the

winding number. (You may wish to ponder this point since it will be important.)

� However, the topological term does affect the outcome of the functional integration: it

plays the role of a W -dependent “phase,” weighting the contribution of different sectors.

� The fact that Stop knows only about the topological class of a field configuration implies

that it is impervious to any changes in the metric of the base manifold of the theory (in

our case, imaginary time). For example, we might decide to measure time in different

units, i.e. τ → ατ = τ ′, where α is some scaling factor. This transformation leaves the

topological term invariant.

� In particular, it remains form invariant under a change from imaginary to real time,

τ → −iτ = t. In both representations, Stop[φ] = 2πiAW is purely imaginary. This, in

fact, is a hallmark of topological terms; in both Euclidean and Minkowski space-time,

their contribution to the action is always imaginary.

While formulated for the (almost trivial) example of the particle on the ring, all of these

features generalize to much more involved settings. However, to discuss these generalizations

in a sensible manner, we need to provide somewhat more mathematical background. This

will be the subject of the next section.

INFO Owing to its simplicity, the system above frequently appears as an effective model in con-

densed matter physics. Examples we have encountered previously include the Josephson junction

(where thepresenceof a condensate inducesanadditional cosinepotential) and thephysics ofnormal

metal granules subject to strong charging (with the additional complication of dissipative damping

of theφ-fluctuations).Herewebriefly touchupon the physics ofpersistent currents as an example

where the topological aspects of the problem play a particularly important role.

Consider then a ring-shaped conductor subject to a magnetic flux. According to a prediction by

Byers and Yang5 the magnetic field induces an equilibrium current

I(Φ) = −∂F (Φ)

∂Φ
,

periodic in Φ with period Φ0.

EXERCISE Remembering that a vector potential enters the free energy as ∼
∫

dA · j, derive
the Byers and Yang formula. Show that, at zero temperature, the persistent current flowing in

a perfectly clean one-dimensional metal of non-interacting fermions assumes the form of a Φ0-

periodic sawtooth function, I(Φ) = 2πvF
L

[Φ/Φ0], where [x] = x − n and n is the largest integer

smaller thanx. (Hint:Forzero temperature, the freeenergyofanon-interactingsystemofparticles

is equal to the sum of all single-particle energies up to the Fermi energy. Notice that the current is

5 B. Byers and C. N. Yang, Theoretical considerations concerning quantized magnetic flux in superconducting
cylinders, Phys. Rev. Lett. 7 (1961), 46–9.
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Figure 9.2 Power spectrum of the persistent current carried by a single gold loop (diameter
O(1μm), L/� ∼ 10). The data shows a peak at h/e and a small satellite modulation at h/2e. The
magnitude of the current is some two orders of magnitude larger than that predicted by theory.
(Reprinted with permission from V. Chandrasekhar, R. A. Wells, M. J. Brady, et al. Magnetic
response of a single, isolated gold loop, Phys. Rev. Lett. 67 (1991), 3578–81. Copyright (1991) by
the American Physical Society.)

carried by the last occupied state, i.e. the currents −∂φεn carried by all levels beneath the Fermi

energy cancel.)

For a long time it has been believed that this statement was largely academic since

surely even a moderate concentration of impurities6 would be sufficient to render the cur-

rent undetectable. However, a simple consideration shows that this need not be the case:

a gauge transformation ψ(φ) → eiAφψ(φ) removes A from the Hamiltonian while chang-

ing the boundary conditions to ψ(0) = e2πiAψ(2π). In the gauge-transformed picture, the

presence of the magnetic field thus amounts to a twist in the boundary conditions of the

wavefunctions, and the persistent current is a measure of the sensitivity of the spectrum to

this twist. Now, there is no reason to believe that a wavefunction in a disordered system

should be less sensitive to its boundary conditions than that of a clean system.7 Indeed,

it is shown in Problem 9.7.1 that even rings of circumference L � � may carry a sizeable

persistent current.

In a series of beautiful experiments conducted in the early 1990s (see, e.g., Fig. 9.2),

persistent currents in both “ballistic” (L/� ∼ 1) and “dirty” (L/� ∼ 100) environments were

indeed observed experimentally. Frustratingly, the measured current appears to be some two

orders of magnitude larger than the theories of non-interacting particles would predict. This

disturbing discrepancy led to the formulation of a plethora of theories of persistent currents

in interacting/disordered systems. However, to date, the discrepancy between theory and

experiment remains unresolved.

6 More precisely, it was believed that a sizeable current might only be observed if the circumference of the ring
were smaller than the scattering mean free path. The artificial fabrication of rings of that quality requires
semiconductor technology which was not available at the time. With regard to molecular rings, equilibrium
currents had been predicted in the 1930s. However, the fields needed to drive currents in molecules (O(105 T))
cannot be generated by the laboratory magnets currently available.

7 What does diminish this sensitivity is mechanisms destroying the coherence of wavefunctions (thermal noise,
etc.) and strong localization, i.e. a wavefunction confined to a finite portion of the ring will not sense changes in
the boundary conditions. In fact, sensitivity with respect to changes in the boundary conditions has been used
(largely by theorists) as a popular test for localization.
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9.2 Homotopy

9.2.1 Generalities

To appreciate the generalization of the structures above to more complicated contexts, we

need to introduce a few more mathematical concepts. In Chapter 1 (see page 6), we defined

fields as mappings

φ : M → T,

z �→ φ(z),

from a “base manifold” M – usually Rd or a subset thereof – into some “target space” T . By

now we have gained enough experience to determine what are the “most frequent” realiza-

tions of target spaces: indeed we have mostly been interested in the long-range behavior of

Goldstone modes, i.e. long-range modes induced by a mechanism of symmetry breaking. In

such cases (cf. page 257), T = G/H will be a coset space obtained by dividing the symmetry

group of the problem, G, by some subgroup H ⊂ G stabilizing the mean-field around which

the Goldstone modes fluctuate. Usually (but certainly not invariably) G will be one of the

compact classical groups U(N), O(N), and Sp(N), and H some subgroup thereof.

INFO Why is the word “topology” so often deployed in this chapter? In the example above,

the most relevant characteristic of a field configuration was its winding number, i.e. a quantity

that does not change under any continuous deformation of a field, no matter how “large” is this

deformation. More generally, in this chapter we are concerned with features of field theories that

essentially rely on the concept of continuity, but do not involve the notion of “distance” or, more

formally, of a metric.

The most general mathematical structure for which the notion of continuity can be defined is a

topological space:8 a mapping φ : X → Y between two topological spaces is called continuous

if, for any open set U ⊂ Y , the set φ−1(U) ⊂ X is open in X. This definition is not tied to

the existence of a metric.9 This remark is not entirely academic: there are prominent physical

spaces – the phase space of classical mechanics, for example – which do not possess a canonical

metric but for which the notion of a continuous mapping certainly exists.

Although our discussion below does not rely on the in-depth mathematics of differential topol-

ogy, the frequent use of the attribute “topological” emphasizes that what matters in this chapter

is “continuity minus metric.”

In fact, practical considerations also enable us to be a bit more specific as to the structure

of the base manifold. Suppose our microscopic parent theory is defined on some simply

connected manifold M ⊂ Rd. As we shall be typically concerned with some kind of ther-

modynamic limit, M can be thought of as an “infinitely large” object. On the level of

the low-energy theory of the system, this requires that “sensible” field configurations must

8 As a reminder, let X be a set and J = {Yi ⊂ X|i ∈ I} a collection of its subsets. The pair (X,J ) is called a
topological space if and only if, (a) {}, X ∈ J , (b) for J ⊂ I,

�
i∈J Yi ∈ J , and, (c) for any finite subset J ⊂ I,�

i∈J Yi ∈ J . The elements of J are called open subsets of X.
9 By contrast, in elementary mathematics courses, the continuity of a mapping φ is frequently defined via a metric,
i.e. one relates the distance between two image points φ(x) and φ(y) to that between the arguments x and y.
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approach a constant value on the boundary of M : i.e. φ|∂M = const. (lest the action become

infinite).

As far as our effective field theory is concerned, we may thus identify

all boundary points with a single point at “infinity.” Geometrically, this

implies that M can be compactified to a large sphere (see the figure).

However, as the radius of this sphere carries no significance (indeed, tech-

nically, it can be removed by a global rescaling of coordinates), we can,

just the same, identify M � Sd with the d-dimensional unit sphere. The

practical upshot of all of these considerations is that, in practice, we shall

mostly be interested in fields

φ : Sd → G/H,

z �→ φ(z),

mapping a unit sphere into some coset space.

We now turn to the discussion of topological aspects of such mappings.

By analogy to our discussion of the previous section (where we considered

mappings φ : S1 → S1 � O(2)), let us consider two fields φ1 and φ2 as

topologically equivalent if they can be continuously deformed into each

other. Technically, this condition amounts to the existence of a continuous

mapping (a homotopy in the language of mathematics)

φ : Sd × [0, 1] → G/H,

(z, t) �→ φ̂(z, t),

such that φ̂( . , 0) = φ1 and φ̂2( . , 1) = φ2. (Notice that φ̂ represents a

mapping from (d+1)-dimensional space into G/H, a fact that will become

important when we turn to the discussion of Wess–Zumino terms below.) We denote the

equivalence class of all fields topologically equivalent to a given representative φ by [φ].

(In the example discussed in the previous section, those equivalence classes would contain

all fields of a given winding number.) The set of all topological equivalence classes {[φ]} of

mappings φ : Sd → T is called the d-th homotopy group, πd(T ).

INFO Some readers might wonder in what sense πd(T ) carries a group structure (rather than

just being a set). To understand this point, it is convenient to deform our base manifold from

a sphere to a d-dimensional unit cube Id = [0, 1]d. As far as topology is concerned, this is

a permissible operation, if and only if and only if we identify the boundary ∂Id of the cube

with a single point on the sphere. For example, it is convenient to choose this point to be

the representative of the “infinitely large” boundary of our original base manifold. This choice

requires that φ|∂Id = φ∗ = const. be the constant field configuration approached at the “physical

infinity”.10

10 The assumption of a unique asymptotic configuration φ∗ is less of a restriction than it may seem; any (constant)
boundary field φ can be converted to φ∗ by a global transformation acting on the field (an operation that does
not leave the equivalence class).
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+ =

Figure 9.3 Concatenation of two two-dimensional fields into a single one.

The purpose of the cube construction is that it presents us with ways to glue two fields φ1

and φ2 together to form a new field φ3 ≡ φ1 ∗ φ2 (see Fig. 9.3). For example, we might define

φ3(x1, x2, . . . , xd) =

{
φ1(2x1, x2, . . . , xd), x1 ∈ [0, 1/2],

φ2(2x1 − 1, x2, . . . , xd), x1 ∈ [1/2, 1].

One might justly object that, due to its explicit coordinate dependence, this is not an accept-

able mathematical definition. However, as far as our discussion of homotopy is concerned, this

objection is immaterial. Indeed, we may define a group operation on πd(T ) by

[φ1] ∗ [φ2] ≡ [φ3]. (9.6)

This definition is canonical in the sense that any other coordinate convention in our concatenation

operation above would not leave the equivalence class of φ3 (a point on which you might like to

dwell). Similarly one may verify that “∗” obeys all the criteria for a group mapping. In short,

the very possibility to “concatenate” fields induces a well-defined group operation on the set of

topological equivalence classes.

9.2.2 Examples of homotopies

The general group theoretical analysis of homotopies is a mathematical subject that reaches

far beyond the scope of the present text. Here we restrict ourselves to the discussion of a

few examples of practical interest. In simple cases, the homotopy group can be identified

by common sense reasoning. For example, in the previous section we saw that mappings

S1 �→ S1 can be classified in terms of winding numbers: π1(S
1) = Z. Similarly, it is clear

that any mapping S1 → S2 – a closed curve on the 2-sphere – is continuously contractible

to a point: π1(S
2) = ∅. The same applies, by definition, to any curve in a simply connected

space. Prominent examples of such spaces are the higher-dimensional spheres Sd>1 and

SU(N): π1(S
d>1) = π1(SU(N)) = ∅. By contrast, the first homotopy groups of non-simply

connected spaces are categorically non-trivial. For example, curves on the d-dimensional

torus T d are classified by (exercise: convince yourself of the veracity of this statement)

π1(T
d) = Z× · · · × Z︸ ︷︷ ︸

d

.

Turning to higher dimensions, it becomes more and more difficult to identify homotopy

classes simply by invoking one’s imagination. One of the last intuitively accessible examples

is π2(S
2) = Z: maps of the 2-sphere into itself can be classified according to how often they
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Table 9.1 Homotopy groups of a number of frequently encountered mappings. A blank entry

means that no general statements can be made.

S1 S2 Sd>2 T d SU(2) SU(N)

k = 1 Z ∅ ∅ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
d

∅ ∅

k = 2 ∅ Z ∅ ∅ ∅ ∅

k > 2 ∅ ∅a
k < d : ∅
k = d : Z

k > d :
∅ π3(SU(2)) = Z

a But π3(S
2) = Z.

wrap around the sphere. This statement generalizes to πd(S
d) = Z, while πk(S

d>k) = ∅.
Interestingly, the situation can be non-trivial for mappings Sk �→ Sd<k. For example, Hopf

has shown that π3(S
2) = Z. For a summary of these, and a few more results, see Table 9.1.

Far from being complete, the list of examples in Table 9.1 fails to cover a number of homo-

topies of outstanding relevance. For example, in condensed matter physics (unlike particle

physics where space and time are intertwined by relativistic covariance) we are typically

confronted with a situation where time is separately compactified to a circle – imaginary

time with periodic boundary conditions. On top of that, the finite-action arguments outlined

above motivate a compactification of Rd → Sd of real space to a d-dimensional sphere. This

implies that, in quantum statistical field theory, one often encounters the base manifold

M � S1 × Sd (instead of Sd+1 as found in particle physics). Clearly the construction of

homotopic groups π(S1 × Sd, T ) corresponding to mappings S1 × Sd → T is more complex

than that involved in the definition of the group structures above. However, rather than

dwelling on the near-endless field of homotopy theory, we now return to field theory and

explore general implications of the homotopic classification scheme.2

9.3 θ-Terms

Returning to field theory considerations, let us address the question of what can be learned

from the concepts introduced in the previous section. Each field φ : M → T can be uniquely

assigned to a certain homotopy class. Consequently, the functional integration defining a

field theory can be organized as

Z =
∑
W∈G

∫
DφW e−S[φ],

where G is the homotopy group and
∫
DφW denotes integration over the homotopy class

defined by a given element W ∈ G – a “topological sector” of the theory. It may happen

that the action of our field theory,

S[φ] = S0[φ] + Stop[φ],
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W1

φ 1

φ 1*φ 2

φ 2

W2

W1 + W2

Figure 9.4 The combination of two fields with winding numbers W1 and W2 leads to a new field
with winding number W1 +W2.

contains a topological action component: i.e. a contribution Stop[φ] ≡ F (W ) that depends

only on the topological class of the field φ (which, for integer-valued W , is sometimes called

the topological charge of the configuration). In such cases, one may pull the function

F (W ) in front of the functional integral to write

Z =
∑
W∈G

e−F (W )

∫
DφW e−S0[φ]. (9.7)

In the following, we would like to understand in what way the topological action depends

on the index W . This question can also be addressed by the type of reasoning ubiquitous in

this chapter. Suppose we are given two fields φ1 and φ2 which are constant everywhere save

for two well-localized regions of variation somewhere in space-time. Let us assume that the

two regions where the fields vary are “infinitely” far away from each other (see Fig. 9.4).

Now, suppose we had glued these fields together (e.g. by the prescription formulated in

the previous section) to form a new field φ1 ∗ φ2. The infinitely large separation of the

two constituent fields implies that they are completely “uncorrelated,” i.e. the action of

the composite field S[φ1 ∗ φ2] = S[φ1] + S[φ2] is obtained simply by adding the actions

of the constituents. In particular, F (W1 + W2) = Stop[φ1 ∗ φ2] = Stop[φ1] + Stop[φ2] =

F (W1) + F (W2), where in the first equality we have used the fact that the composite field

has topological index W1 +W2.

The identity F (W1 +W2) = F (W1) +F (W2) tells us that the topological action is linear

in the topological index. For example, consider the simple (and at the same time most

frequently encountered) case where π(M,T ) � Z, i.e.Wi ∈ Z are just numbers. The linearity

then uniquely determines the topological action,

F [W ] = iθW,

up to a constant (which we choose to be real lest the action become ill-defined at large

values of the topological charge).

These considerations tell us that the factor exp(−F [W ]) = exp(−iθW ) weighing the

different sectors assumes the form of a phase. Relatedly, the constant θ is usually referred

to as a topological angle. (Since W is integer, θ is defined only mod 2π – an angular
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variable.) For historical reasons11 the topological action Stop is commonly referred to as a θ-

term. Notwithstanding its simplicity, a drawback of this representation is that it explicitly

relies on the decomposition of the field integral into a sum over distinct topological sectors.

It would be much more desirable to work with a representation Stop[φ] directly in terms of

the field (rather than through its winding number). This would enable us to formulate the

field integral more directly as
∫
Dφ exp(−S0[φ]−Stop[φ]), without the necessity to explicitly

sum over winding numbers.

Indeed, it is almost always possible to represent the topological action as an integral over

a topological Lagrangian density,

Stop[φ] =

∫
ddxLtop[φ, ∂μφ].

Unfortunately, no canonical recipe for the construction of this representation exists. How-

ever, this is not as serious a problem as one might suspect. For one thing, the Lagrangian

densities of the “usual suspects” of topologically non-trivial field theories are known. Con-

versely, it is usually straightforward to deduce whether or not a given term in the action is

a θ-term in disguise. To illustrate these points, we next discuss the concept of a topological

Lagrangian density on a few relevant examples.

In fact, we have already encountered the simplest representative of a θ-term in our analysis

of the particle on a ring:

Stop[φ] ≡ iθ

∫ β

0

dτ

2π
φ̇ = iWθ,

where θ = 2πA was proportional to the magnetic flux through the ring. We reiterate the

key features of this term: it does not affect the equations of motion (a small distortion, or

variation, of the field does not change its topological index, i.e. it leaves Stop invariant),

and it is invariant under arbitrary coordinate reparameterizations τ �→ s = s(τ). As a less

simple example illustrating these features we now discuss a two-dimensional field theory.

9.3.1 A case study: π2(S
2)

Consider a field theory in a two-dimensional compactified space with the two-sphere as a

target manifold. Important examples falling into this category include the theory of quantum

spin chains (see Section 9.3.3), the two-dimensional classical Heisenberg model, and the field

theory of the integer quantum Hall effect (see Section 9.3.4). Technically, the fields of this

theory are mappings

n : S2 → S2,

x �→ n(x), |n| = 1,

11 One of the first major applications where terms of this type played a dominant role was ’tHooft’s analysis of
SU(2) gauge field instantons in (3 + 1)-dimensional compactified space-time. (G. ’tHooft, Magnetic monopoles
in unified gauge theories, Nucl. Phys. B79 (1974), 276–84.) There he systematically labeled the topological
angle by θ; hence the name θ-term.
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and the relevant homotopy group is π2(S
2) � Z. Let us suppose that the topological action

of this field theory is given by

Stop[n] =
iθ

4π

∫
dx1 dx2 n · (∂1n× ∂2n). (9.8)

How does one verify an assertion of this type? A first condition for Stop to be of topological

nature is an insensitivity to small variations of the field n. Suppose then we vary n by a small

amount, i.e. n(x) → n(x) + εa(x)Ran, where the functions εa, a = 1, 2, 3, are infinitesimal

and Ra are the generators of rotations around the three coordinate axes. By integrating a

few times by parts, it is straightforward to show that the variation of Stop assumes the form

δStop[n] =
3iθ

4π

∫
dx1 dx2 ε

aRan · (∂1n× ∂2n).

However, Ran is perpendicular to n while (exercise) (∂1n×∂2n) lies parallel, i.e. δStop = 0.

(As a corollary we note that Stop will not affect the equations of motion.)

The invariance of Stop implies that we can evaluate its value on any convenient test field

configuration n0; each field that can be reached by continuous deformation of n0 will have

the same topological action. Consider, for example, the family of field configurations

n(W ) : R2 → S2,

(x1, x2) �→
(
φ = W tan−1

(
x2

x1

)
, θ = 2 tan−1

(
a2

x2
1 + x2

2

))
,

where we used polar coordinates to parameterize n(W )(θ, φ). For historical reasons,12 these

field configurations are commonly referred to as skyrmions. (Notice that the suffix “-on”

indicates that we are dealing with highly stable [particle-like] excitations.)

A coarse visualization of the simplest skyrmion

configuration, n(1), is shown in the figure: a tex-

ture of unit vectors varying on a scale set by the

parameter a. Skyrmions of higher winding num-

bers, n(W>1), are difficult to visualize. However,

it is straightforward to verify (by substitution

of the unit vector n(W )(φ, θ) into the integral

(9.8)) that their topological charge is given by

W . Equivalently, the topological action reads

Stop[φ
(W )] = iθW .

EXERCISE Verify these statements. Show that the topological charge is insensitive to coordinate

changes on both the target and the base manifold. Try to invent other simple field configurations

of non-vanishing topological charge.

INFO A word on semantics: depending on the context, topologically non-trivial field config-

urations are described as solitons, instantons, skyrmions, etc. While there seem to be no

12 See T. H. R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. London A 260 (1961), 127-38 where these
excitations appeared in the context of an effective model of nuclear matter.
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discernible systematics in this scheme, a rule of thumb is that topological excitations in dynam-

ical quantum theories (i.e. theories where the base manifold represents space-time) are called

“instantons.” By contrast, “solitons” are topological solutions of classical equations of motions.

However, this rule is also sometimes broken.

The ubiquitous presence of the suffix “-on” reflects a widespread tendency in physics to asso-

ciate excitations that are protected from ordinary decay mechanisms (presently, by the presence

of topological indices) with different kinds of “particles”.

9.3.2 Functional integration and topological textures: generalities

How can our present understanding of topologically non-trival field configurations be

extended to a working scheme of field integration? As we saw above, the different topological

sectors of the theory essentially lead their “own lives.” It is then an obvious idea to try to

carry out the “canonical program” of field integration (analysis of mean-field configurations

� integration over fluctuations) in each sector separately. Our first step would thus be to

seek solutions of the equation

δS[φ]

δφ

∣∣∣∣
φ∈φW

=
δS0[φ]

δφ

∣∣∣∣
φ∈φW

= 0. (9.9)

(The later equality expresses the fact that the topological action does not change under field

variation.) In our prototypical example of Section 9.1, the solutions of these equations were

readily identified as φW (τ) = 2πWτ/β. However, in general, finding solutions of Eq. (9.9)

for W �= 0 is a task more complicated than the analysis of the W = 0 mean-field. (This is

because field configurations withW �= 0 generally exhibit some non-trivial spatial variations,

i.e. we cannot rely on the standard homogeneity assumptions.)

INFO However, there exists an elegant trick whereby the identification of topologically

non-trivial mean-field configurations can sometimes be drastically simplified. Consider the

expression

0 ≤ 1

2

∫
d2x (∂μn+ εμνn× ∂νn) · (∂μn+ εμν′n× ∂ν′n)

=

∫
d2x (∂μn · ∂μn+ εμνn · (∂μn× ∂νn)) ,

where the inequality simply expresses the fact that we are integrating a positive definite quantity.

Now, we know that the second term in the latter integral yields just −8π times the topological

charge, i.e.

W ≤ 1

8π

∫
d2x ∂μn · ∂μn = S0[φ].

We thus conclude that W represents a lower bound for the action of field configurations of

topological charge W . This limit is reached for extremal configurations

∂μn+ εμνn× ∂νn = 0, (9.10)

on which the integral above vanishes. Since any continuous variation of these fields leads to

a non-vanishing integral, they must be stationary field configurations. We have thus managed
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to reduce the identification of stationary phase configurations to the solution of the first-order

differential equation (9.10).

In passing we note that Eq. (9.10) is most elegantly solved by introducing complex coordinates

z ≡ x1 + ix2 and representing n in terms of a stereographic projection:

n1 + in2 =
2w

1 + |w|2 , n3 =
1− |w|2
1 + |w|2 ,

where w ∈ C. Straightforward substitution then shows that Eq. (9.10) assumes the form ∂z̄w(z) =

0 (exercise). This means that any meromorphic function

w =

W∏
i=1

z − ai

z − bi
,

solves the equation. To understand the identification of the order of the product, W , with the

topological charge, notice that the inverse z(w) will be a W -valued function, i.e. W indeed

measures the number of times the sphere (w-space) is covered by the compactified plane (z-

space). (Exercise: Verify that, up to a different choice of the coordinate axes, the skyrmion φ(1)

above is one of these extremal configurations.)

As an attractive by-product, the scheme above automatically yields the action S0[φ̄] = W of

the extremal configurations φ̄. A slightly modified variant of the same trick helps to find other

topological mean-field configurations; e.g. the famous SU(2) instantons central to the analysis of

θ-vacua in QCD (for a pedagogical discussion of this subject see, e.g. Ryder.13).

At this stage, the further course of action seems to be clear. We ought to compute the action

of the mean-field solutions of a given topological index, and then integrate over fluctuations.

In practice, however, things turn out to be not quite as straightforward. To understand what

is going on, let us revisit a problem we discussed back in Chapter 3, namely the motion of a

quantum particle in a steep periodic potential. The topological nature of that system follows

from the fact that, (i) by virtue of the periodicity of the potential, V (x) = V (x + a), we

can identify the configuration space with a ring of periodicity a and, (ii) with exponentially

large probability, at times t → ±∞ the quantum particle will rest in any one of the minima

13 L. H. Ryder, Quantum Field Theory (Cambridge University Press, 1996).

V

W

t

Figure 9.5 Snapshot of two typical field configurations of the U(1) model. Dashed: minimal field
configuration with W = 4 instantons. Solid: field with 7 instantons and 7−W = 3 anti-instantons.
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of the potential (see Fig. 9.5). This latter fact implies that the two points t = ±∞ forming

the boundary of the base manifold can be identified (in analogy to our discussion of higher-

dimensional compactification above). Within the path integral approach to the problem, we

are thus integrating over mappings S1 → S1; the spatial distance (in units of a) our particle

traverses in the course of time translates to the winding number of the mappings.

This number is a topological invariant, i.e. it does not change under any continuous

deformation of the path. However, what may well happen is that, on its way from the

minimum at x = 0 to another one at x = Wa, the particle includes one or several detours

(see Fig. 9.5). As is evident from the figure, any of those non-direct paths can be continuously

deformed to a straight tunneling path 0 → a → 2a → · · · → Wa. To connect to the notions

of topology, suppose that the individual tunneling events forming a path of total winding

number W are widely separated in time. By analogy with our discussion in Section 9.2,

we can then imagine the full path as the result of the superposition of V ≥ W single-

instanton (W = 1) field configurations and V−W anti-instantons (W = −1). The homotopic

equivalence of a path with a non-vanishing number of anti-instantons to the direct path (no

anti-instantons) amounts to the fact that an instanton and an anti-instanton annihilate,

1 + (−1) → 0, when their temporal coordinates approach each other; only the difference

between the numbers of instantons and anti-instantons is a topological invariant.

For steep potentials, instantons and anti-instantons are widely separated in time, imply-

ing that correlations/annihilations are vanishingly improbable. For obvious reasons, such

configurations are referred to as dilute instanton gases. However, for sufficiently shallow

potentials, instantons begin to proliferate in number. The increase in the instanton “den-

sity” gives rise to correlation effects or “interactions” between the instantons. (Technically,

the interaction of two nearby tunneling/anti-tunneling events no longer is just the sum of

the two partial actions, but contains correlation terms.) Of course, these instanton liquids

are much more difficult to describe than dilute instanton gases.

Clearly, these phenomena are not limited to the one-dimensional example above. For

general π(M,T ) � Z, instantons exist as “particles” (W > 0) and “anti-particles” (W < 0).

Only the difference in the number of particles and anti-particles is a topological quantum

number. The general plan of an instanton analysis will, therefore, typically take the following

form:

� Solve mean-field equations – find the instantons/anti-instantons.

� Analyze the dilute instanton phase.

� Identify correlations between instantons and explore when the diluteness assumption

breaks down.

� If possible, try to understand the physics of the correlated instanton system.

In Chapter 3, we exemplified this program on the U(1) example (albeit not emphasizing

the underlying topology). A pedagogical discussion of the generalization to the S2-instanton

gas (skyrmions/anti-skyrmions) can be found in the text by Polyakov.14 However, at this

stage, we will not pursue further the complexities of the dense instanton systems. Rather

14 A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987).
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we shall turn to the – long overdue – discussion of examples where S2-instanton formation

plays an important physical role.

9.3.3 Spin chains

In Section 2.2 we applied the Holstein–Primakoff transformation to explore the disper-

sion relation ε(p) of excitations in ferro- and antiferromagnetic spin systems. Within this

approach we found that, for antiferromagnetic systems, the dynamics of long-wavelength

spin-wave excitations is characterized by a linear dispersion relation

ε(p) ∼ vs|p|, (9.11)

where vs is the spin wave velocity. However, let us recall that this result was based on a

crude semi-classical expansion valid only to leading order in 1/S, where S is the magnitude

of the spins. Yet, what happens when a 1/S expansion is seemingly unjustified? Do interac-

tion processes between the elementary spin-waves significantly renormalize the observable

excitation spectrum? At any rate, we are dealing with a “strong coupling problem” for

which no obvious approximation scheme is in sight.

In situations like this it is usually a good idea to identify an exactly solvable reference

system where the physics is known. In the present context, the S = 1/2 antiferromagnetic

spin chain plays this role. Indeed, we have seen (in Problem 2.415) that, at small wavevec-

tors, the S = 1/2 antiferromagnet is equivalently described as a system of one-dimensional

chiral fermions. We know that the excitations of the fermions (charge density waves) have

a linear dispersion, i.e. they obey a one-dimensional variant of Eq. (9.11). This seems quite

reassuring: both, S � 1 and the exactly solvable point S = 1/2 are characterized by a linear

dispersion. It is then, perhaps, not too bold to speculate that, in the analytically inacces-

sible intermediate regime S � 1, interactions will also not corrupt the linear dispersion of

antiferromagnetic spin chains.

Surprisingly, though, this expectation does not conform with experimental observation.

Neutron scattering experiments on one-dimensional spin 1/2 antiferromagnets have indeed

shown that, in the vicinity of the Néel ordering wavevector q = π/a, the dispersion is linear.

However, spin S = 1 chains show altogether different behavior! It turns out that these

systems do not support low-energy magnetic excitations at all (see Fig. 9.6). More generally,

the cumulative experimental finding is that antiferromagnetic chains of half-integer spin do

support a relativistic low-energy excitation, while chains of integer spins are gapped.

15 To be precise, in Problem 2.4 we applied a Jordan–Wigner transformation to represent the S = 1/2 chain
in terms of a half-filled system of one-dimensional fermions. The fermion system contained an interaction
term whose strength was determined by the anisotropy Δ of the magnetic correlations. In the XY -limit, Δ =
0 (vanishing coupling of the z-components), the fermion system becomes free. (That is, both the fermion
system and its equivalent partner, the spin system, support long-range excitations.) For general Δ, bosonization
techniques can be applied to map the problem onto a two-dimensional sine–Gordon model. This model falls into
the universality class of the two-dimensional (!) classical XY -model (cf. discussion on page 469). Translated
back to the context of the spin chain, the RG flow behavior of the latter implies that, for values of the anisotropy
all the way up to the Heisenberg limit Δ = 1, the system remains in a gapless phase (the interaction stays
irrelevant). For further discussion of the spin 1/2 chain we refer to A. O. Gogolin, A. A. Nersesyan, and A. M.
Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge University Press, 1998).
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Figure 9.6 Neutron scattering data from the S = 1 compound CsNiCl3. The main panel shows
the excitation energy for wavevectors close to the antiferromagnetic nesting vector Qc = π. In
contrast to half integer spin systems, the spectrum is gapped. (Reprinted with permission from
M. Kenzelmann, R. A. Cowley, W. J. L Buyers, et al., Properties of Haldane excitations and
multiparticle states in the antiferromagnetic spin-1 chain compound CsNiCl3, Phys. Rev. B 66
(2002), 24407. Copyright (2002) by The American Physical Society.)

As a rule, physical phenomena depending on the parity of an integer quantum number

(presently, 2S being even or odd) tend to be of topological origin. To understand why

topology appears in the present context recall that, classically, the configuration space of

a spin is a sphere (of radius S). The spin configuration of a spin chain is thus described

by some mapping from (1+ 1)-dimensional space-time into the sphere. Compactification of

space-time then leads to the mappings S2 → S2 discussed above.

To substantiate this picture, let us start out from the quantum partition function of an

isolated spin derived in Section 3.3:

Z(1) =

∫
Dn eiS

∫ β
0

dτ LWZ(n,∂τn), LWZ(n, ∂τn) = (1− cos(θ))φ̇,

where the integration extends over all paths n : τ �→ n(τ) and (φ, θ) are two angles param-

eterizing the unit vector n.

INFO In the light of the discussion above, the action of this integral looks rather suspicious:

it is purely imaginary and remains invariant under reparameterizations of time τ �→ τ ′(τ) –

both hallmarks of topological terms. Indeed, LWZ[n, ∂τn] is the Lagrangian of a “Wess-Zumino

action”.16 For the topological character of these actions, and their connection to the θ-terms

discussed presently, see the next section.

16 Notice that, from the point of view of a purist, the notation LWZ(n, ∂τn) is problematic. As discussed earlier,
the Wess–Zumino action does not admit a globally coordinate invariant representation in terms of n and its
derivatives. To formulate one, we have to deploy an explicit coordinate representation. For the underlying
reason, see the next section.
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The generalization of the (0 + 1)-dimensional path integral to a (1 + 1)-dimensional field

integral of the spin chain is a good exercise in guessing effective actions. As a warm-up

exercise, we begin our discussion with the ferromagnetic spin chain. The interaction

between the neighboring spins is mediated by an operator

−J Ŝi · Ŝi+1 −→ −JS2ni · ni+1 −→ JS

2
(ni − ni+1)

2, (9.12)

where J is the positive exchange constant, i labels the sites on the chain, and the first arrow

maps to the representation Ŝ → Sn of the spin operators in the field integral language. In

the second term we have noted that, up to irrelevant constants (n2 = 1), the interaction can

be represented as a “discrete derivative.” Adding to this interaction term the Wess–Zumino

terms of the individual spins, we are led to the partition function Z =
∫
Dn exp(−S[n]),

with the effective action

S[n] =

∫
dτ

∑
i

[
JS2

2
(ni − ni+1)

2 + iSLWZ(ni, ∂τni)

]
. (9.13)

Anticipating that, for a ferromagnetic system, the configuration {ni} will typically be

smooth, we may then take the continuum limit to arrive at the action

Sferro[n] = a−1

∫
dτ dx

[
JS2a2

2
(∂n)2 + iSLWZ(n, ∂τn)

]
, (9.14)

where a denotes the lattice spacing. The action (9.14) does not contain a θ-term.

EXERCISE Derive the equations of motion of this action. Show that the mean-field dispersion

of the ferromagnetic chain, ω ∼ q2, is quadratic. (Hint: Recapitulate what we know about the

variation of the Wess–Zumino term from Section 3.3.)

We now turn to the more interesting case of the antiferromagnetic spin chain. The

exchange coupling is now negative, implying that the neighboring spins prefer antiparallel

alignment. We thus start out from a configurational ansatz

ni = (−)in′
i,

where n′ is the antiferromagnetic order parameter field. To derive the antiferromagnetic

analog of the continuum action (9.14), we ought to substitute this ansatz into Eq. (9.13) and

perform a gradient expansion. However, rather than going through the technical details of

this expansion (see e.g., Jackson17), we will here fix the structure of the action by qualitative

reasoning. For one thing, we know that the system supports a wave-like mode. The minimal

action consistent with the global rotational invariance of the model (n → Rn, where R ∈
O(3)) and the presence of a wave-like mode is given by

S0[n] =
S

4

∫
dτ dx

(
1

vs
(∂xn)

2 + vs(∂τn)
2

)
,

17 J. D. Jackson, Classical Electrodynamics (Wiley, 1975).
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where we have relabeled n′ → n for notational simplicity and vs = 2aJS is the spin-

wave velocity. Of course, the detailed structure of the coupling constants is beyond the

scope of our present plausibility argument. However, what we can say is that the overall

coupling constant must be proportional to a positive power of S. This is because, for large

S, “interactions” between the elementary spin waves ought to become weak.

EXERCISE To show this, expand n around any preferential axis (e.g. by setting n1,2 ≡ r1,2,

n3 ≡ (1 − r21 − r22)
1/2, r21 + r22 ∈ [0, 1]). Expand the action in powers of ri and show that, for

large S, the contribution of anharmonic terms (spin-wave “interactions”) becomes small.

Γ (n)

n (τ)

Rescaling variables, τ → v
−1/2
s τ ≡ x0, x → v

1/2
s x ≡ x1,

S0[n] →
1

λ

∫
d2x ∂xμn · ∂xμn, λ = 4/S,

assumes the form of the action of the O(3) nonlinear σ-model.18

However, as argued above, we expect the full action of the problem to

contain not only a dynamical piece S0 but also a θ-term. How can this be made plausible

from the prototypical action (9.13)? We expect that, somehow, the θ-term must appear as a

descendant of the Wess–Zumino action. In the ferromagnetic case, the Wess–Zumino actions

of the spins basically added to give a contribution that was not a θ-term. However, in the

present case, we are dealing with a staggered spin configuration that leaves room for more

interesting things to happen. Let us first recall the interpretation of iS
∫ τ

0
dLWZ(n, ∂τn) as

the oriented area Γ [n] on the sphere swept out by the curve n(τ) (see figure).

By an elementary geometrical consideration, Γ [−n] = 4π − Γ [n] = −Γ [n] mod 4π. This

implies that the continuum version of the Wess–Zumino action

Stop[n] = iS
∑
i

(−)i
∫ β

0

dτ LWZ(ni, ∂τni) = iS
∑
i

(−)iΓ [ni],

evaluated on a staggered configuration (−)ini must contain a spatial derivative besides the

temporal derivative inherent in LWZ (since for ni = const. the factor (−)i would lead to

a global cancellation). Indeed, the Wess–Zumino actions of two neighboring configurations

ni+1 and ni evaluate, respectively, to the areas bounded by the curves Γ [ni+1] and Γ [ni].

For |ni+1 − ni| small, the area difference can be approximated by

Γ [ni+1]− Γ [ni] �
∫ β

0

dτ ni · ((ni+1 − ni)× ∂τn).

Summing over i and taking the continuum limit, we obtain (see figure)

Stop[n] = iθ

∫
dτ dxn · (∂xn× ∂τn), θ =

S

2
, (9.15)

18 Although the action above is commonly referred to as the action of the O(3)-model, a better terminology would
be the (O(3)/O(2))-model. Indeed, the degrees of freedom of the theory span the 2-sphere S2 � O(3)/O(2).
Although the nonlinear σ-model on the sphere has to be distinguished from the σ-model on O(3) (cf. the
discussion of Section 8.5 and Problem 8.8.3) we will follow the widespread convention to describe the model
above as the O(3)-model.
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ni +1
ΔΓ

ni

which we identify as our earlier representation of the θ-term.

(Notice that the integral
∫
dτ dx really represents an integral over

the sphere. This is because we agreed that, for |τ | → ∞ and/or

|x| → ∞, all trajectories approach a common reference point on

S2.)

Summarizing, we have obtained S0[n]+Stop[n] as the effective

action of the antiferromagnet. In Problem 8.8.3, we have seen that at large length scales

a two-dimensional system described by the action S0[n] flows into a disordered phase. But

how will the presence of the topological term modify this behavior? To get some idea of what

might happen, let us reformulate the partition function as a sum over disjoint topological

sectors,

Z =
∑
W∈Z

∫
DnW e2πiSW e−S0[nW ], (9.16)

where nW denotes field configurations of winding number W . Equation (9.16) provides

a preliminary explanation for the observation of the half-integer/integer spin staggering

phenomena mentioned above. For integer spin, exp(2πiSW ) = 1 and the topological term

is not operational. By contrast, for half-integer spin, exp(2πiSW ) = (−)W , i.e. consec-

utive topological sectors are weighted by alternating signs. Notice that the topological

term is susceptible to the parity of 2S and nothing else. To understand heuristically

the consequences of this feature we emphasize that, at the mean-field level (this stabi-

lized by large S), the partition function is governed by a mode with linear dispersion.

Quantum fluctuations around this configuration will alter its dispersion, potentially by

the creation of an excitation gap. Now, in the integer case, these fluctuations additively

(exp(−S0) ∈ R+) contribute to the partition function. For small S they may (and in

fact do) totally mask the mean-field sector. By contrast, for half-integer spin, fluctuations

contribute with alternating sign, thereby partially canceling each other; the mean-field

sector has a better chance to survive. These observations form the basis of Haldane’s

conjecture,19 according to which spin chains of integer S will flow into a disordered phase

with no long-range excitations whilst, in chains of half integer spin, they remain in a gapless

phase.

Reassuringly, the predictions born out of these rather abstract constructions are in full

agreement with neutron scattering measurements of the dispersion of various quasi-one-

dimensional magnets. But why should one, nonetheless, use the attribute “conjecture” (as

opposed to, say, “theory”)? The scenario above is based on a number of shaky suppositions.

Most seriously, it is tacitly assumed that the σ-model will seamlessly scale into the strong

coupling region without changing its form. (That the model remains form invariant under

renormalization is a perturbative prediction which can be trusted only for λ � 1.) Indeed,

a subsequent analysis by Affleck and Haldane20 has shown that, en route to the strong

coupling regime, much more drastic things happen. Specifically, the appropriate critical

19 F. D.M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized
solitons of the one-dimensional easy-axis Néel state, Phys. Rev. Lett. 50 (1983), 1153–6.

20 I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36 (1987), 5291–300.
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theory describing the behavior of half-integer chains at large length scales turns out to

be not the O(3) nonlinear σ-model but rather a field theory with SU(2)-valued degrees of

freedom. We discuss this theory in Section 9.4.4 after the concept of Wess–Zumino terms

has been introduced.

Introducing another group of phenomena where mechanisms of topology are crucial, we

now turn to a discussion of the quantum Hall effects (QHE). The QHE belongs here because

(a) it is surely a compulsory part of any modern treatise on condensed matter phenom-

ena, and (b) it is, in many respects, a topological phenomenon. On the other hand, our

discussion will lead us somewhat astray inasmuch as it involves, necessarily, a review of

experimental observation, the elementary quantum mechanics of electrons in the presence

of strong magnetic fields, etc. Readers wishing to maintain a more streamlined discussion

of topology in condensed matter field theory are therefore invited to skip the next section,

and turn directly to the section on Wess–Zumino terms below.

9.3.4 Integer quantum Hall effect

In fact, it is quite misleading to talk about the quantum Hall effect: at the least, one

should speak of the quantum Hall effect“s” – a spectrum of quite different phenomena,

almost unparalleled in diversity and conceptual depth. To get a preliminary impression of

the phenomena, observe the raw experimental data displayed in Fig. 9.7. The figure shows

the Hall resistance ρxy ≡ RH and the longitudinal resistance ρxx (the ragged curve in the

bottom of the plot) of a two-dimensional electron gas as functions of a strong perpendicular

magnetic field. Instead of a dull linearly increasing curve (the classical Hall resistance ρxy)

or an approximate constant (the Drude resistance ρxx) one finds a profile that could hardly

be more structured.

On close inspection of the data, one may notice a number of characteristic sub-structures:

(1) Shubnikov–de Haas oscillations at small magnetic fields, followed by (2) the character-

istic quantum Hall plateaus ρxy = ν−1h/e2 at rational “filling fractions” (see below)

ν ∈ Q to which the effect owes its name. These are accompanied (3) by a dramatic drop in

the longitudinal resistance ρxx. The functional form of the increase (4) from one plateau

to the next is described by certain well-defined power laws as a function of temperature,

indicative of a second-order phase transition – the zero-temperature quantum Hall tran-

sition. Barely visible, (5) a second generation of Shubnikov–de Haas oscillations is observed

at ν = 1/2. Finally, there appears much structure in the pattern of rationals ν for which

plateaus are found. For example, for some low-lying rationals (such as ν = 1/4) no plateau

is formed. The set of rationals for which the effect occurs is known as the quantum Hall

hierarchy.

These are but a few of the most striking observations gathered under the label quantum

Hall effect. Undoubtedly, to account even superficially for all of these phenomena would

present a task that is well beyond the scope of the present text. Rather, we will have

to restrict ourselves to a brief (and, alas, painfully superficial) discussion of a number of

conceptual basics. In the present section we shall focus on the discussion of the conductance

plateaus observed at integer filling factors – the so-called integer quantum Hall effect
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Figure 9.7 Hall conductance and longitudinal conductance of a two-dimensional electron gas as
functions of a perpendicular magnetic field. For a discussion, see the main text. (Reprinted with
permission from H. L. Störmer, D. C. Tsui, and A. C Gossard, The fractional quantum Hall effect,
Rev. Mod. Phys. 71 (1999), S298–305. Copyright (1999) by the American Physical Society.)

(IQHE). The generalization to plateaus at rational filling fractions – which, curiously, hinges

on altogether different physical concepts – is discussed in Section 9.5.1 below.

When specified in units of the conductance quantum e2/h, the plateau conductance σxy =

ρ−1
xy of the IQHE is an integer. By its very nature an integer cannot vary continuously (upon

changing some physical control parameter). Indeed, more often than not, observables quan-

tized in integer (or rational) units are linked to some topological origin. In the following,

we will formulate two different “explanations” of the quantization phenomenon. The quotes

indicate that, far from being rigorous, both lines of argument involve some degree of “boot-

strap character”: assuming that the effect is of topological nature, we feel free to subject

the “real world” arrangement of a QHE experiment to all kinds of abuses (deformation of

the sample boundaries, etc.) to then discover that, yes, the Hall conductance emerges as a

topological invariant. The backbone of a more rigorous approach to the problem is discussed

in Section 9.3.7 below.

9.3.5 Background information on the IQHE

Let us begin our discussion with a nutshell summary of the phenomenology of the IQHE.

This is followed by a brief reminder of the phenomenology of Landau level quantization –

formulated in a language that highlights the symmetries of the problem.
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Vx

B

2DEG
The QHE is observed in two-dimensional electron gases

subject to a strong magnetic field. The prototypical setup

of a QH experiment is shown in the figure. A voltage drop

Vx applied across the sample induces a current Ix in the

x-direction plus, by virtue of the Lorentz force, a Hall cur-

rent Iy in the y-direction. The relation between Ix and Iy
determines the Hall conductance. More precisely, the key

quantities of interest are the entries σxx and σxy determining the conductance tensor

σ =

(
σxx σxy

−σxy σxx

)
,

which is defined as usual by I = σV where I = (Ix, Iy)
T , V = (Vx, Vy)

T (note that,

by symmetry, σxx = σyy). The inverse ρ = σ−1 defines the resistance tensor V = ρI.

For a system of linear extension L, conductance g and conductivity σ are connected by

the relation g = σLd−2. In two dimensions, the two quantities coincide. This implies

that no device-geometry-dependent factors interfere when we pass from the basic quan-

tity determined by the microscopic physics of the system (σ) to experimental observables

(g); otherwise, no completely universal Hall conductance could possibly be observed. In

the context of the QHE, it is truly important to keep the tensorial structure of σ and ρ

in mind. For example, somewhat paradoxically, for σxy �= 0, a vanishing of the longitu-

dinal resistance ρxx implies a vanishing (as opposed to a divergence) of the longitudinal

conductance σxx.

Within the context of the QHE, the natural unit for the strength of the applied magnetic

field is the “filling fraction”. This is defined as the ratio

ν ≡ 2πNl20
A

, (9.17)

where N denotes the number of electrons in the system, A is the sample area and l0 =√
Φ0/2π|B| the magnetic length, i.e. the external magnetic flux through the area l20 is

equal to (2π times) one flux quantum.21

Experimentally, one finds that (see the figure overleaf, courtesy of D. Leadley), for

field strengths close to an integer filling fraction ν ∈ N, the Hall resistance is quantized,

ρxy = ν−1h/e2 to an accuracy of O(10−10).22 At the same time, the longitudinal resis-

tivity/conductivity drops by as much as 13 orders of magnitude. In passing we note that

the rapid oscillations visible in the figure at small field strengths represent the familiar

Shubnikov–de Haas oscillations.

21 One may recall that the flux quantum is defined through the relation Φ0 = h/e. In our standard units � = e =

c = 1, Φ0 = 2π and l0 = |B|−1/2.
22 Due to the striking precision of the experimental data, the unit of electrical resistance is nowadays maintained

as h/e2 = 25 812.80Ω through quantum Hall measurements.
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As a (presumed) topologi-

cal phenomenon, we expect the

quantization of the Hall conduc-

tance to be robust against sample

imperfections and/or the pres-

ence of static disorder. What

is more surprising is that the

phenomenon, in fact, critically

relies on the presence of disorder.

To see this, let us for a moment

assume that the opposite is true:

we have a homogeneous electron

gas accommodated by a transla-

tionally invariant device. We further assume the absence of external voltage gradients,

E = 0, so that no current is flowing in the system, I = 0. Now suppose that we observe the

system from a frame moving with velocity v in, say, the 1-direction. An experimentalist

working in that frame would observe a current density j = −vρe1, where ρ is the density

of the electron gas. Further, the Lorentz covariance of electrodynamics implies that one

would measure a finite electric field E = ve1 ×B = −vBe2, where B = Be3 is the applied

magnetic field. With j1 = σ12E2, we obtain σ12 = ρB−1 for the Hall conductivity in the

moving frame. Being independent of the boost velocity, v, this result holds in all moving

frames, including the static frame, v → 0. We conclude that, in any translationally invariant

environment, the Hall conductivity is linearly related to the magnetic field.

Reciprocating the argument above, we see that the presence of (translational invariance

breaking) disorder must be necessary for the observability of the QHE. In fact, we shall see

in a moment that the effect is born out of a conspiracy of disorder induced localization and

the phenomenon of Landau level quantization. However, before turning to the discussion

of the combined effect of these two mechanisms, let us briefly recapitulate the formation of

Landau levels in a clean two-dimensional electron gas subject to a magnetic field.

Let us temporarily consider a geometry where the electron gas assumes the form of a

perfect disk.23 To explore the quantum mechanics of this problem, we represent the in-

plane vector potential in the so-called symmetric gauge, Ai = (B/2)εijxj , i = 1, 2 (where

the coordinates are measured with respect to the center of the disk), whereupon the free

electron Hamiltonian, Ĥ = (p̂− Â)2/(2m∗), assumes the form

Ĥ =
1

2m∗

[(
−i∂1 −

x2

2l20

)2

+

(
−i∂2 +

x1

2l20

)2
]
. (9.18)

(To avoid confusion with the quantum number to appear shortly below, we designate the

electron mass by m∗.) We wish to solve the Schrödinger equation Ĥψn = εnψn. This task

is greatly simplified by subjecting the eigenvalue problem to the similarity transformation

23 Remember our fundamental working hypothesis whereby the quantization phenomena forming the QHE will
not depend on details of the geometry.
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Ĥ → Ĥ ′ = SĤS−1, ψn → ψ′
n = Sψn, where S = exp

[
1
4l20

(
x2
1 + x2

2

)]
. The reason is that

the transformed problem Ĥ ′ψ′
n = εnψ

′
n is governed by the effective Hamiltonian

Ĥ ′ =
1

2m∗

[(
−i∂1 + i

1

2l20
(x1 + ix2)

)2

+

(
−i∂2 +

1

2l20
(x1 + ix2)

)2
]
,

i.e. an operator whose (vector) potential depends only on the linear combination x1 +

ix2 rather than on two linearly independent coordinates x1 and x2. To benefit from this

simplification, we may switch to complex coordinates, z = x1 + ix2, z̄ = x1 − ix2, in which

the Hamiltonian assumes the form (exercise)

Ĥ ′ =
1

2m∗

(
−4∂z∂z̄ + 2

z

l20
∂z +

1

l20

)
.

This Hamiltonian possesses a family of eigenstates ψ′
n ≡ zn with eigenvalues εn = 1

m∗l20
(n+

1/2) = B
m∗ (n + 1/2). Undoing the similarity transform, one can conclude that the original

Hamiltonian is diagonal on the states

ψn = zne
− 1

4l20
zz̄
, εn = ωc(n+ 1/2),

whose eigenvalues εn are the celebrated Landau levels. The Landau levels differ by integer

multiples of the cyclotron frequency ωc ≡ B/m∗. On the other hand, we know that, for a

system of linear extension L, there are of O(kFL)
2 states below the Fermi energy k2F/2m

∗.
This implies a typical level spacing ∼ 1/(m∗L)2 which is by a factor ∼ BL2 smaller than

the spacing between Landau levels. Anticipating that the clean problem does not support

energies other than εn, one can conclude that the Landau levels must be hugely degenerate:

each of them hosting BL2 = (L/l0)
2 states.

To reveal the origin of the massive degeneracy of the Landau levels, we have to identify

a symmetry of the Hamiltonian (9.18) or, equivalently, a set of linearly independent oper-

ators commuting with Ĥ. In the present context, these are the “magnetic translation

operators”

k = ∂z −
z̄

4l20
, k̄ = ∂z̄ +

z

4l20
, k̄ψn = 0.

(In the absence of a magnetic field l0 → ∞, these would be ordinary translation opera-

tors ∼ −i∂i transformed to complex coordinates; hence the name magnetic “translation”

operators.) It is straightforward (exercise) to verify the following properties:

[Ĥ, k] = [Ĥ, k̄] = 0, [k, k̄] =
1

2l20
.

We next use these operators as generators for the creation of states degenerate with the

reference states ψn. To this end, let us define

T = exp

[
4πl20
L

k

]
, U = exp

[
i
2πl20
L

k̄

]
.
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Using the commutation relations between k and k̄, one may verify that these operators obey

the relation

TU = UT exp

[
4π2i

(
l0
L

)2
]
,

sometimes referred to as the magnetic algebra. We now have all elements to construct

the entire set of states: the fact that k̄ annihilates ψn implies that Uψn = ψn. Consider now

the family of states

ψn,m ≡ Nn,mTmψn, (9.19)

where Nn,m is a normalization factor. Since Ĥ commutes with k (and therefore with T ),

ψn,m form eigenstates with eigenenergy εn – they all populate the nth Landau level. How-

ever, we do not yet know whether ψn,m actually form a set of linearly independent states.

To prove their independence, one can employ Eq. (9.19) and Uψn = ψn to show that

Uψn,m = exp(−i4π2m(l0/L)
2)ψn,m. Therefore, as with Bloch states in a periodic potential,

ψn,m are eigenstates of a generalized translation operator. For m = 1, . . . , 2π(L/l0)
2, the

corresponding eigenvalues are different, which proves that

{ψn,m|0 ≤ m < 2π(L/l0)
2},

is a linearly independent set of eigenstates in the nth Landau level. The magnitude of this

set 2π(L/l0)
2 coincides with our estimate of the degeneracy of the Landau levels above, i.e.

we have succeeded in constructing a complete eigenbasis of the magnetic Hamiltonian.

9.3.6 IQHE as a topological phenomenon

Shortly after the experimental discovery of the IQHE,24 Laughlin pre-

sented an ingenious argument whereby the quantization of the Hall con-

ductance could be explained under fairly general conditions.25 Slightly

later it became clear26 that Laughlin’s argument in fact implied a number

of curious features of electrons subject to a magnetic field and static dis-

order. However, before turning to a more detailed discussion of Laughlin’s

ideas, and their subsequent refinement by Halperin, let us first outline

the basic skeleton of the argument.

Given its complete universality, the quantization phenomenon must be

insensitive to (continuous) deformations of the sample geometry. Using

this freedom, Laughlin proposed to subject the basic quantum Hall geom-

etry to the sequence of transformations indicated in the figure. From a

“Hall bar” geometry we pass to an annular geometry of higher symmetry.

24 K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure
constant based on quantized Hall resistance, Phys. Rev. Lett. 45 (1990), 494–7.

25 R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23 (1981), 5632–3.
26 See B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended

states in a two-dimensional disordered potential, Phys. Rev. B 25 (1982), 2185–90.
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In the last step of the construction, the external bias voltage is replaced by the electromo-

tive force generated by a weakly time-dependent flux through the annulus. Laughlin then

suggested monitoring the fate of the system upon an adiabatic (i.e. infinitely slow) variation

of the flux threading the annulus. Before discussing the response of the system in more

detail, let us try to motivate this idea.

We know that, for specific values of the annular flux, namely integer multiples of a flux

quantum φ = 2πn, the Hamiltonian of the system is gauge equivalent to the Hamiltonian in

the absence of flux. This is because an integer multiple of the flux quantum can be removed

by the gauge transformation ψa → einθψa acting on the wavefunctions of the system. (For

non-integer fluxes, this transformation alters the boundary condition ψ(r, 2π) = ψ(r, 0) and,

therefore, the Hilbert space of the problem.)

φ=2π

φ =0

Now, let us see what happens as we gradually

increase the flux from φ = 0 to φ = 2π. The situation

is visualized in the figure where each line symboli-

cally represents a basis of eigenstates of the Hamil-

tonian for a given value of the flux. Assuming that a

gauge transformation has been applied to move the

flux dependence of the problem to a change in the

azimuthal boundary conditions (see our discussion in Section 9.1), the eigenstates for differ-

ent values of the flux are truly distinct, i.e. as one increases the flux from φ = 0, each state

moves along a path “perpendicular” to the collective set of eigenstates, as shown schemat-

ically in the figure. Eventually, for φ = 2π, we arrive back at the original φ = 0 basis.

(This follows from the fact that Ĥ|φ=2π can be mapped onto Ĥ|φ=0 by a gauge transfor-

mation that does not alter the boundary conditions.) That, however, does not necessarily

imply that individual basis states map onto themselves upon the completion of the path

φ = 0 → φ = 2π. I.e., while the set of eigenstates as a whole gets reproduced, permutations

of individual states are consistent with the gauge invariance of the problem.

EXERCISE If this statement does not make much sense to you consider, as an example, a clean

one-dimensional ring subject to a magnetic flux. Explore what happens to the eigenstates of

Ĥ = 1
2m

(p̂−A) as the flux is increased from 0 to 2π. Show that the non-invariance of individual

states is compatible with the invariance of the global spectrum.

The non-invariance of individual states upon completion of a round trip back to a gauge-

equivalent Hamiltonian is a phenomenon called spectral flow. The spectral flow of the

eigenstates of our magnetic environment lies at the heart of Laughlin’s argument. Specif-

ically, we shall see that, upon the sending of a flux quantum through the ring, n states

radially centered at the inner perimeter are pushed above the Fermi energy (n is the num-

ber of Landau levels below the Fermi energy). At the same time, n states at the outer

perimeter sink below the Fermi energy. To regain thermal equilibrium, the system responds

by transferring n electrons from the inner to the outer perimeter. This process takes place

during the time t0 it takes to adiabatically send the flux quantum through the system,

i.e. the transverse current I2 = n/t0 (remember, e = 1). The electromotive force driving

the process is V1 = φ̇ = 2π/t0. The corresponding Hall conductance is therefore given by
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Figure 9.8 Energy levels of a quantum Hall annulus as functions of the radial coordinate. For a
discussion, see the main text.

σ12 = I2/V1 = n/2π. Expressed in physical units, this can be cast in the form σ12 = ne2/h –

the quantum Hall effect!

To substantiate this picture, let us consider a situation in which the Fermi level EF is

placed somewhere between the first and the second Landau level. For simplicity we shall

also make the (artificial but physically immaterial, cf. Halperin’s paper26) assumption that

the disorder is confined to the inner regions of the sample. We require the disorder strength,

as set by the inverse elastic scattering time, τ−1, to be smaller than the separation between

Landau levels, ωcτ � 1. This condition is, in fact, necessary to prevent the Hall plateaus

from becoming “washed out.” As a result we obtain the level diagram shown in Fig. 9.8. The

figure schematically shows the energies of the single-particle states as functions of the radial

coordinate of the annular region. In the bulk of the annulus, disorder leads to a broadening

of the Landau levels to energy bands of width τ−1. At the outer/inner perimeter of the

annulus, the confining potential pushes the levels energetically up. Crucially, this implies the

presence of as many Fermi energy states – “edge states” – as there are occupied Landau

levels (in our case, just one). These states, and not so much the bulk states buried deep

below the Fermi energy, are likely to be the carriers of longitudinal currents in the system.

As to the bulk states, let us presume that they are localized by disorder on a length scale ξ

much smaller than the circumference L‖ of the system. (Intriguingly, we shall soon see that

this assumption leads to a contradiction.)

To explore the phenomenon of spectral flow in this environment, we need to turn to a

refined description where individual levels are resolved. This is the subject of the following.

EXERCISE We wish to explore the radial structure of the states occupying the lowest

Landau level. This task is most conveniently accomplished in a basis different from the

set {ψ0,m} discussed above: revisit the construction on page 520 to show that all states

φ0,m ≡ N0,mz̄mexp[− 1
4l20

zz̄] lie in the lowest Landau level. Switch to polar coordinates (r, θ)

and verify that these states can be approximated as
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φ0,m(r, θ) ≈ Nn,me−imθe
− 3

4l20

(r−rm)2

, (9.20)

where rm defines the area through which m flux quanta pass; πr2mB = mh/e. Show that, for any

reference angle θ0, the azimuthal current carried by these states is given by

I‖ ≡ 1

m∗

∫ ∞

0

dr 〈̂j(r,θ0)〉 · eθ =
1

m∗

∫ ∞

0

dr |φ0,m|2
(
m

r
− Br

2

)

� B

m∗

∫ ∞

0

dr |φ0,m|2 (r − rm) . (9.21)

The wavefunctions φ0,m(r, θ) describe the system far away from its boundaries. They are

symmetrically centered around rm and carry angular momentum L = m. From Eq. (9.21)

and the symmetry around the center coordinate rm, we further conclude that the azimuthal

current carried by these states vanishes, I‖ = 0. However, in the vicinity of the boundaries,

this picture becomes perturbed. Firstly, the confining potential will push the states φ0,m up

in energy (see Fig. 9.8 where the circles represent the states centered at coordinates rm close

to the inner boundary of the annulus). Secondly, the boundary potential will render the

states radially asymmetric, implying that the integral (9.21) no longer vanishes: azimuthal

currents flow at the boundaries. The surface currents flowing at the inner/outer perimeter

are opposite to each other.

We next discuss what happens as some weakly time-dependent flux φ̃ is sent through the

annulus to generate an electromotive force E‖ = dtφ̃/r. The vector potential generalized to

the presence of the field E‖ takes the form A = φ(r)+φ̃
2r eθ, where φ(r) = Br2. Referring for a

more detailed discussion to Halperin’s paper, we note that the flux φ̃ adds to the background

flux φ(r). As a consequence, the center coordinates rm(φ+ φ̃) “contract.” Once a full flux

quantum has been added to the system, φ̃ = 2π, the center coordinates have contracted by

one unit, rm(φ+ 2π) = rm−1(φ), and the original set of levels (and therefore the spectrum

of the system) is restored. However, the individual levels have changed – spectral flow: at

the inner edge of the system, one occupied level has been pushed above the Fermi energy,

at the outer edge one empty level dived below the Fermi energy (see Fig. 9.8). To repair

this energy imbalance, the system will want to transfer one electron from the inner edge to

the outer edge.

But how will it do that? Before the advent of the QHE, it had been common wisdom that

the states of a two-dimensional electron gas in the presence of disorder (such as the states in

the bulk of our annulus) are localized on a certain scale ξ. For ξ/L‖ � 1, these states would

be completely oblivious to the presence of our driving flux φ̃. This would imply that, as far

as the action of φ̃ is concerned, the inner and the outer edge of the system are decoupled.

How, then, would the system know that it ought to transfer one electron between the edges.

(After all, this transfer has to be mediated through the bulk.) The only way out of this

dilemma is to courageously postulate (as Halperin did) that, notwithstanding the presence

of disorder, there must be at least one delocalized bulk state below the Fermi energy.

Subsequently, it was indeed found that the localization length diverges upon approaching

the center of the Landau band. The delocalized states in the center of the band establish

the contact between the edges and may act as conduits of electronic charge.
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Laughlin’s gauge argument hints at the topological nature of the QHE: independent of

system-specific details, the addition of a flux quantum through the annulus transfers an

integer charge across the system. This suggests that the effect should be understandable in

terms of some kind of topological index lurking behind the mapping of a parameter space

(presently, the amount of flux through the ring) into the Hilbert space of the problem.

Subsequently, Avron and Seiler,27 and Thouless, Kohmoto, Nightingale, and den Nijs28

indeed succeeded in rigorously identifying the quantum Hall conductance as a topological

invariant – the first Chern class of the U(1) principal bundle over the two-dimensional torus.

However, a satisfactory discussion of these ideas, for which we would need to introduce

much more background in differential topology, would lead us too far astray. Instead, we

shall head back to our prime subject, the discussion of topological concepts in low-energy

field theories of condensed matter systems.

EXERCISE As preparation for the next section, refamiliarize yourself with the field theory

approach to the disordered electron gas introduced in Section 6.5.

9.3.7 Field theory of the integer quantum Hall effect

Laughlin’s gauge argument, and its subsequent refinement by others, helped to unravel

many of the mysteries posed by the experimental discovery of the IQHE. Specifically it shed

some light on the conspiracy of dissipationless edge currents, disorder induced localization

of bulk states, and an exotic family of delocalized states in the formation of the effect.

On the other hand, even with Laughlin’s picture in store, we are still a long way from a

more-than-schematic, quantitative understanding of the effect. A huge step towards a full

microscopic theory of the IQHE – whose final structure still remains partly unknown – was

taken by Pruisken when he adjusted the nonlinear σ-model of disordered fermion systems so

as to account for the presence of a strong magnetic field. In the next two subsections, we will

reconstruct Pruisken’s field theory, and employ it to gain more insight into the long-range

behavior of the quantum Hall system.

Pruisken’s field theory: construction

As we have seen in earlier chapters of this book, much of the information about a non-

interacting disordered electron system is contained in correlation functions involving the

product of a retarded and an advanced single-particle Green function,@
〈x1|

1

EF + ω + i0− Ĥ
|x2〉〈x2′ |

1

EF − ω − i0− Ĥ
|x1′〉

A
dis

.

Depending on the choice of coordinates and the energy argument ω, these functions describe

the conductance of the system, the statistics of its spectrum and many other characteristics.

27 J. E. Avron and R. Seiler, Quantization of the Hall conductance for general, multiparticle Schrödinger Hamil-
tonians, Phys. Rev. Lett. 54 (1985), 259–62.

28 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-
dimensional periodic potential, Phys. Rev. Lett. 49 (1982), 405–8.
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We have also seen that the long-range behavior (scales L � �, much larger than the elastic

scattering mean free path, �) of this correlation function can be extracted from a field theory

whose action in d = 2 is of nonlinear σ-model type,29

S[Q] =
πν

4

∫
d2x

[
D tr (∂̂μQ∂̂μQ)− 2ω tr (Qσar

3 )
]
. (9.22)

For later convenience, let us recapitulate a few key features of the field theory defined by

Eq. (9.22).

� The matrix fields Qaa′,ss′(x) ∼ ψ̄as(x)ψa′s′(x) describe the behavior of a product

of two fermion field amplitudes ψas. The dynamics of the latter is controlled by the

advanced/retarded single-particle Green function, 〈ψ̄as(x)ψa′s′(x′)〉 ∼ (EF + s(ω + i0)−
Ĥ)−1(x,x′)δss

′
δaa

′
. Here, the two-component index s = +/−, and a = 1, . . . , R refers to

the replica index.

� The fields Q take values in the coset space U(2R)/(U(R) × U(R)).30 A concrete rep-

resentation is given by Q = Tσar
3 T−1, where T ∈ U(2R) and σar

3 is a Pauli matrix in

two-dimensional advanced/retarded (ar) space.

� For ω → 0 (the limit we will concentrate on throughout) the action above is invariant

under two distinct symmetry transformations: global transformations T → gT , where

g ∈ G ≡ U(2R) is constant, and local transformations T → Th(x), where h(x) ∈ H ≡
U(R)×U(R), i.e. the group of all matrices fulfilling the condition [h(x), σar

3 ] = 0.

� The microscopic parent action from which Eq. (9.22) was derived was, in fact, rotationally

invariant under the full group U(2R). That our fields Q live in a smaller coset space

signals the fact that, in a metallic system, this symmetry is spontaneously broken: the Qs

are the Goldstone modes associated with the breakdown of the symmetry from U(2R) to

U(R)×U(R).

� Under a generalized31 gauge transformation, ψ → eiφψ, the Qs transform as Q →
e−iφQeiφ. Gauge invariance then implies that the operators ∂̂μ appearing in the effective

action must be interpreted as covariant derivatives,

∂̂μ = ∂μ − i[Aμ, ],

where Aμ transforms as a non-abelian vector potential, Aμ → e−iφAμe
iφ − ie−iφ∂μe

iφ.

(Notice, however, that the “physical vector potential” generating the perpendicular mag-

netic field Aphys ∼ δabδss
′
is diagonal in replica and ar spaces and, therefore, does not

enter the covariant derivative.)

In a series of famous papers, Pruisken32 extended the formalism above so as to account for

the effect of a strong magnetic field. It turned out that a key player in the action of that

29 Here we are using the reduced variant of the model (see Problem 8.8.4) suitable to compute the product of a
retarded and an advanced Green function.

30 Due to the presumed presence of a massive magnetic field, time reversal symmetry is broken and the introduction
of a “time-reversal space” unnecessary.

31 By “generalized” we mean that φ can be a matrix in ar space as well as in replica space.
32 For a review, see A. M. M. Pruisken, Field theory, scaling and the localization problem, in The Quantum Hall

Effect, ed. R. E. Prange and S. M. Girvin (Springer-Verlag, 1987).
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generalized field theory was a certain variant of a θ-term. As with many other examples

before, there are two ways to obtain this action: one may generalize the derivation of the

σ-model discussed in Section 6.5 for the presence of a strong magnetic field and derive the

θ-term from first principles. For the details of this not entirely straightforward program we

refer to the original papers. Alternatively, one may guess the structure of the generalized

action on the basis of symmetry arguments and fix the coupling constants by running some

consistency checks. It is this second strategy that we shall pursue shortly.

As discussed in Chapter 7, elements of the conductivity tensor σμν can be obtained by

a two-fold differentiation δ2

δAμ δAν
Z[A] of the partition or generating function with respect

to some generalized vector potential. Referring below for a more detailed discussion, all we

shall aim for presently is to understand what kind of action is needed to produce a finite Hall

conductivity σ12 ∼ δ2

δA1 δA2
Z[A]. By symmetry, the mixed derivative computed on the field

theory defined by Eq. (9.22) vanishes (a point that warrants some consideration). Rather,

we have to look out for an operator comprising the two long derivatives ∂̂1Q and ∂̂2Q in a

single local expression. For example, we might contemplate a term like
∫
tr(∂̂1Q ∂̂2Q). This

expression, however, is again not permitted by symmetry. The reason is that (unlike the

rotationally invariant two-derivative operator in Eq. (9.22)) it is not form invariant under

rotation of the coordinate axes (again something to think about). However, the next obvious

choice,

Stop[Q] = θεμν
∫

d2x tr(Q∂̂μQ∂̂νQ), (9.23)

does the job. For one thing, this term is rotationally invariant. Secondly, the definition of

the long derivatives ∂̂μ implies that it contains terms linear in the combination A1A2, from

where we conclude that the (as yet undetermined) coupling constant θ must have something

to do with the Hall conductivity.

To be somewhat more specific, let us draw on Problem 7.6.4 where it has been shown

that a source-vector potential suitable for the calculation of the conductance takes the form

Aμ = U−1∂μU with U = exp(i(x1κ1σ
ar
1 +x2κ2σ

ar
2 )⊗Er

11) (here, E
r
11 is a projector onto the

first replica channel and κμ are numbers). With this choice,

σ11 = lim
R→0

1

4πL2
∂2
κ1κ1

∣∣
κ=0

Z, σ12 = lim
R→0

1

4πiL2
∂2
κ1κ2

∣∣
κ=0

Z.

We also know that the conventional Drude theory of a weakly disordered metal is obtained

by setting Q = σar
3 . (Remember that fluctuations around the origin of the field space, σar

3 ,

describe mechanisms of localization, i.e. quantum effects beyond the Drude picture.) We

next use this information to determine the coupling constants of the theory. To this end,

we go to the Drude level (set Q = σar
3 ), substitute the source Aμ into our long derivatives,

and evaluate the action. This leads to (exercise)

S[Q = σar
3 ] = 2πL2Dν(κ2

1 + κ2
2) + 16iL2θκ1κ2.

Evaluation of the derivatives above on Z[A]|Drude � exp(−S[σar
3 ]) then readily leads to the

result σ0
11 = 2πDν for the longitudinal Drude conductance σ0

11 (which we knew anyway),
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and to the suspected identification θ = −σ0
12/8 of the coupling constant θ with the (Drude)

Hall conductance. Summarizing, we obtain Pruisken’s action of the IQHE,

S[Q] =
1

8

∫
d2x

[
σ11 tr(∂̂μQ ∂̂μQ)− σ12εμνtr(Q∂̂μQ ∂̂νQ)

]
. (9.24)

What makes the identification θ ∼ σ12 more interesting is that θ (and therefore the Hall

conductance) actually plays the role of a topological angle; the second term in Eq. (9.24) is

a topological term. That such a term might be present in our field theory follows from the

fact that

π2(U(2R)/(U(R)×U(R))) = Z.

Unfortunately, we do not have the mathematical background to prove this result.33 We can,

however, make it plausible; and we can demonstrate that Stop above is a representation of

the corresponding θ-term.

To this end, let us temporarily focus on a single replica channel (a = 1, say) and consider

the field configuration

Q̃11(x) = U(x)σar
3 U−1(x) ≡ n(x) · σar,

Q̃ab(x) = δabσar
3 , a �= 1,

where U(x) ∈ U(2). The second equality in the first line defines a unit vector n(x). It

expresses the fact that the projection of the field space onto a single replica channel is

isomorphic to S2.33 Evaluating Stop on this particular field configuration, it is straight-

forward to verify that Stop[Q̃] = iσ12

2

∫
d2xn · (∂1n × ∂2n), an expression we iden-

tified earlier (see Eq. (9.8)) as the topological term of a two-dimensional field theory

on the sphere. We can now generalize from our particular Q̃ to field configurations Q =

T (x)Q̃(x)T−1(x) where T (x) ∈ U(2R). However, using arguments similar to those employed

in Section 9.3.1, one may convince oneself that small variations T will not change the value of

the action Stop. Indeed, Stop is the general θ-term on the coset space U(2r)/(U(r)×U(r)).

Pruisken’s field theory: long-range physics

Nowthatwehave“derived”thePruiskenaction, thenextquestiontoask iswhattodowith it.To

begin with the bad news, the long-distance behavior of the model is still pretty much unknown

and, in fact, a subject of ongoing research. (That this is the state of affairs some 20 years after

its derivation signals the fact that we are dealing with a very rich field theory.) However, by

investing one’s physical insight in the quantumHall problem (and with a little bit of good will)

quite a few things about the model can, nonetheless, be said.

Suppose we were dealing with a system of annular geometry, similar to that discussed in

the last section. Let us further assume that the Fermi energy lies in between the center of the

nth and (n+1)th Landau bands, so that there are no delocalized states at EF. As discussed

in the previous section, the bulk of the sample is then pretty much impervious to external

33 Notice, however, that in the special case R = 1, U(2)/(U(1)×U(1)) ∼= SU(2)/U(1) ∼= S2 is the 2–sphere. What
is non-trivial here is the generalization of π2(U(2)/(U(1) × U(1))) = π2(S

2) = Z to general R.
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perturbations, and the interesting Fermi-energy physics takes place at the boundaries (the

inner and outer perimeters).

Indeed, it is possible to rewrite the topological action as a pure boundary operator.

A straightforward application of Stokes’ theorem34 shows that

Stop[T ] =
σ12

2

∫
∂M

ds · tr(Tσar
3 ∇T−1), (9.25)

where the integral runs over the boundary ∂M of the annulus. Notice, however, that

Eq. (9.25) is not represented in terms of the fundamental degrees of freedom of the theory

(the Qs) but rather relies on a particular “coordinate” representation (Q = Tσar
3 T−1). As

discussed in Section 9.4, this is not accidental but rather reflects a fundamental property of

topological terms. For future reference, we also anticipate that the boundary descendant of

the bulk θ-term Eq. (9.23) is an example of a Wess–Zumino term.

We next show that, under the conditions stated above, the boundary representation of

the theory raises a consistency problem unless σ12 = integer. To appreciate the problem,

recall that the bulk representation of the theory is invariant under local transformations

T (x) → T (x)h(x), where h ∈ H = U(R) × U(R). This follows trivially from the fact that

its degrees of freedom Q = Tσar
3 T−1 → Thσar

3 h−1T−1 = Q are invariant. Now, under

our present working conditions – Fermi energy in a mobility gap – there are no Q-field

excitations in the bulk of the system (the Qs describe mobile Fermi energy excitations), and

the theory reduces to two decoupled boundary theories which must be separately invariant.

In this respect, the only contribution that may potentially cause trouble is the topological

boundary contribution Eq. (9.25) (since it is not a functional of the invariant degree of

freedom, Q). Indeed, let us consider the specific choice h = exp(iσar
3 θ), where θ is the

azimuthal coordinate of the system. Focusing on the effect of this transformation at the

inner perimeter, say, we obtain

Stop[T ] =
σ12

2

∫ 2π

0

dθ tr(Tσar
3 ∂θT

−1) → σ12

2

∫ 2π

0

dθ tr(Thσar
3 ∂θ(h

−1T−1))

= Stop[T ] +
Rσ12

2

∫ 2π

0

dθ tr(σar
3 h∂θ(h

−1)) = Stop[T ] +
Rσ12

2

∫ 2π

0

dθ ∂θ tr(σ
ar
3 lnh−1)

= Stop[T ] +
Rσ12

2
tr(σar

3 lnh−1)
∣∣2π
0

= Stop[T ]− 2πiσ12R. (9.26)

The invariance of the exponentiated (!) boundary action requires that exp(2πiRσ12)
!
= 1,

from which we conclude that σ12
!
= integer. Summarizing, we have seen that, for Fermi

energies in between two Landau band centers (that is, conditions where QH plateaus are

experimentally observed), the intrinsic consistency of the theory requires quantization of

the Hall conductance. A refined variant of such arguments (see Pruisken’s aforementioned

article) shows that the value of the conductance indeed coincides with the number of Landau

levels below the Fermi energy. Notice also that the reasoning above is again “topological.”

This time, the key players are the winding numbers of the mappings S1 → U(1)×U(1) from

34 For a review of the general form of Stokes’ theorem, see Section 9.4.2 below.
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the boundary manifold (topologically, a circle) into the projection of the local transformation

group to a single replica channel (U(1)×U(1)).

EXERCISE Asanexercise ingroupmanipulations,extendtheargumentgivenabovetomoregeneral

transformations at the boundary. To this end, consider a general (but single-valued!) boundary

transformation h(θ) ∈ H and show that we will not obtain information beyond the quantization

criterion discussed above. Hint: Use the facts thatU(r) = U(1)×SU(r), and that ∀R ∈ SU(r) : 0 =

ln detR = tr lnR.

INFO The argument above focuses on the boundaries of the system. As a brief digression,

let us show how the same information can be obtained from a bulk picture. In the bulk, all

Fermi energy states are localized. Technically, this implies that the longitudinal conductance

renormalizes to zero, σ11
L�ξ−→ 0, where the notation is meant to indicate that, in a renormaliza-

tion group sense, the conductance scales to zero on length scales L � ξ much larger than the

two-dimensional localization length. An alternative formulation of the same fact is to say that

transformations ψ(x) → T (x)ψ(x), where T (x) ∈ U(2R) fluctuates on scales � ξ, must leave

the theory invariant.35 For σ11 → 0, and frequency differences ω → 0, the non-topological sector

of the action vanishes and is therefore trivially oblivious to fluctuations of the Qs. However,

this is not the case with the topological action. No matter how slowly it fluctuates in space, a

topologically non-trivial configuration Q(x) will have topological action S[Q] = 2πσ12n, where

n is the corresponding winding number. The only way to make the theory generally impervious

to Q-field fluctuations is to require σ12
!
= integer – the bulk variant of the quantization criterion.

Quantum Hall transition

Having understood the basic quantization phenomenon, we might now ask what other fea-

tures of the quantum Hall system can be extracted from the field theory approach. Given

that the nonlinear σ-model arguably represents the most powerful approach to disordered

electron systems in general, we might, for example, be ambitious enough to seek more infor-

mation about the nature of the delocalized states expected to reside at the centers of the

Landau bands. As we saw above, these states do play a vital role in the formation of the

QHE. However, as long as they are deeply buried below the Fermi energy, they influence the

system rather indirectly. We should expect them to become much more vivid as the Fermi

energy sweeps through the center of a Landau band. Indeed, as EF → nωc approaches a

band center, the system begins to build up long-ranged correlations. This is because the

physics at the Fermi energy is now controlled by ever more extended, or delocalized, states.

Formally, EF → (n+1/2)ωc goes along with a diverging correlation length ξ, a phenomenon

indicative of a second-order phase transition. Indeed, E∗ = (n+ 1/2)ωc marks the position

of a very peculiar (and still not fully understood) quantum phase transition, the quantum

Hall transition.

35 Indeed, we had argued earlier that metallic behavior goes along with a spontaneous breakdown of replica rotation
symmetry. Our Qs are the Goldstone modes of this phenomenon. Conversely, localization is accompanied by
a restoration of this symmetry; the Goldstone modes disappear and the theory will no longer respond to
fluctuations of the Qs (or the T s for that matter). Further, notice that we are now concentrating on the “large”
transformation group of the model, U(2R), and not the “small” invariance group U(R) × U(R).
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Figure 9.9 On the behavior of the longitudinal conductance, Hall conductance, and density of
states, ρ, at the quantum Hall transition.

In Fig. 9.9, the behavior of the three most relevant players in the system, longitudinal

conductance, Hall conductance, and density of states, is shown as functions of the Fermi

energy. In the vicinity of the Landau band centers the system becomes critical. Right at

a transition point, EF ≡ E∗, (a) the longitudinal conductance σ11 = 1/2, (b) the Hall

conductance σ12 = n+1/2 is half integer, and (c) the correlation length ξ characterizing the

spatial profile of wavefunctions at the Fermi energy has diverged. The latter implies that,

for any system of finite size L, there is a whole range of energies around the critical value

for which ξ > L. Within this energy range, the wavefunctions are effectively delocalized.

Naturally, the width of the band of delocalized states shrinks upon increase of the system

size and, in the thermodynamic limit, approaches zero. More precisely, upon approaching

the band center, the correlation length diverges as

ξ ∼ |E − E∗|−ν ,

where ν defines the correlation length exponent and we have introduced ΔE ≡ |E − E∗| as
a relevant scaling variable. For a given system size, the width of the energy band, ΔE, of

delocalized states is determined by the condition L ∼ ξ(ΔE), or ΔE ∼ L−1/ν . The number

of states within that window scales as N ∼ ΔE
δ ∼ L−1/ν+2, where δ ∼ L−2 is the two-

dimensional level spacing. Unfortunately, there is still no reliable analytical prediction for ν.

(We shall see in a moment why this is so.) However, high-precision numerical analyses36 have

shown that ξ = 2.35 ± 0.08. This implies that the number of states within the delocalized

region diverges in the thermodynamic limit: even though the width of the delocalized energy

window approaches zero, it hosts a continuum of extended states.

We shall next explore the extent to which these features can be understood from the field

theory approach. To this end, let us imagine the partition function formally expanded in

36 See, e.g., B. Huckestein, Scaling theory of the integer quantum Hall effect, Rev. Mod. Phys. 67 (1995), 357–96.
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terms of the topological index of field configurations:

Z =
∑
W

e2πiWσ12ZW ,

where ZW is the partition function reduced to the sector of fields of winding number W ,

and Stop = 2πiWσ12 enters as a topological phase. In general, there is not much we can say

about ZW , other than that it will be small: |Zn|
σ11�1
� 1. Indeed, an estimate similar to the

one employed on page 509 yields (exercise)

0 ≤ 1

2

∫
d2x tr [(∂μQ+ iεμνQ∂νQ)(∂μQ+ iεμλQ∂λQ)]

=

∫
d2x tr [∂μQ ∂μQ− iεμνQ ∂μQ ∂νQ] =

∫
d2x tr(∂μQ ∂μQ)− 16πW.

From here, we conclude that the non-topological contribution to the action obeys the

inequality

S0[Q] =
σ11

8

∫
d2x tr(∂̂μQ ∂̂μQ) ≥ 2πWσ11,

and that Zn ∼ exp(−2πWσ11) is weighted by a small “energetic” factor. We have had

ample opportunity to see that such factors can, in principle, be compensated for by large

“entropic” counterweights. However, Pruisken has shown that, in the present context, this

does not happen.

Similarly, the functional expectation values for longitudinal and Hall conductance can be

organized in an instanton series:

σij =
∞∑

W=0

e2πiWσ0
12 C

(W )
ij (σ0

11).

The coefficients C
(W )
ij appearing in this series depend – in the exponentially sensitive

way discussed above – on the longitudinal Drude conductance. Importantly, the right-

hand side of the series depends on the Drude values σ0
ij while the left-hand side sets

the true renormalized conductance (i.e. the second-order derivative of the functional with

respect to a generalized source-vector potential). There is not much more we can say

about the structure of these series except for one important symmetry criterion: under

a change of orientation of the coordinate system, σ12 changes sign while σ11 does not.

Specifically,

σ12(B) = −σ21(B), σ11(B) = +σ22(B),

which is an example of an Onsager relation. Consistency with these relations requires

that the topological series be of the form

σ11 = σ0
11 + δσ11 +

∞∑
W=1

cos(2πWσ0
12) a

(W )(σ0
11),

σ12 = σ0
12 +

∞∑
W=1

sin(2πWσ0
12) b(W )(σ0

11),

(9.27)
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where a(W ) and b(W ) are expansion coefficients. The notation emphasizes that, in the topo-

logically trivial sector, W = 0, the longitudinal conductance may be subject to renormal-

ization while σ12 remains unrenormalized.37

In view of these structures, let us now speculate a little on the renormalization charac-

teristics of the model. Here, renormalization means, as usual, that we consider the outcome

of the theory on ever increasing length scales. We have to keep in mind, however, that

this program must be carried out for each topological sector separately: renormalization,

i.e. the successive elimination of fast fluctuations, cannot change the topological index of a

field configuration. On the same footing a topological angle (presently, the coefficient σ0
12

of the topological term) should not renormalize, at least not in a conventional sense. (For

the cautious formulation, see below.)

σ11σ11

σ12σ12nn n+1n+1

σ11σ11
*

Consider, then, the flow (σ12(λ), σ11(λ)) in the two-

dimensional parameter plane defined by longitudi-

nal and Hall conductance as we increase a reference

length scale λ. From Eq. (9.27) it follows that there

are two families of lines on which σ12 does not renor-

malize: σ12 = σ0
12 ∈ N and σ12 = σ0

12 ∈ N + 1/2. As

to the first line, we do not expect any critical behav-

ior in the vicinity of integer σ12. (Remember that the

quantum Hall transition is observed at (σ12, σ11) =

(N+ 1/2, 1/2).) Rather we expect that, in the vicin-

ity of integer Hall conductances, the system behaves

pretty much like an ordinary two-dimensional elec-

tron gas. This implies (cf. our discussion above) that

the Goldstone modes become gapped, σ11 scales to 0

and σ12 scales to an integer value: for (σ12, σ11) close

to a line σ12 = n ∈ N, the system will flow towards

the fixed point (n, 0). A special situation arises for σ12 = σ0
12 ∈ N + 1/2. Again, the Hall

conductance does not renormalize, but now we are sitting on a critical surface (namely,

E = E∗, corresponding to half-integer Hall conductance). At the transition point, the cor-

relation length has diverged and the system has become metallic. Accordingly we should

expect the longitudinal conductance to scale towards a finite fixed point value σ∗
11. Indeed,

experimentally, one observes σ∗
11 = O(1) at the transition points. The two-parameter flow

diagram discussed above was proposed in a seminal paper by Khmelnitskii.38

To theoretically understand the transition behavior, Pruisken and collaborators have

derived renormalization group equations that take the lowest two topological sectors, W =

37 Renormalization cannot change the prefactor of the topological term, σ0
12. The contribution of the topologically

trivial sector to the conductance is just this coefficient.
38 D. E. Khmelnitskii, Quantization of Hall conductivity, JETP Lett. 38 (1983), 552–6.
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0, 1, into account:

β11 ≡ ∂σ11

∂ lnL
= − 1

2π2σ11
− cσ11e

−2πσ11 cos(2πσ12),

β12 ≡ ∂σ12

∂ lnL
= cσ11e

−2πσ11 sin(2πσ12),

(9.28)

where c > 0 is a numerical constant.39 These equations indeed have a family of fixed points

(σ∗
12, σ

∗
11), where σ∗ = O(1) and σ∗

12 ∈ N+ 1/2. In the vicinity of these points, σ12 (σ11) is

a relevant (irrelevant) scaling variable.

Summarizing, Pruisken’s approach appears to predict a parameter flow as shown in the

two-parameter phase diagram above. This diagram nicely conforms with experimental

observations but, alas, there are some problems. For one thing, the interesting physics takes

place in the vicinity of a fixed point value σ∗
11 = O(1), well outside the regime of applicability

of the σ-model as such. (Remember that the derivation of this hinges on σ11 � 1.) One may

trust in the principle that “good” models (and Pruisken’s model of the QHE certainly is

good!) usually produce meaningful results even in parameter regimes where they no longer

stand on safe ground. However, with the current problem, the chances are that this principle

does not apply. Indeed, we have come across a very similar situation before: for large spin

S � 1, an antiferromagnetic spin chain is described by an O(3) nonlinear σ-model. For

topological angles θ = π (corresponding to half-integer spin) the model is critical and flows

towards some strong coupling fixed point. The important observation now is that, in the

vicinity of this point, the system is described no longer by an O(3) nonlinear σ-model

but by an altogether different model: a field theory on the group manifold SU(2) with a

topological term of Wess–Zumino–Witten type. Intriguingly, on its journey towards the

strong coupling fixed point, the model manages to enlarge its field manifold from the coset

space O(3)/O(2) � S2 of the O(3) nonlinear σ-model to the larger space SU(2)
locally� O(3)

of the fixed point theory.

Now, when projected onto a single replica channel, Pruisken’s σ12 = 1/2 theory indeed

reduces to an O(3) nonlinear σ-model with topological angle θ = π. It is, therefore, quite

conceivable that, at strong coupling, the general model also flows towards a target model

with a larger field manifold. Although nothing rigorous is known, a scenario to this effect

has been outlined in the literature. At any rate, the applicability of Pruisken’s RG equations

in the vicinity of their fixed points remains questionable.

INFO There is one other problem which should not be swept under the carpet: as discussed

above, the absence of Goldstone modes in the localized phase requires the coupling constant

of the topological term to be integer. This coupling constant is set by the Drude conductance

σ0
12 and should not renormalize. In a way, we have to require that, for Fermi energies which lie

between Landau levels, the Drude Hall conductance must already be integer, lest the theory run

into a consistency problem. On the other hand, topological criteria do not require the physical

conductance σ12 to be integer. This is exactly the opposite of our physical picture. We should

39 One might have expected the topological angle σ0
12, and not the physical conductance σ12, as an argument of

the transcendental functions (sine and cosine). For a discussion of why the physical conductance appears there,
we refer to Pruisken’s article (Pruisken, in The Quantum Hall Effect).
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expect that for any value of the Drude conductance (away from N + 1/2) the system will flow

towards an integer value of the physical conductance. (This is the flow illustrated in the two-

parameter flow diagram above.) Essentially, the problem boils down to the fact that the coupling

constant of the topological term does not renormalize. (If it did, it should flow towards an integer

value which could then justly be interpreted as the physical conductance.) To deal with this

difficulty, Pruisken subjects the fields to a transformation Q → UQU−1, where U are the source

fields introduced above, and then discusses the structure of the theory after the fields Q have

been integrated out. This produces consistent results, but the procedure is highly implicit and,

therefore, remains somewhat mysterious.

Summarizing, Pruisken’s field theory microscopically explains many of the intriguing aspects

of the quantum Hall effect. Notably, it elucidates the interplay of disorder scattering and

topological mechanisms (spectral flow!) in the formation of the effect. Contrary to early

expectations, though, it may well be that the actual quantum Hall transition lies outside

the scope of the model. At any rate, a rigorous identification of the universality class of this

transition, not to mention a quantitative calculation of its critical exponents, remains an

open problem.

This concludes our discussion of θ-terms in condensed matter field theory. In our brief

survey, we were unable to discuss one of the most exciting applications of θ-terms in field

theory in general: ’tHooft’s concept of θ-vacua, and its relevance to understanding some of

the most intriguing observed features of matter – CP- and T-violation. (However, the ener-

getic reader is strongly encouraged to turn to a textbook on theoretical particle physics to

learn more of this subject.) Rather, we proceed now to discuss another large and important

family of topological field theories.

9.4 Wess–Zumino terms

Almost every time that we met with a θ-term in the previous chapter, a field theory with a

Wess–Zumino (WZ) term40 was just around the corner. Yet most condensed matter physi-

cists appear to be only vaguely familiar with the ideas behind WZ field theory (in contrast

to, say, the much more widely appreciated concept of θ-terms). Perhaps the most important

reason for this lack of appreciation is that the general meaning of a WZ term is difficult to

grasp in the “traditional” languages familiar to condensed matter physicists. On the other

hand, the relevant concepts become quite transparent once we venture to reformulate a few

elements of field theory in the language of modern differential geometry. This reformulation

will be the subject of the first half of this section. Not assuming any background knowledge,

we begin with a crash course in differentiation on manifolds and exterior calculus. (Readers

familiar with differential forms are invited to skip this introduction.) In Section 9.4.2 we

40 As to the terminology of Wess–Zumino terms, there is no generally accepted convention. Historically, these
topological terms first appeared in the work of Wess and Zumino. However, owing to Witten’s seminal analysis of
SU(N)-invariant chiral fermion systems (see below), they are often referred to as Wess–Zumino–Witten (WZW)
terms. Yet another designation (especially popular in the Russian community) is Wess–Zumino–Novikov–Witten
(WZNW) terms. Except for the discussion of SU(N)-symmetric systems below, we stick here to the short variant
of WZ terms.
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Figure 9.10 On the construction of coordinate representations of field manifolds. For a discussion,
see the main text.

then explain the general ideas behind WZ field theory before we turn to the discussion of a

number of interesting applications.

9.4.1 A crash-course in differential geometry

Figure 9.10 reiterates the mathematical backbone underlying most of our field theories: a

field φ : M → T,x �→ φ(x) is a mapping from a base-space M to a field space T . In practice,

we mostly tend to nonchalantly identify field values φ ∈ T and their coordinate represen-

tations z(φ) ∈ Rn (n is the dimension of T ). However, especially when it comes to the

discussion of topological aspects, we must be very careful with such premature identifica-

tions. The point is that topologically non-trivial field spaces usually cannot be represented

in terms of one globally defined system of coordinates. Take the sphere S2 as an example.

You may choose the standard representation in terms of two angles (θ, φ), a stereographic

projection onto a single complex variable z, or any other parameterization. Inevitably, there

will be regions on S2 where the mapping “S2 → coordinates” becomes ill-defined. One may

object that this ambiguity, manifesting itself only at a set of “measure zero,”41 cannot be

of much practical significance. Yet, with regard to topology this is not the case.

Coordinate representations

Given the importance of these singularities in the context of topological field theory, it is

pertinent this time to discuss the construction of proper coordinate representations with

mathematical rigor: the basis of each coordinate system is formed by a system of open

41 For example, in a system of polar coordinates, the problematic region is a line connecting the north and the
south pole of the sphere.
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subsets Ui ⊂ T chosen so that the union
⋃

i Ui = T covers T .42 One next defines coordinate

mappings zi : Ui → Vi ⊂ Rn from the patches Ui onto some open subsets Vi of R
n. The value

zi(p) ∈ Rn is a coordinate representation of the point p ∈ T . To make this representation

unique, we require the zis to have an inverse.

The central point is that, on our manifold, there will be non-vanishing overlaps Ui∩Uj �=
{}, i.e. points p ∈ T that have more than one coordinate representation (see Fig. 9.10).

Ambiguities between the different systems are excluded by requiring that the maps zi◦z−1
j :

zj(Ui ∩Uj) → zi(Ui ∩Uj) be diffeomorphisms (invertible and differentiable). Conceptually,

the functions zi ◦z−1
j mediate the change between different coordinates. This being so, they

must be as benign (differentiable) as possible. Notice, however, that it would be senseless

to require the zis themselves to be differentiable, simply because in general T �⊂ Rn and the

notion of differentiability need not even exist on T .

In the jargon of differential geometry, the coordinate maps zi are called charts of T while

a fully covering collection {zi} is called an atlas. The existence of a proper atlas is, by

definition, equivalent to the statement that T is a differentiable manifold.

Example Consider T = S1, the unit circle. The one-dimensional manifold S1 has a natural

embedding into R2 : S1 = {x ∈ R2|x2 = 1}. We need a minimum of two charts to cover S1.

For example, one may use

z−1 : (0, 2π) → S1, z−1(φ) = (cos(φ), sin(φ)),

z′−1 : (0, 2π) → S1, z′−1(φ) = (cos(φ+ π), sin(φ+ π));

z/z′ cover all of S1 except for the points (1, 0)/(−1, 0).

Tangent space

0

γ

p

T

vp TpT

Having discussed the coordinate representations of

(field) manifolds, we are now in a position to lift elements

of standard calculus (differentiation, integration, etc.)

from Rn to manifolds. (Later, we identify topological

terms as integrals over certain differentials on T .) We

begin by introducing the tangent space TpT as a locally

flat approximation to the manifold T at a point p ∈ T (see the figure). We then use this

planar approximation to describe how functions defined on T vary in the neighborhood of

p. To construct the tangent space, consider a curve γ : R → T with γ(0) = p. It is tempting

(see the figure) to define a vector vp tangent to T at p by setting vp
?≡ dsγ(s)|s=0. However,

this “definition” is problematic because, in general, T �⊂ Rm, so that vp is not a decent

vector. Nonetheless, the idea above is not far from the truth. To make it suitable, let us

consider some function f ∈ C(U ) defined on an open neighborhood U * p. (Here, C(X)

42 Of course, one can exercise much freedom in the choice of the Uis. For example, for the sphere, one might define
U1,2 to be any two overlapping “caps” whose union covers T . Notice that overlaps are, in fact, unavoidable as
we want to cover a compact set T by open subsets Ui.
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denotes the space of smooth, real-valued functions defined on X.) We may then employ

our curve γ to compute the directional derivative

vγ
p (f ) ≡ ds|s=0f(γ(s)).

The notation on the right-hand side indicates that we have constructed a mapping that

takes functions as arguments and produces a number.43 We next define this mapping to

be a tangent vector at point p. (Notice that the assignment “curve �→ tangent vector”

constructed in this way is not unique: two curves γ1 and γ2 tangent44 to each other at p will

produce the same directional derivative, vγ1
p = vγ2

p .) The set of all directional derivatives

formed in this way defines the tangent (vector) space TpT at point p.45

The definition of “vectors” given above may seem strange. (If you wait a while, its utility

will become apparent!) However, given a coordinate function z we can meet the standard

identification “vector ↔ n-component object” familiar from linear algebra. This is achieved

by writing

vγ(f ) = ds|s=0f(z
−1 ◦ z ◦ γ(s)) ≡

n∑
i=1

∂if vγi ,

where ∂if ≡ ∂i(f ◦ z−1) is the ordinary partial derivative of the function f ◦ z−1 : V ⊂
Rn → R and vγi ≡ ds|s=0z

i(γ(s)). We define vγi ∈ R to be the ith component of vγ (in

the coordinate representation defined by z). Notice that the components of a tangent

vector vi can alternatively be obtained as

vi = v(zi),

i.e. as the directional derivative of the ith component of the coordinate function. (Here, we

have simplified the notation by omitting the superscript reference to the curve γ.) Relatedly,

a coordinate system induces a natural basis of the tangent space, Tp. This, is defined

by

∀f ∈ C(U ) : ei(f ) ≡ ∂if.

Suppose that the reference point p is represented by two coordinate functions z and z′.
It is then straightforward to verify (exercise!) that the components of the tangent vector

transform as vγi =
∑

j
∂zi

∂z′
j
v′γj .

EXERCISE Compute the basis vectors e and e′ corresponding to the two charts forming the

atlas of S1 discussed on page 538. Show that e = e′ = eφ where eφ is the azimuthal vector of a

two-dimensional polar coordinate system, and the natural embedding of S1 into R2 is understood.

43 A purist might object that vγ
p (f ) is just what we had earlier defined to be a functional, so that we should use

square brackets [f ] for the argument. However, following standard convention in differential geometry, we shall
here stick to (f ).

44 In differential geometry, one uses this criterion to define the notion of tangency: two curves γ1,2 through p are
tangent to each other (with the same tangent velocity) if, for all functions f , vγ1

p (f ) = vγ2
p (f ).

45 Mathematically, TpT is isomorphic to the space of all equivalence classes of curves through p, where two curves
are called “equivalent” if they are tangent to each other.



540 Topology

ff˚ 
φ

φ

M

TpM

vp

p
φ (p)

Tφ (p)T

T

[φ ∗(v)]φ  (p)

Figure 9.11 On the definition of the tangent mapping. For a discussion, see the main text.

The union TT ≡
⋃

p∈T TpT of all local tangent spaces is called the tangent bundle of the

manifold T .46 In fact, the tangent bundle is a differentiable manifold by itself. Its elements

are given by (p,vp) ∈ TT , where p ∈ T and vp ∈ TpT . (The dimension of TT is given by

2n, twice the dimension of T .) A mapping

v : T → TT,

p �→ (p,vp),

smoothly assigning to each point of T a tangent vector is called a vector field on T .

Now, suppose we are given two manifolds M and T . (Later on, the role of M will be

played by the base space of field theory, a differential manifold by itself.) Further, suppose

that there is a mapping (the field!) φ : M → T . The definition of tangent spaces above then

implies the existence of an induced mapping, the so-called tangent mapping,

φ∗ : TM → TT,

v → φ∗(v).

The image vector (φ∗(v))p is defined by setting (φ∗(v))p(f ) ≡ vφ−1(p)(f ◦ φ), for any

function defined in a neighborhood of p ∈ T (see Fig. 9.11). Suppose we are given a system

of coordinates w around p ∈ M and z around φ(p) ∈ T . It is then straightforward to show

that the coordinate representation of the vector (φ∗(v))p is given by

(φ∗(v))ip =
∂φi

∂wj
vj
φ−1(p), (9.29)

where φi = zi(φ) is a shorthand for the coordinate representation of φ. The formula above

explains why the mapping φ∗ is sometimes referred to as the differential of the mapping φ. It

illustrates the general rule that everything taking place on the tangent spaces is a measure

of local (or “infinitesimal”) variations.

46 The authors hate the double-T notation TT , too. However, the prefix T for tangent is a ubiquitous standard, and
we want to keep emphasizing that the apparatus introduced here will be later applied to the target manifolds
of field theory, T .
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Differential forms

A 1-form ωp is a linear mapping ωp : TpT → R (i.e. an element of the dual space of the

vector space TpT ). Smoothly extending ωp to a map ω globally defined on TT , we obtain a

so-called differential 1-form (or, for brevity, just the 1-form). We will denote the space of

1-forms on T by Λ1(T ). A number of important remarks on these definitions are in order:

� Most 1-forms that we shall encounter in practice are realized as differentials of func-

tions: for f ∈ C(T ) we define the differential df by

dfp(vp) ≡ vp(f ).

(Exercise: Convince yourself that, for manifolds T ⊂ Rn, this reduces to the standard

definition of the differential with which you are familiar.)

� However, not every 1-form is a differential of a function. Consider, for example, the tangent

basis of T = S1 constructed in the exercise on page 539. Let us define a 1-form by setting

ω(e) = ω(e′) = 1, where the equality holds in the domain of overlap of the two charts.

This 1-form cannot be represented as the differential of a single-valued function on S1

(exercise: why?).

� Finally, let us make a formal remark: for reasons that will become clear in a moment,

functions f ∈ C(T ) ≡ Λ0(T ) are sometimes referred to as 0-forms. Technically, a 1-form

is a mapping

ω : TT → Λ0(T ),

v → ω(v),

that maps vector fields onto 0-forms. The value of the function ω(v) at a point p is given

by ω(v)(p) = ωp(vp). Alternatively, we can say that the insertion of a vector field into a

1-form lowers the degree of the form from 1 down to 0.

Given a system of local coordinates, z, each 1-form can be represented as

ω = fi dz
i, (9.30)

where the coefficient-functions are given by fi = ω(ei) (a result that is instructive to check).

A 1-form maps a single vector field onto a function. However, to describe the geometric

structure of a manifold (distances, surface and volume elements, etc.) we need mappings

that take more than one vector field as input. Mappings of this type are called tensors and

defined as follows: a covariant tensor of rank r is a multi-linear mapping

ω : TT × · · · × TT︸ ︷︷ ︸
r

→ Λ0(T ),

(v1, . . . ,vr) �→ ω(v1, . . . ,vr).

For example, some manifolds admit the definition of a metric. A metric g is a tensor of rank

2 that is positive (∀p ∈ T : gp(vp,vp) > 0) and non-degenerate (∀wp : gp(vp,wp) = 0 ⇒
vp = 0). A manifold with a metric is called a Riemannian manifold. We call

√
gp(vp,vp)

the length of the tangent vector vp. For later reference, we note that, in a system of local
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coordinates, g has the representation g = gijdz
i ⊗ dzj . Here, gij = g(ei, ej) is the metric

tensor of the manifold.

EXERCISE Show that, in polar coordinates (r, θ, φ), the standard metric of R3, g = dx1⊗dx1+

dx2 ⊗ dx2 + dx3 ⊗ dx3, assumes the form

g = dr ⊗ dr + r2dθ ⊗ dθ + r2 sin2 θ dφ⊗ dφ. (9.31)

However, by far most important in practical applications are tensors that are fully antisym-

metric in their arguments: a p-form ω is a tensor that changes sign under odd permutations

of its arguments: ω(vS(1), . . . ,vS(p)) = sgn(S)ω(v1, . . . ,vp), where S is an element of the

permutation group. The space of all p-forms on T is denoted by Λp(T ). Given a p-form ω

and a q-form ξ we can produce a (p+ q)-form ω ∧ ξ by the following rule:

(ω ∧ ξ)(v1, . . . ,vp+q) ≡
1

p!q!

∑
S

sgn(S)ω(vS(1), . . . ,vS(p)) ξ(vS(p+1), . . . ,vS(p+q)).

The operation ∧ : Λp(T )×Λq(T ) → Λp+q(T ) is called the exterior product of forms. (In

passing we note that ∧ defines the product of the Grassmann algebra Λ(T ) ≡ ⊕∞
p=0Λ

p(T )

which we met already briefly in Section 4.1.)

EXERCISE Verify the following features: (a) ω ∧ ω = 0 if ω ∈ Λp and p is odd, (b) ω ∧ ξ =

(−)pqξ∧ω, and (c) ω∧(ξ∧η) = (ω∧ξ)∧η, permitting us to write just ω∧ξ∧η without brackets.

Given a coordinate function z, each p-form has the unique coordinate representation

ω =
1

p!
ωi1,··· ,ipdz

i1 ∧ · · · ∧ dzip , (9.32)

where ωi1,...,ip = ω(ei1 , . . . , eip). To see this, notice that our definition of the exterior product

above implies that (df1 ∧ · · · ∧ dfp)(v1, . . . ,vp) =
∑

S sgn(S) df1(vS(1)) · · · dfp(vS(p)). Also

notice that the coefficients ωi1,...,ip are antisymmetric under odd exchange of the indices ij .

This being so, Eq. (9.32) can alternatively be written as

ω = ωI1,...,Ipdz
I1 ∧ · · · ∧ dzIp ,

where, by convention, summations over capitalized indices are ordered, I1 < I2 < · · · < Ip.

Above we have seen that, computing the differential of a 0-form f ∈ Λ0(T ), we are led to

a 1-form df ∈ Λ1(T ). This principle can be generalized to forms of arbitrary degree: let us

define the exterior derivative d by setting

dω ≡ ∂jωI1,...,Ipdz
j ∧ dzI1 ∧ · · · ∧ dzIp , (9.33)

where the coordinate representation Eq. (9.32) is understood. Obviously, dω ∈ Λp+1(T ), i.e.

d can be interpreted as an operator on Λ(T ) that raises the degree of forms by one. However,

mathematically inclined people will object that it is unclear whether Eq. (9.33), an equation

based on a specific coordinate representation, really represents a proper definition (i.e., is
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it clear that the same rule, applied to a different coordinate representation of ω, leads to

the same form dω?). These worries are addressed in the following exercise.

EXERCISE Show that (a) the definition Eq. (9.33) does not depend on the choice of coordinates,

(b) d2 = 0, and (c) d(ω ∧ ξ) = dω ∧ ξ + (−)pω ∧ dξ, where p is the degree of ω.

In the following, two subspecies of differential forms will be of particular interest for us: we

call a differential form ω ∈ Λp(T ) closed if dω = 0. Conversely, ω is called exact if ω = dξ,

i.e. if ω is obtained as the exterior derivative of some (p − 1)-form ξ. Now, owing to the

identity d2 = 0, every exact form is closed. Yet not every closed form is exact.

EXERCISE Consider the 1-form ω on S1 discussed on page 541. Since ω(e) = ω(e′) = 1, ω has

the local (i.e. restricted to individual charts) representation ω = dφ or ω = dφ′. (The coordinates
are those introduced on page 538.) Obviously, ω is closed. On the other hand, we have seen that

there is no 0-form (function) f such that ω = df ; ω is not exact.

The classification of forms that are closed but not exact is a deep mathematical problem

(the subject of cohomology theory). We shall return to this issue below when we discuss

the geometry of topological terms. However, before doing so, we need to introduce one last

concept of basic differential geometry. Previously, we have seen that a mapping φ : M → T

between two manifolds induced a mapping φ∗ from the vector fields on M to those on T . In

a very similar manner, φ gives rise to a mapping φ∗ between forms on the two manifolds.

This so-called pullback is defined by

φ∗ : Λ(T ) → Λ(M),

ω �→ φ∗(ω) ≡ ω ◦ φ∗.

For example, for a 1-form ω ∈ Λ(T ) and v ∈ TM , we have [φ∗(ω)](v) = ω(φ∗(v)), etc.
Notice that φ∗ maps in a direction opposite to that of φ, hence the name “pullback.”

In a system of local coordinates z and w on M and T , respectively, the components of

the 1-form φ∗(ω) are given by

φ∗(ω)i = [φ∗(ω)](ei) = ω(φ∗(e′i))
(9.29)
= ω

(
∂φk

∂zi
ek

)
=

∂φk

∂zi
ωk,

where {e′i} is a basis of T .

EXERCISE Check that the coordinate representation of the pullback of a p-form is given

by

φ∗(ω)I1,...,Ip = det

(
∂φJ1 , . . . , ∂φJp

∂zI1 , . . . , ∂zIp

)
ωJ1,...,Jp .

Also verify the useful formula φ∗(ω ∧ ξ) = φ∗ω ∧φ∗ξ, and the commutativity φ∗ ◦ d = d ◦φ∗ of a

pullback on an exterior derivative. (If you feel exhausted, just verify that φ∗dω = d(φ∗ω) holds

when applied to forms ω ∈ Λ0,1(T ). The general proof proceeds along similar lines but is a bit

more cumbersome.)

Indeed, the pullback of forms is a very important operation since it enables us to define ...
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Integration on manifolds

Consider a top-dimensional form ω ∈ Λn(T ), i.e. a form whose rank is equal to the

dimensionality of T . To begin with, let us assume that supp(ω) ⊂ U (i.e. ωp �∈U = 0), where

U ⊂ T is the domain of definition of a chart z. We then define the integral of ω over U as

∫
U
ω ≡

∫
V
z−1ω. (9.34)

To make this definition somewhat less abstract, notice that ω can be represented as

ω = fdz1 ∧ · · · ∧ dzn,

where f is a function on T (exercise: why?). The definition above then assumes the form∫
U

f(x)dz1 ∧ · · · ∧ dzn =

∫
V

f(z)dz1 ∧ · · · ∧ dzn ≡
∫
V,Riemann

f(z)dz1 · · · dzn.

Here, we have used the fact that z−1(f(x)dz1 ∧ · · · ∧ dzn) = f(x(z))dz1 ∧ · · · ∧ dzn.47 In the

(crucial) second equality, we declare the integral over the product of forms dz1 ∧ · · · ∧ dzn

in V ⊂ Rn to be the ordinary Riemann integral. This identification is meaningful because

(dz1 ∧ · · · ∧ dzn)(v1, . . . ,vn) measures the volume of the parallelepiped spanned by the

vectors v1, . . . ,vn (in the standard metric of Rn), i.e. it represents a sensible “volume

element.”48

To make the definition of the integral complete, we would have to discuss its extension

to a global integral over the manifold. However, for practical reasons we shall not do

so: for one thing, we are often enough dealing with manifolds T that admit a 1-chart atlas,

in which case the definition above is sufficient. Only slightly worse is the situation where T

can be covered by a single chart except for isolated singular points. (This is the case with,

e.g., T = S1, S2 – exercise: why?) Since the integral is oblivious to “sets of measure 0,”

an integral over the domain of integration of such “nearly complete” charts is as good as

an integral over all of T ; again, the definition above does the job. In the rare cases where

one is dealing with an unpleasant manifold which does not belong to the two species above,

one has to work harder and split up the support of the integrand by means of a so-called

“partition of unity.” However, in view of the relative rarity of such cases, and the fact that

they are dealt with in every textbook on differential geometry, we limit attention to the

“local” definition above.

47 Do not be confused by the appearance of the same symbols dz1 ∧ · · · on both sides of the equations. On the
left-hand side, dzi is referring to the differential of the ith coordinate function zi : T → R. On the right-hand
side, zi : Rn → R simply projects a vector onto its ith component.

48 However, the discussion above sweeps one subtlety under the carpet: under a change of coordinates, z → w,
ω = f(z)dz1∧ · · · ∧ dzn → f(z(w)) det (∂z/∂w) dw1 ∧ · · · ∧ dwn. Compatibility with the transition behavior of
integration volume elements, dz1 · · · dzn → |det (∂z/∂W )| dw1 · · · dwn, requires det (∂z/∂W ) > 0. Coordinate
systems with this property are said to have the same orientation. A manifold with an atlas of identically
oriented charts is said to be orientable. (A prominent counterexample is presented by the Möbius strip.) The
definition of the integral above implies that we have chosen a definite orientation.
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For future reference, we remark that, if φ : T1 ⊃ U1 → U2 ⊂ T2 is a diffeomorphism

between open subsets U1 and U2 of two manifolds T1 and T2, then∫
U2

ω =

∫
U1

φ∗ω. (9.35)

This is the generalization of the transformation law familiar from calculus to the integration

on manifolds. (To understand this equation, notice that, if z : U2 → V is a chart of U2,

then z ◦ φ : U1 → V is one of U1. The statement made by Eq. (9.35) then follows from

Eq. (9.34).)

With the phalanx of definitions above, we are now – at last! – in a position to discuss the

utility of differential forms in topological field theory.

9.4.2 From θ- to Wess–Zumino terms

In Section 9.3, we have seen that, more often than not, the topological phase associated

with non-vanishing “winding numbers” could be given a representation in terms of an action

Stop. However, no guidelines as to existence or non-existence of such representations have

been given. We begin by discussing some principles behind the formulation of topological

Lagrangian densities. This will bring us to a position where the connection to Wess–Zumino

terms can be established.

The geometry of θ-terms

Let us first observe that most target manifolds T of topologically non-trivial field theories

are Riemannian, i.e. come with a natural metric g. This may be the case because T ⊂ Rm

is embedded into some Rm and inherits the natural metric of the latter (e.g. S2 ⊂ R3, etc.);

or because T = G/H is a coset space of Lie groups49 (a situation characteristic of problems

with spontaneous symmetry breaking); or, indeed, for some other reason.

Most important is the fact that a metric g entails the existence of a canonical top-

dimensional form ω on T . Here, the attribute “canonical” means the following: locally, each

top-dimensional form can be represented as ω = f(z)dz1 ∧ · · · ∧ dzn, where zi, i = 1, . . . , n,

are coordinate functions, n is the dimension of T , and f is some function. In general, the

form of f depends on the choice of coordinates and cannot be globally specified. However,

on a Riemannian manifold, a canonical n-form with coordinate-invariant definition exists.

To see this, let gijdz
i ⊗ dzj be the metric. Further, let us define

ω =
√
gdz1 ∧ · · · ∧ dzn, (9.36)

where g = det{gij} is the determinant of the metric tensor. What makes ω special is that

it has the same representation Eq. (9.36) in every coordinate system.50

49 Remember that a Lie group is a manifold with the additional structure of a group. As shown in textbooks of
group theory, the group structure induces a metric.

50 To see this, recall that, under a change of coordinates z → W , dz1 ∧ · · · ∧ dzn → detA−1 dw1 ∧ · · · ∧ dwn,

where A = (∂w/∂z). At the same time, gij → (AT gA)ij , i.e. g
1/2 → detAg1/2. The two determinants cancel

each other, so that ω remains form invariant.
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The n-form ω is called the volume element of the manifold51 and VT ≡
∫
T
ω is the

volume of the (compact) Riemannian manifold T . Without loss of generality, we can set our

unit of length so that VT = 1.

EXERCISE For d = 3 and the metric Eq. (9.31), show that ω assumes the familiar form ω =
1
4π

r2 sin θ dr∧dθ∧dφ proportional to the three-dimensional volume element in polar coordinates.

We now claim that, for base and field manifolds of equal dimensionality dimM = dimT = d,

Stop[φ] = iθ
∫
M

φ∗ω, (9.37)

defines a coordinate invariant representation of the θ-term. To get warmed up to

this abstract representation, we first note that φ∗ω is a top-dimensional form on M , i.e.

we really have something to integrate and the notation makes sense. Now, let us consider

a trivial field configuration φ0(x ∈ M) = const. In this case, φ∗
0ω = 0 (exercise: why?) and

Stop[φ0] = 0, as one should expect. Next, let us assume that φ = φ1 is a diffeomorphic (1-1

and differentiable) covering of T . (The presumed existence of such a mapping amounts to

the statement that we are dealing with a topologically non-trivial field theory.) In this case,

the transformation law Eq. (9.35) holds and we get

Stop[φ1] = iθ

∫
M

φ∗
1ω

(9.35)
= iθ

∫
T

ω = 1× iθ.

Now consider a mapping φn that covers T W times (i.e. every point p ∈ T is the image

of W points x1,...,W ∈ M). One can show that Stop[φW ] = iWθ, i.e. Stop indeed counts

the winding number of fields φ. Rather than giving the proof of this statement for general

W , let us consider a simple example. Let M = T = S2 and φW (φ, θ) = (Wφ, θ).52 Then,

ω = sin θ dθ ∧ dφ, and (check!) φ∗
Wω = W sin θ dθ ∧ dφ. We thus obtain VS2 = 4π and

iθ
∫
M

φ∗
Wω = iWθ, in agreement with the general rule.

EXERCISE Let ni : S2 → R, i = 1, 2, 3, be the ith component of the unit vector defining a

point p ∈ S2. We consider the 2-form ω = n · (dn ∧ dn) ≡ εijknidnj ∧ dnk. Using the standard

polar coordinate representation ni = ni(θ, φ), show that ω can alternatively be represented

as ω = sin θ dθ ∧ dφ, which is the familiar volume element on the sphere (upon choosing an

orientation so that z−1∗(dθ ∧ dφ) = dθ dφ). Considering a field n : (x, y) �→ n(x, y) show that∫
M

n∗ω =

∫
M

n · (∂xn× ∂yn)dx ∧ dy, (9.38)

which we identify (again, for a definite orientation) with our earlier representation of the θ-term

of a field theory with S2-valued fields.

51 To motivate this terminology, consider a basis in which the metric tensor gij = giδij is diagonal. The volume
spanned by the (mutually orthogonal) tangent vectors e1, . . . , en is then simply given by the product of their

lengths, i.e. by
�N

i=1

√
g
i
=

√
g. This is precisely what we get when we evaluate ω(e1, . . . , en), i.e. the form ω

measures the volume of the domain spanned by its arguments.
52 Here we have adopted the usual abuse of notation; in principle we should write (z ◦φW ◦z′−1)(φ, θ) = (Wφ, θ),

where z and z′ are polar coordinate charts on M and T respectively.



9.4 Wess–Zumino terms 547

T

U
M

ψ

φ

φ′

Figure 9.12 On the insensitivity of the integral representation Eq. (9.37) under field variations.
For a discussion, see the main text.

The discussion above shows that, when evaluated on certain reference configurations φW ,

the integral Eq. (9.37) yields the winding number W . To complete the identification with

our earlier representations of the θ-term, we have to show that Eq. (9.37) does not change

under continuous distortions of φW (i.e. that it responds to the topological sector, and

nothing else). Readers not content with our assertion that this is the case may wish to

navigate through the following argument (which, as a byproduct, nicely illustrates the power

of geometric methods in topological field theory).

INFO To show the invariance of Eq. (9.37) under continuous field deformations, let us consider

two field configurations φ and φ′ which can be continuously deformed into each other. More

specifically, we set φ′ = ψ ◦ φ, where ψ : T → T is different from unity only inside the domain

U ⊃ T of some chart, see Fig. 9.12. (This is no serious restriction as, by iterative deformations

of this type, any field configuration continuously deformable into φ can be reached.)

We then have

Stop[φ]− Stop[φ
′] = iθ

∫
M

(φ∗ω − (ψ ◦ φ)∗ω) = iθ

∫
M

φ∗(ω − ψ∗ω).

Now ω−ψ∗ω ∈ Λd(T ) is a d-form on T , different from unity only locally (inside U). This implies

its exactness, i.e. the existence of a representation ω−ψ∗ω = dκ, where κ ∈ Λd−1(T ).53 We thus

find

Stop[φ]− Stop[φ
′] = iθ

∫
M

φ∗dκ = iθ

∫
M

d(φ∗κ) = iθ

∫
∂M

φ∗κ = 0,

where, in the second equality, we have used the general commutativity of the exterior derivative

and pullback and, in the third equality, Stokes’ theorem (for a reminder, see below). In the fourth

equality we have assumed that, on the boundary ∂M of the base manifold (physically, infinity),

the fields φ|∂M approach a constant, so that φ∗κ = 0.

The representation Eq. (9.37) sheds some light on the structure of θ-terms on Rieman-

nian54 field manifolds. However, this was, of course, not the only reason for maneuvering

53 The reason is that, locally, ω − ψ∗ω has a coordinate representation ω − ψ∗ω = fdz1 ∧ · · · ∧ dzn. With the
ansatz κ = gdz2 ∧ · · · ∧ dzn, the equation dκ = ω − ψ∗ω reduces to the differential equation ∂1g = f (if the
special role ascribed to the coordinate direction 1 is irritating, notice that κ is not uniquely defined; every
κ′ = κ+ η with a closed (dη = 0) form η will do the job just as well), defined on some open interval of x1 (for
fixed x2, . . . , xn). This is an ordinary differential equation which can be solved.

54 In fact, all we need to formulate the construction above is a canonical top-dimensional form, i.e. none of
our arguments above actually relied on the fact that, in Riemannian geometry, this form happens to be the
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through the geometric constructions above. Our prime reason for introducing the invariant

formulation is that it contains the key to understanding the connection to Wess–Zumino

terms.

The geometry of Wess–Zumino terms

In this section, we discuss the general geometric principle common

to all Wess–Zumino (WZ) terms. We then explore how our previ-

ous sporadic encounters with WZ field theories fit into this scheme

and discuss a few more applications. Note that θ-terms appear in

theories whose field manifold and base manifold are of equal dimen-

sionality: dimM = dimT . In contrast, WZ terms are at home in

field theories with dimM = dimT − 1.55 How can a topological term be constructed that

relies on this dimensional relation? As we shall see in a moment, the key to the answer lies

in Stokes’ theorem: ∫
C

dω =

∫
∂C

ω. (9.39)

Here, C ⊂ M is a benign (smooth, orientable, etc.56) subset of a differentiable manifold M ,

∂C is its boundary, and dω ∈ Λn(M) is top-dimensional on M (see figure).

INFO The proof of Eq. (9.39) is beyond the scope of our present discussion and we have to refer to

textbooks on differential geometry. Nonetheless, a few remarks for readers not familiar with

Stokes’ theoremmay be helpful. First note that ∂C is a manifold by itself, with dim ∂C = n−1.

Thus, ω is top-dimensional on ∂C and can be integrated. To gain some insight into the substance

of Eq. (9.39) let us consider a few special cases. For example, let M be a three-dimensional

manifold, n = 3. Consider the two-form ω = v1dx2∧dx3+v2dx3∧dx1+v3dx1∧dx2 and interpret

the coefficients vi = vi(x) as the components of a three-dimensional vector field v = (v1, v2, v3).

With dω = divv dx1 ∧ dx2 ∧ dx3 ≡ divv dV and the identification ω = v · dS, where dS is the

two-dimensional “surface element,” we obtain the standard representation of Gauss’ law∫
M

dV divv =

∫
∂M

dS · v.

Similarly, let M be some two-dimensional surface, n = 2, and ω = v1dx1 + v2dx2 + v3dx3.

Identifying the surface element as above, we then have dω = curlv · dS and∫
M

dS · curlv =

∫
∂M

ds · v,

where v · ds ≡ ω, ds is commonly known as a “line element,” and
∫
∂M

is a line integral: this is

called Ampère’s law.

volume element. For example, some field theories with dim(T ) = 2 live on manifolds with a so-called symplectic
structure (which is nothing but a skew-symmetric, non-degenerate 2-form). This form may then take over the
role of our ω above and, in perfect analogy to our discussion above, gives rise to a topological Lagrangian
density.

55 More generally, WZ terms can be constructed if, in dimensions dimM + 1, the manifold T possesses a closed
differential form. (In the special case dimM + 1 = dimT , this form will be the volume form of T .)

56 More precisely, C must be a so-called chain on M . However, for brevity, we shall keep the sloppy characterization
above.
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So suppose that we are dealing with a field theory defined on a d-dimensional base man-

ifold M with (d+1)-dimensional target manifold T . Without (too much) loss of generality,

we may think of T = Sd+1 and M = Sd as unit spheres.

INFO Although we have seen that spheres frequently appear as target spaces in field theory,

the statement above may seem to be too restrictive – for example, what about the many

field theories with group-valued target manifolds? The rationale behind emphasizing spherical

target manifolds lies in an important statement of homotopy theory: the integration spaces we

encounter in field theories with continuous symmetries are usually embedded in some sufficiently

large U(N). However, it can be shown that the topological structure of the group U(N ≥ 2)

essentially reduces to that of its subgroup SU(2) ⊂ U(N), i.e. mappings into U(N) can be

continuously deformed into mappings into SU(2). (If you find this difficult to visualize, consider

a two-dimensional plane with a circular hole as an example. Any curve in the plane can be

continuously deformed to a curve on the circle surrounding the hole. In this sense, the circle

preempts the topological content of the plane. Similar reduction mechanisms exist for higher-

dimensional manifolds.) However, SU(2) � S3 is isomorphic to the 3-sphere. (Representing

SU(2) as the group of matrices g = x0σ0 + i
∑3

j=1 xjσj , xμ ∈ R, the condition det(g) = 1 boils

down to the relation
∑3

μ=0 x
2
μ = 0.) This argument shows that, as far as topology is concerned,

the spaces S1,2,3 basically exhaust the list of relevant target spaces.

As to the base manifold, the identification M = Sd is motivated by the compactification

scheme discussed in Section 9.3 above.

Notice that the target manifold T = Sd+1 is Riemannian and, therefore, comes with a

canonical (d+ 1)-form ω.

Given these prerequisites, our strategy will be to utilize, as much as possible, our previous

understanding of the geometry of the θ-term. To this end, let us interpret φ(M) as a d-

dimensional submanifold in T . Further, let Γ+ ⊃ φ(M) be a subset of T on which the T

volume form ω = dκ+ can be represented as the exterior derivative of some d-form κ+.

EXAMPLE In fact, we may even assume that Γ+ = Sd+1 − {p} covers all of our sphere except

for one point p. For example, on the 2-sphere S2, the volume form ω = sin θ dθ ∧ dφ is obtained

from κ+ = (1 − cos θ)dφ as ω = dκ+ everywhere except for the south pole. Similarly, with

κ− = −(1+cos θ)dφ, ω = dκ− everywhere except for the north pole. Of course, the choice of the

exclusion point is quite arbitrary. Notice, however, that there is no global representation ω = dκ.

If such a representation existed, Vol(T ) =
∫
T
ω =

∫
T
dκ =

∫
∂T

κ = 0, because T is boundaryless,

i.e. the volume of the sphere would vanish.

We now dimensionally extend the field φ : M = Sd → ΓN ⊂ Sd+1 = T to a mapping

φ̃ : Sd+1
N → Sd+1 defined on the entire northern hemisphere, Sd+1

N , of Sd+1. This is achieved

in a series of steps: firstly, identify M = Sd as the equator of Sd+1 (see Fig. 9.13). We then

introduce a (d + 1)-dimensional coordinate representation (s, x), s ∈ [0, 1], of Sd+1
N . These

coordinates are defined in such a way that (s = 1, x) parameterizes the equator � Sd = M

while lims→0(s, x) = pN is the north pole; otherwise, their choice is arbitrary. We finally

extend our field to a mapping φ̃ : Sd+1
N → ΓN , (s, x) → φ̃(s, x). Apart from the obvious

consistency condition φ̃(s = 1, x) = φ(x), the choice of this extension is, again, arbitrary.
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Given this setup, let us define

SWZ[φ] = iC

∫
Sd+1
N

φ̃∗ω, (9.40)

as a trial candidate of a topological action (C = const.). Constructed in manifest analogy to

the θ-term Eq. (9.37), this expression is “topological” in nature (it is scale and reparameter-

ization invariant, etc.). Nonetheless, the definition does not look quite trustworthy. Notably,

we have written “SWZ[φ]” while the right-hand side of the definition involves the extension

φ̃. To see that the integral is, in fact, independent of the particular choice of the extension,

we use the fact that, on φ̃(Sd+1
N ) ⊂ ΓN , the volume form can be written as ω = dκN . This

implies

SWZ[φ] = iC

∫
Sd+1
N

φ̃∗dκN = iC

∫
Sd+1
N

d(φ̃∗κN) = iC

∫
M=Sd

φ̃∗κN = iC

∫
M

φ∗κN.

Here we have made use of (i), in the second equality, the commutativity of the pullback

and exterior derivative, (ii) in the third equality, Stokes’ theorem, and, (iii) in the crucial

fourth equality, that the integral over ∂Sd+1
N = Sd = M depends only on the value of the

boundary field φ̃(s = 1, x) = φ(x). This proves the independence of the action SWZ on the

extension scheme. At the same time, we have obtained the alternative representation

SWZ[φ] = iC

∫
M

φ∗κN , (9.41)

of the topological action. This form makes the independence of the action SWZ of the field

extension manifest. For this, however, a price has had to be paid: Eq. (9.41) involves the

d-form κN which we saw is tied to a certain coordinate representation (owing to the absence

of a global representation ω = dκ) on the field manifold. In other words, the extension-

independent representation Eq. (9.41) necessarily involves the choice of a specific coordinate

system of the field.

INFO As an example, consider M = S1 and T = S2. Think of the latter as the space of unit-

vectors n. Our field is a mapping n : S1 → S2, t → n(t), where t ∈ [0, 1] and periodic boundary

x
φ (x)

φ (x,s)(x,s)

Γ–

~

~
φ

φ

Γ+

Figure 9.13 On the extension of a field theory defined on a d-dimensional base manifold M � Sd

to a (d+ 1)-dimensional theory.



9.4 Wess–Zumino terms 551

conditions n(0) = n(1) are understood. Extension to a field ñ(s, t) then allows us to represent

the action SWZ[n] as (see Eq. (9.38))

SWZ[n] = i
C

4π

∫ 1

0

ds

∫ 1

0

dt ñ · (∂sñ× ∂tñ).

Now, except for the south pole, we can write the volume (or better to say area) form on S2

as ω = d[(1 − cos θ)dφ]. Then, using the fact that n∗[(1 − cos θ)dφ] = (1 − cos θ(t))dφ(t) =

(1− cos θ(t))∂tφ(t)dt, we obtain the alternative representation

SWZ[n] = i
C

4π

∫ 1

0

dt (1− cos θ(t))∂tφ(t). (9.42)

Notice that this form explicitly uses the coordinate representation n ↔ (φ, θ).

Equations (9.40) and (9.41) are two different representations of the Wess–Zumino action.

As discussed above, both have their advantages and disadvantages – the need to artifi-

cially extend the field vs. lack of representation invariance – which is why they are used

interchangeably in the literature.

Finally, we need to discuss one further important point; the value of the coupling constant

C. As discussed above, the coupling constant of the θ-term, the topological angle, was quite

arbitrary. This is not the case with the WZ term. In fact, we shall see that the constant C

is subject to quantization conditions. To understand why, recall that above we have chosen

the northern hemisphere Sd+1
N as the domain of integration of our extended field theory. Of

course, the southern hemisphere Sd+1
S would have provided just as good a choice. In this

case, we would have defined

S′
WZ[φ] ≡ −iC

∫
Sd+1
S

φ̃∗ω,

where φ̃ is a field extension to the southern hemisphere, and the extra minus sign takes care

of the fact that the equator is the boundary of the oppositely oriented southern domain.

Of course, our definition of the WZ action would be senseless if this ambiguity mattered.

Therefore,

SWZ[φ]− S′
WZ[φ] = iC

∫
Sd+1
S

φ̃∗ω + iC

∫
Sd+1
N

φ̃∗ω = iC

∫
Sd+1

φ̃∗ω = iCW,

where W is integer. At first sight, the non-vanishing of this expression looks worrysome.

However, since the action appears in the exponent no harm is done as long as the difference

is equal to (i times) an integer multiple of 2π, i.e. the the coupling constant C obeys the

quantization condition57

C = 2πk, k ∈ Z. (9.43)

The number k is called the level of the WZ theory. To summarize the main results of this

section, we have found that:

57 Recall that the volume form ω underlying the construction has been normalized in such a way that
∫
Sd+1 ω = 1.

For different choices of the normalization, the value of C will change accordingly.
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� The WZ action is closely allied to the θ-term. It affords two different representations

where:

� Equation (9.40) involves a dimensional extension of the field, while

� Equation (9.41) relies on an explicit coordinate representation of the field.

� The coupling constant of the WZ term is quantized according to Eq. (9.43).

Having discussed the structure and geometry of WZ theories, we now return to physics.

Using a simple prototype system as an example, we begin by exploring how WZ terms enter

low-energy theories of many-body quantum systems.

9.4.3 Example: magnetic moment coupled to fermions

Consider a single energy level ε of a spinful fermion system. (One may think, for example,

of a discrete level of an atom.) Let us assume that fermions inhabiting the level are coupled

to a classical magnetic moment n. The coherent state action of this system is given by

S[ψ,n] =

∫ β

0

dτ ψ̄(∂τ + ξ + γn · σ)ψ,

where γ is a coupling constant and, as usual, ξ = ε − μ. A complete specification of the

problem would have to include a term S[n] controlling the dynamics of the uncoupled

magnetic moment. However, for the purposes of the present discussion, it is sufficient to

consider the moment–fermion coupling in isolation.

INFO Actions of this type appear as building blocks of larger systems. For example, once

generalized to a set of levels εa, our model might describe a system of atomic shell electrons

subject to Hund’s rule coupling to a spin or orbital magnetic moment. Alternatively, the

magnetic moment n might describe the Hubbard–Stratonovich decoupling of some electron–

electron interaction in a spinful channel.

Integration over the fermion degrees of freedom brings us to the reduced action

S[n] = −tr ln(∂τ + ξ + γn · σ).

To proceed, let us write n = Re3, where R ∈ SO(3) is a rotation matrix, and then use the

fact that a matrix U ∈ SU(2) can be found58 such that

n · σ = (Re3) · σ = Uσ3U
−1. (9.44)

For example, it is straightforward to verify that, with the standard polar representation,

n = (sin θ cosφ, sin θ sinφ, cos θ)T , the choice

U = e−iφ
2 σ3e−i θ

2σ1e−iψ
2 σ3 , (9.45)

58 This is, in fact, just a concrete realization of the correspondence between SU(2) and SO(3) familiar from
group theory.
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will suffice. However, for the moment we shall not need an explicit representation of the

rotation matrix. Rather, substituting the general expression Eq. (9.44) into the action, we

obtain

S[n] → S[U ] = −tr ln(∂τ + ξ + γUσ3U
−1) = −tr ln(U−1∂τU + ξ + γσ3)

= −tr ln(∂τ + ξ + γσ3 + U−1U̇),

where, in the first equality, we have used the cyclic invariance of the trace and, in the last

equality, we have defined ∂τU ≡ U̇ . To proceed, we assume that the two energies |ξ±γ| � T

are well separated from the chemical potential, |ε ± γ| � T . We also assume that the

frequency scales ω̃ on which the fields n ↔ U vary are so slow that they do not change

the occupation of the fermionic levels: ω̃/γ � 1. In these circumstances, we may proceed

by a straightforward expansion of the logarithm: S[U ] = tr(ĜÛ−1U̇) + O(ω̃/γ)2, where

Ĝ = (−∂τ − ξ − γσ3)
−1 and we have anticipated (check!) that higher-order terms of the

expansion will be small in the parameter ω̃/γ. Switching to a frequency representation,

S[U ] =
∑
n

tr(Ĝn(Û
−1U̇)m=0) = −

∫
dτ tr(nF(ξ + γσ3)U

−1∂τU)

= −
∫

dτ tr

([
nF(ξ + γσ3)−

1

2

]
U−1∂τU

)
,

where we have used the fact that the frequency sum of a fermionic Green function introduces

the Fermi distribution function, nF. In the last line, we have shifted nF by 1/2, which is

permissible because tr(U−1U̇) is a boundary term:∫ β

0

dτ tr(U−1U̇) =

∫ β

0

dτ ∂τ tr(lnU) = tr ln(U)|β0 = 0. (9.46)

Now, if both levels are either occupied (nF(ξ± γ)− 1/2 ≈ 1/2) or unoccupied (nF(ξ± γ)−
1/2 ≈ −1/2), the action vanishes59 since tr(

[
nF(ξ + γσ3)− 1

2

]
U−1∂τU ) ∝ tr(U−1∂τU) is

again a boundary term.

Assuming, however, that ξ + γ is empty while ξ − γ is occupied we obtain

S[U ]|ξ+γ�0�ξ−γ ≡ SWZ[U ] = −1

2

∫ β

0

dτ tr(σ3U
−1U̇). (9.47)

We now run a few tests on SWZ to identify it as a topological term of Wess–Zumino type.

For one thing, our base manifold M � S1 is one-dimensional and SWZ involves a first-order

derivative. This exemplifies the scale invariance characteristic of topological terms. The

suspicion that SWZ is topological is corroborated by the fact that it is purely imaginary.

(The time-derivative acts on a unitary matrix, i.e. something like a generalized “phase” – for

more details, see below.) But what type of topological term are we dealing with? To get an

answer to this question, we first need to determine the dimensionality of the target manifold

T . Clearly, T �= SU(2) in spite of the fact that we are temporarily using U ∈ SU(2) for our

59 Up to corrections of O(exp(−|ξ ± γ|/T )) which, in any case, are beyond the scope of the first-order expansion
of the “tr ln” above.
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fields: our original theory was defined for n ∈ S2. Indeed, the representation Eq. (9.44) is

invariant under the “gauge transformation” U → U exp(iψσ3). This means that the “true”

field manifold is SU(2)/U(1) � S2 as one should expect. Now, dimS2 = 2 = dimM + 1, so

that SWZ is likely to be a Wess–Zumino term.

Indeed, we observe that, under the gauge transformation above, tr(σ3U
−1U̇) →

tr(σ3U
−1U̇) + 2iψ̇, i.e. the topological density is not invariant. This indicates that we

will not be able to find a coordinate-independent representation of SWZ in terms of n. As

discussed in the previous chapter, the lack of parameterization invariance is a hallmark of

WZ terms. (There is no need to worry, though, about the gauge invariance of the theory:

the periodic boundary conditions imposed on U imply that ψ(β) = ψ(0) + 2πn, where

n is some winding number. Under the gauge transformation, the action thus changes by

δS = −2πin, so that exp(−δS) = 1 remains invariant.)

To present SWZ in a less abstract form, we can substitute the angular representation

Eq. (9.45) into Eq. (9.47). The straightforward evaluation of the derivative then gives

SWZ[φ, θ] = − i

2

∫
dτ (1− cos θ)∂τφ. (9.48)

We identify this expression as the coordinate representation Eq. (9.42) of the WZ term

arising in theories with base S1 and target S2. Recall that SWZ evaluates to −i/2 times the

area swept out by the closed curve (φ, θ) on the sphere.

In fact, we have already met with the action Eq. (9.48) in Section 3.3 when we discussed

the path integral of a single spin. That the core contribution to the action of that problem

reappears here should not come as too much of a surprise: the classical magnetic moment∝ n

“enslaves” the electron spin. In the limit of perfect alignment – realized under the conditions

assumed above – we are left with the dynamics of a quantum spin whose dynamics are tied

to that of n. The resulting action therefore coincides with that of a free spin described by

the unit vector n.

Sir Michael Berry 1941–
Theoretical physicist who has
made groundbreaking contribu-
tions to the field of quantum non-
linear dynamics and optics. Berry
introduced the concept of the
Berry phase (or geometric phase
as he himself prefers to call it) and
explored its manifestations in various physical con-
texts. (Figure courtesy of Sir Michael Berry.)

In the literature, the action

Eq. (9.48) is frequently referred to

as the Berry phase action. To

understand the rationale behind

this terminology, let us briefly recall

(see the Info block below) a few

facts about the quantum mechanical

Berry phase. Consider a quantum

particle subject to the Hamiltonian

Ĥ(x(t)), where the D-component

vector x(t) ≡ {xi(t)} parameterizes a weakly time-dependent contribution to Ĥ. As shown

by Berry, the dynamical phase acquired during the evolution of the particle can be expressed

as exp(−i
∫
dt′ ε0(t′) + iγ(t)), where ε0(t) is the energy of the instantaneous ground state

of Ĥ(t). The first contribution to the exponent is the usual dynamical phase of quantum

evolution. (Here, it is assumed that the time-dependence of Ĥ is sufficiently weak for us to

neglect transitions into excited levels; for a static Hamiltonian, this contribution reduces to
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the familiar phase ε0t.) The second contribution, γ(t), is of geometric origin, inasmuch as it

depends on the path traced out by the vector x in parameter space, but not on dynamical

details. (In particular, it is independent of the velocity at which the parameter path is

traversed.) The geometric phase assumes a particularly simple form if the parameter

dependence of Ĥ is periodic in time, x(0) = x(t). In this case, x(t) defines a closed curve

and γ can be expressed as an integral over any surface in parameter space bounded by

that curve. Specifically, for a spin S particle Zeeman-coupled to a weakly time-dependent

magnetic field B(t) ≡ n(t)B of constant magnitude, B,

γ =
S

2

∫
d2x n · ∂1n× ∂2n, (9.49)

is the area bounded by the curve n(t) on the 2-sphere (which, in this case, defines the

parameter space). Comparison with Eq. (9.48) and the example discussed on page 538

indeed identifies the WZ-term as the Berry phase of the spin problem.60

INFO A brief reminder of the Berry phase in quantum mechanics: Consider a particle

governed by a Hamiltonian Ĥ(x(t)). It is assumed that the time-dependence of the parameter

vector x is adiabatic, which means that a particle initially prepared in the ground state |0(t = 0)〉
of the Hamiltonian Ĥ(x(0)) will remain in the instantaneous ground state |0(t)〉 (i.e. the lowest

eigenstate Ĥ(x(t))|0(t)〉 = ε(t)|0(t)〉 of the operator Ĥ(x(t))) throughout the entire observation

time. (In practice, this means that the rate ω at which the parameters change in time must be

much smaller than the excitation gap of the system.)

We are interested in computing the dynamical phase corresponding to the time evolution of

|0(t)〉. To this end, let us represent the wavefunction of the particle as |ψ(t)〉 = e−iφ(t)|0(t)〉 and
consider the time-dependent Schrödinger equation

Ĥ(x(t))|ψ(t)〉 = i∂t|ψ(t)〉.

Substitution of the representation above and multiplication by 〈0(t)| then leads to the equation

∂tφ = ε(t) − i〈0(t)|∂t|0(t)〉. Integrating over time and comparing with our discussion above, we

are led to the identification γ(t) = i
∫ t

0
dt′ 〈0(t′)|∂t′ |0(t′)〉 of the Berry phase (exercise: why is γ

real?). Now, the instantaneous ground state inherits its time dependence from the parameters

x(t). We may thus write

γ(t) = i

∫ t

0

dt′ 〈0(x(t′))|∂xi(t′)|0(x(t
′))〉∂txi(t

′) = i

∫
c

dx 〈0(x)|∂x|0(x)〉 = i

∫
c

〈0|d0〉.

Here, the second integral has to be interpreted as a line integral in parameter space. It is taken

along a curve c which starts at x(0), follows the evolution of the parameter vector, and ends at

x(t). Importantly, the line integral depends only on the choice of γ but not on the velocity at

which this curve is traversed (the dynamics of the process). In this sense, we are dealing with

a phase of geometric origin. The third integral representation above emphasizes the geometric

60 In the discussion above, we considered a particle coupled to a weakly time-dependent magnetic moment – a
canonical setup for the appearance of Berry phases. But why did the Berry phase/WZ-action also appear in
our earlier discussion of a spin coupled to a fixed magnetic field? To answer this question, consider the world
from the point of view of the spin. In the reference frame of the spin, the magnetic field is dynamical and a
Berry phase term will be generated. Moreover, the area traced out by the field vector (i.e. the area determining
the geometric phase) is equal to the area traced out by the spin (now we are back in the fixed-field reference
frame) in its motion around the field axis.
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nature of the phase even more strongly: for any value of x, we have a state |0(x)〉. We may then

construct the differential 1-form 〈0(x)|d0(x)〉.61 The geometric phase is obtained by evaluating

the integral of this form along the curve c.

The advantage of the third representation above is that it suggests yet another formulation of

the geometric phase, at least in cases where a closed path in parameter space is traversed. For a

closed loop c, application of Stokes’ theorem gives

γ = i

∮
c

〈0|d0〉 = i

∫
S

〈d0| ∧ |d0〉, (9.50)

where S may be any surface in parameter space that is bounded by γ. This last representation is

aesthetic, and easy to memorize, but also a bit too compact to be of real computational use. To

give it a more concrete meaning, we insert a spectral decomposition in terms of instantaneous

eigenstates,

γ = i

∫
S

∑
m �=0

〈d0|m〉 ∧ 〈m|d0〉.

(Exercise: Why does the m = 0 term vanish, i.e. 〈d0|0〉 ∧ 〈0|d0〉 = 0? Hint: Make use of the fact

that d〈0|0〉 = 〈d0|0〉 + 〈0|d0〉 = 0 and the skew-symmetry of the ∧-product.) We now evaluate

the equation 0 = 〈m|d[(Ĥ − ε0)|0〉] to obtain 〈m|d0〉 = (ε0 − εm)−1〈m|dH|0〉 or

γ = i
∫
S

∑
m �=0

〈0|dH|m〉 ∧ 〈m|dH|0〉
(εm − ε0)2

. (9.51)

This is about as far as we get in general terms. We have established the geometric nature of the

Berry phase. However, inasmuch as it requires explicit knowledge of the spectrum of Ĥ(x(t)),

the actual calculation of the phase remains a difficult problem.

There are cases, however, where the calculation of the geometric phase reduces to a straight-

forward surface integral in parameter space. One such example is provided by a spin sub-

ject to a weakly time-dependent magnetic field. Consider the Hamiltonian Ĥ = μn(x) · σ ≡
μU(x)σ3U

−1(x), where U is the rotation matrix introduced in Eq. (9.44). The 2S + 1 instan-

taneous eigenstates of Ĥ are given by U |S3〉, where σ3|S3〉 = S3|S3〉 and S3 = −S, . . . , S is the

azimuthal spin quantum number. To compute the Berry phase, we can consider the first of the

two representations in Eq. (9.50). Noting that the ground state is given by |0〉 = U |S3 = −S〉 (we
assume that the magnetic moment γ > 0) and parameterizing the rotation matrix as in Eq. (9.45),

one verifies that 〈0|d0〉 = 〈−S|U−1dU | − S〉 = iS(1 − cos θ)dφ. We thus obtain γ = S
:
c
dφ

(1− cos θ) = S
∫
dt (1− cos θ)φ̇, which coincides (up to a Wick rotation t → −iτ , which we know

does not affect topological terms) with the S = 1/2 WZ-action Eq. (9.48).

9.4.4 Spin chains: beyond the semi–classical limit

In Section 9.3.3, we began to explore the physics of one-dimensional spin chains. Much of our

analysis was limited to the case S � 1, a semi-classical regime where quantum fluctuations

61 Should you find the representation too abstract, choose any basis {|λ〉} and write 〈0(x)|d0(x)〉 ≡
〈0(x)|λ〉d〈λ|0(x)〉, where d〈λ|0(x)〉 is the exterior derivative of the function 〈λ|0(x)〉.
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are weak. In this limit, the spin chain is described by an O(3) nonlinear σ-model with a θ-

term. This model, however, does not stay invariant under renormalization. It flows towards

a “strong coupling” regime where fluctuations are large and the effective value of the spin

(formally: the coupling constant of the gradient term in the model) becomes weak. Apart

from the conjecture that, for half-integer/integer initial spin, the model flows towards an

ordered/disordered phase with gapless/gapped excitations, there was nothing we could say

about the large-distance behavior of the model (or about the physics of chains consisting of

small spins S = O(1)).

In this section, we invest quite some effort in developing a fresh attack on the physics

of the small S spin chain. This is motivated in part by the enormous amount of recent

experimental activity on quasi-one-dimensional spin compounds. (“Real” spin chains are

often realized as structural sub-units of transition metal compounds. In these systems, the

spin – which is carried by Hund’s rule coupled inner shell electrons of transition metal

atoms – may reach as high as 7/2.) Another, and more theory-related, motivation for our

study is that the low-energy physics of the spin chain is governed by a fascinating interplay

of different topologically non-trivial quantum field theories.

Following Affleck and Haldane,62 the principal idea of our approach will be to exploit the

equivalence of the antiferromagnetic spin chain to a one-dimensional Hubbard model at half

filling.63 The advantage gained by this digression is that the fermionic model is amenable

to various analytical tools which (at least not in any known sense) do not apply to the

spin-chain per se. We will find that the effective low-energy model describing the fermion

system is the WZ field theory conjectured to be the fixed point theory of the σ-model in

Section 9.3.3.

Fermion representation of the antiferromagnetic spin chain

Consider a one-dimensional chain of equidistant (spacing a) lattice sites i. Each site hosts

nc degenerate fermion states, or “orbitals.” Consider a half-filled situation, i.e. on average,

each orbital is occupied by a single spin-(1/2) fermion. We now introduce some dynamics so

that the low-energy physics of the system is equal to that of an antiferromagnetic spin chain

with spin S = nc/2. (Notice that this construction is not quite as artificial as it may seem:

the effective moments observed in “real” crystals are usually composite objects, composed

of more than one elementary electron spin and stabilized by electron correlations.)

To align the nc spins at each site, we introduce a strong (U � T ) Hund’s rule coupling

Ĥint = −U
∑
i

Ŝi · Ŝi = −U

4

∑
i

(
ψα
ia

†σαβψβ
ia

)
·
(
ψα′
ia′

†
σα′β′

ψβ′
ia′

)
=

U

4

∑
i

[
2
(
ψα
ia

†ψα
ib − δab

)(
ψβ
ib

†
ψβ
ia − δba

)
+

(
ψα
ia

†ψα
iα − nc

)2
]
+ const. (9.52)

62 I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36 (1987), 5291–300.
63 Recall that, for strong interaction, the one-dimensional Hubbard model maps onto the so-called (t − J)-model

which (at half filling) reduces to the antiferromagnetic Heisenberg model (the spin chain).
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U = 0, J = 0
(a) (b) (c)

U > 0, J = 0 U > 0, J > 0

Figure 9.14 (a) A chain of sites, each containing nc fermions on average. (b) A strong Hund’s rule
coupling maximizes the spin carried by each state to S = nc/2. (c) Upon the switching on of a
finite nearest neighbor hopping matrix element, the system becomes a spin S antiferromagnet.

Here, a = 1, . . . , nc is the orbital index, α, β are spin indices, and, to get from the first to

the second line, we have used the identity σαβ · σα′β′
= 2δαβ

′
δβα

′ − δαβδα
′β′

. Of special

interest to our further discussion will be the last term in the second line. This Hubbard-type

interaction tells us that each site favors a site occupancy of nc electrons (i.e half-filled).

Indeed, nc electrons are needed to manufacture a net spin of maximum weight S = nc/2

(see Fig. 9.14) and, thus, to optimize the Heisenberg interaction Eq. (9.52).

Let us now introduce a small amount of inter-site hopping:

Ĥ0 = −1

2
(ncJU )1/2

∑
i

[
ψα
ia

†ψα
i+1a + h.c

]
, (9.53)

where the constant J determines the hopping strength. In the limit J/U → 0, the half-filled

system becomes equivalent to the spin S antiferromagnetic chain,

Ĥ = Ĥ0 + Ĥint
〈n̂i〉=nc−→ Haf = J

∑
i

Ŝi · Ŝi+1 +O(J/U ). (9.54)

The easiest way to see this is to recall the situation in the standard Hubbard model (the

nc = 1 variant of our present model) at half filling (cf. Section 2.2). There, virtual deviations

from half filling led to an effective antiferromagnetic exchange coupling between the S = 1/2

spins carried by neighboring sites. The effective strength of this interaction was J ∼ t2/U ,

where t is the strength of the hopping term. Formally, the generalization of this mechanism

to the case nc > 1 can be shown, for example, by subjecting the Hamiltonian Ĥ to a

canonical transformation eliminating the hopping term (all in complete analogy to the

nc = 1 canonical transformation discussed in Section 2.2).

We have, thus, established the equivalence between the strongly interacting J � U

fermion Hamiltonian and the spin chain. Now there comes a major conceptual jump – and

admittedly one that is not backed up by quantitative reasoning: we postulate that the

equivalence between the two systems pertains to the case J > xU , at least as far as the

relevant long-range excitations are concerned. If this were not the case, there should be some

kind of abrupt change (a phase transition) in the behavior of the system as the interaction
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is increased. Although this scenario cannot be rigorously excluded, it seems unlikely to be

taken too seriously.

Non-abelian bosonization

Let us, then, consider the low-energy physics of the weakly interacting (J > U) fermion

system. In fact, we shall begin by considering the totally non-interacting case.64 Switching

from a lattice to a continuum description and linearizing around the two Fermi points (for

details, see Section 2.2), we describe this prototypical system in terms of the action

S[ψ†, ψ] =
∑
s=±1

∫
dx dτ ψ†r

s (−isvF∂x + ∂τ )ψ
r
s =

∫
d2x ψ̄r∂/ψr, (9.55)

where ψs=±1 are the left- and right-moving fermion fields. In the latter equality we have set

vF = 1 and switched to the Dirac notation (for details, see Section 4.3), and r = (a, α) =

1, . . . , 2nc ≡ N is a composite index comprising spin and orbital components of the fermion

field. In previous chapters, we have seen that the one-component (N = 1) variant of this

model could be equivalently described in terms of a free bosonic action,

S[ψ̄, ψ] =

∫
d2x ψ̄∂/ψ ↔ S[θ] =

1

2π

∫
d2x ∂μθ ∂μθ, (9.56)

Edward Witten, 1951–
Mathematical physicist and string
theorist. Awarded the 1990 Fields
Medal for his ground breaking
work in differential geometry. Wit-
ten contributed massively to the
success of string theory. (Photo
by Randall Hagadorn. Courtesy of
the Institute of Advanced Study.)

where the double arrow ↔ indicates

that all fermion operators O[ψ̄, ψ]

(currents, densities, etc.) can be

expressed in terms of boson opera-

tors Õ[φ], and correlation functions

〈O1O2 · · · 〉ψ can be identically

rewritten as 〈Õ1Õ2 · · · 〉φ.
To what extent does this picture

survive generalization to the many-

channel case? The answer to this question was given in a seminal paper by Witten. Witten

found that65

The free fermion action Eq. (9.55) can be equivalently described in terms of a

two-dimensional nonlinear σ-model with a Wess–Zumino term.

More precisely, he showed that

S[ψ̄, ψ] =

∫
d2x ψ̄r∂/ψr ↔ SWZW[g] =

1

8π

∫
S2

d2x tr(∂μg∂μg
−1) + Γ [g], (9.57)

64 As in our previous discussion of the single-channel case, it will turn out that the inclusion of interactions is
straightforward once the effective bosonic degrees of freedom have been identified.

65 E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984), 455–72.
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where g ∈ U(N ) and

Γ [g] = − i

12π

∫
B3

d3x εijk tr(g−1∂ig g
−1∂jg g

−1∂kg), (9.58)

denotes the WZ action.66 On the right-hand side of Eq. (9.57), two-dimensional space-time

has been compactified to a 2-sphere S2. This sphere is then understood as the bound-

ary of a three-dimensional unit ball, B3, which serves as the integration domain of the

WZ functional. As in the one-component case, the double arrow in Eq. (9.57) implies equal-

ity of all correlation functions upon suitable identification of operators (see the Info block

below).

Equation (9.58) is the multi-component or “non-abelian” generalization of the prototyp-

ical bosonization identity (9.56). To understand the connection between the two equations,

consider the restriction of U(N ) to its maximal abelian subgroup, i.e. the group of all diag-

onal matrices g = diag(ei2θ
1

, . . . , ei2θ
N

). Evaluated on such configurations, the WZ term

vanishes (exercise: show this) while the gradient term,

S[θr] =

N∑
r=1

1

2π

∫
d2x (∂μθ

r)2, (9.59)

collapses to the sum of N free boson actions. This is the description we would have obtained

had we applied Eq. (9.56) to each of the N fermion components individually (which, after

all, is a perfectly legitimate thing to do!). But what, then, is the advantage of the generalized

variant of bosonization Eq. (9.57)? Referring for a more detailed discussion to the Info block

below, we here merely note that the action Eq. (9.57) possesses a huge symmetry group:

transformations ψs → gsψs, gs ∈ U(N ), leave the action invariant, i.e. the symmetry group

of the problem is given by U(N ) × U(N ). Suppose we had bosonized each fermion in the

standard abelian manner, thus arriving at the action Eq. (9.59). We might now ask how the

symmetries of the problem – which of course must survive a change of representation – act

in the θ-language. Frustratingly, there is no answer to this question;67 the symmetries are

no longer manifestly present and there is no direct way to benefit from their existence. With

the non-abelian generalization Eq. (9.57), this is not so. As we shall see in a moment, the

symmetry group U(N )×U(N ) acts on the g-degrees of freedom by left–right multiplication,

g → g+gg
−1
− .68 In previous chapters we have emphasized time and again the tremendous

importance of symmetries and the resulting conservation laws. Indeed it turns out that, in

the present problem, the comparative complexity of the action Eq. (9.57) is far outweighed

by the manifest presence of the symmetries.

66 Deviating from our earlier conventions, we will denote the WZ-action by Γ[g] throughout (instead of the
notation SWZ[g] used above). In doing so, we follow a standard literature convention. Also, the full action
(including the gradient term) is commonly denoted by SWZW (where the last “W” credits Witten’s contribution
to two-dimensional WZ field theory), and the resemblance between the two symbols SWZ and SWZW may cause
confusion.

67 One may object that a theory of free bosons is so simple that one need not care about the conservation laws
introduced by symmetries. However, this argument is too shortsighted. It ignores the fact that most operators
of interest are transcendental in the θs, i.e. the full theory is not quite as simple as Eq. (9.59) would suggest.

68 This provides another explanation of why the θ-description is too narrow to accommodate the symmetry: a
diagonal matrix g will not remain diagonal when acted upon by the transformation matrices.
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INFO The proof of the bosonization identity (9.57) relies on an extension of the considerations

summarized in Section 4.3 to the case of non-abelian symmetries. Although a detailed discussion

of the construction (for which we refer to Witten’s original, yet highly pedagogical, paper) would

be beyond the scope of this text, let us briefly summarize some of the principal ideas behind

the method of non-abelian bosonization.

Let us begin by recalling that, in the abelian case N = 1, we had two basic symmetries,

ψs → gsψs, where gs = exp(i2φs), φs are constant phases and ψs=±1 the left- and right-moving

fermion fields. These symmetries express the independence of the left- and right-moving states

or, equivalently, the chirality of the problem. A straightforward application of Noether’s theorem

(or, equivalently, a direct variation of the action) shows that the conservation laws induced by

the chiral symmetry are ∂z j̄ = ∂z̄j = 0, where j = ψ†
−ψ−, j̄ = ψ†

+ψ+ and we have introduced

complex coordinates z ≡ 1√
2
(x0 + ix1), ∂z = 1√

2
(∂0 − i∂1).

69

In Section 4.3 we saw that, on the bosonic level, the chiral symmetries act as θ → θ+φ+−φ−.
The conservation laws corresponding to these transformations read as ∂z∂z̄θ = 0 (exercise:

check this). At the same time we know that the transformation generated by φ+ (φ−) generates
the conservation law ∂z j̄ = 0 (∂z̄j = 0). Comparison with the two equations above leads to the

identification j̄ = ψ†
+ψ+ ↔ − i√

2π
∂z̄θ and j = ψ†

−ψ− ↔ i√
2π

∂zθ, where the factor of i/
√
2π has

been included to obtain consistency with the definition of the vectorial current jv,0 = ρ ∼ ∂1θ ∼
j + j̄.69

We now reformulate these results in a manner amenable to generalization: introducing g ≡
exp(i2θ) ∈ U(1), the bosonic action of Eq. (9.56) assumes the form S[g] = 1

8π

∫
d2x ∂μg ∂μg

−1,

while the symmetries now act by conjugation: g → g+gg
−1
− . Here, ei2φ± ≡ g±. Finally, the

conserved currents can be defined as

j =
1√
8π

g−1∂zg, j̄ = − 1√
8π

(∂z̄g)g
−1. (9.60)

At this stage, the ordering of the – abelian – factors g is of course arbitrary. However, this will

change once we proceed to the multi-channel case. (Notice that the equations (9.60) are solved

by g = g+(z̄)g−(z), where the two independent factors g+ and g− describe the right/left-moving

fermion states. This solution does not rely on the commutativity of the phases g and generalizes

to the non-abelian case.)

For N > 1, the phases gs generalize to two independent unitary matrices g± ∈ U(N ). The

enlarged symmetry entails the conservation laws ∂z∂z̄j
rr′ = 0, r, r′ = 1, . . . , N , where the cur-

rents are given by jrr
′
= ψr†

+ ψr′
+ and j̄rr

′
= ψr†

− ψr′
− .

EXERCISE To verify this last statement, consider the infinitesimal unitary transformation

Us = exp(iηW ) and expand the action Eq. (9.55) to first order in the Hermitian generator

matrices W .

What are the bosonic counterparts of these expressions? It is natural to generalize the phases

g ∈ U(1) of the abelian case to unitary matrices g ∈ U(N ). As before, the symmetry group will

act by left–right-multiplication, i.e. g → g+gg
−1
− and we expect the conserved currents to be

given by Eq. (9.60).70

69 Throughout, it will be preferable to use this complex notation. Notice that the two conserved currents j and j̄
are related to the components of the vectorial currents discussed in Section 4.3 by jv0 ∼ j+ j̄ and jv1 ∼ 1

i (j− j̄).
70 Notice, however, that the currents are now matrices js = {jrr′s } and that – unlike in the abelian case – the

ordering of the matrices g on the right-hand side of the definition is crucial. The factors in Eq. (9.60) are
ordered in such a way that ∂z̄j = 0 and ∂z j̄ = 0 are compatible with each other.
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We now need an action that (a) is invariant under the multiplicative action of the symmetry

group and (b) for N = 1 reduces to
∫
∂μg∂μg

−1. An obvious candidate would be

S0[g] =
1

8π

∫
d2x tr(∂μg∂μg

−1). (9.61)

Yet, for a number of reasons, Eq. (9.61) does not suffice. Firstly, for this action, the conservation

laws derived from the symmetry of the problem, read ∂μ(g
−1∂μg) = 0, which is inconsistent with

our result above, ∂z̄(g
−1∂zg) = 0. Secondly, we have seen in the previous chapter (cf. Section 8.5)

that the nonlinear σ-model Eq. (9.61) renormalizes at large length scales to smaller values of

the coupling constant. At the same time, it is supposed to describe the fermionic action (9.55),

which obviously does not renormalize. This tells us that S[g] alone does not suffice to establish

the boson–fermion correspondence.

But let us now inspect the second term in the action proposed by Witten, the two-dimensional

WZ functional. The first thing we have to understand is why the second term of the action indeed

represents a WZ functional in the sense of the discussion of Section 9.4.2.71 To construct a WZ

term, we need a differential form ω on the target manifold that is closed, dω = 0, but only locally

exact (ω = dκ only locally). In Problem 9.7.2 it is shown that, on a group-valued target manifold,

these criteria are met by the form ω = tr(g−1dg ∧ g−1dg ∧ g−1dg). (Do not be confused by the

notation. What it really means is ω =
∑

ijklmno((g
−1)ijdgjk∧(g−1)lmdgmn∧(g−1)nodgoi), where

dgjk is the differential form of the function gjk assigning to each element g ∈ U(N) its matrix

component gjk.) The general theory developed in Section 9.4.2 then tells us that iC
∫
B3 g̃

∗ω is

a WZ term where g̃ is a smooth extension of the field g : S2 → U(N) to a field defined on the

entire ball B3. Expressed in terms of some coordinate functions (x1, x2, x3) of B
3, this expression

becomes identical to Eq. (9.58). (As to the quantization of the coupling constant, see Problem

9.7.2.) In passing we note that the WZ functional is manifestly invariant under the action of the

chiral symmetry group, as is required by the general structure of the theory.

It is instructive to inspect the equations of motion obtained from the WZ term. In Prob-

lem 9.7.2 we show that, upon variation g → eW g � (1+W )g and expansion to first order in W ,

we obtain

Γ[(1 +W )g]− Γ[g] =
i

4π

∫
d2x εμν tr(W∂μg∂νg

−1) +O(W 2). (9.62)

A straightforward calculation shows that the variation of the gradient term S0 is given by

S0[(1 +W )g]− S0[g] = − 1

8π

∫
d2x tr(W (g∂2

μg
−1 − (∂2

μg)g
−1)) +O(W 2).

Combining these two results, we obtain the equations of motion

−2iεμν∂μg∂νg
−1 + g∂2

μg
−1 − (∂2

μg)g
−1 = 0.

A straightforward calculation shows that these equations are indeed equivalent to the relation

∂z j̄ ∝ ∂z((∂z̄g)g
−1) = 0.

Summarizing, we have succeeded in finding an action that (a) is manifestly chirally invariant

and (b) produces the same conservation laws as the free fermion theory. Notice, however, that

we have not “proven” the analogy Eq. (9.57); rather, our analysis was mostly based on drawing

71 Notice that, in Section 9.4.2, we focused on the case dimT = dimM + 1. Presently, however, dimM = 2 while
dimT = dimU(N ) can become arbitrarily large.
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illustrative analogies to the one-dimensional case. (For a more rigorous discussion, we refer to

Gogolin et al.72)

We conclude our preliminary survey of non-abelian bosonization by noting two crucial differ-

ences to the abelian case:

� In the abelian case, a free fermion action was mapped onto an equally free boson action. Being

quadratic in the fields, the two theories manifestly do not renormalize. In the non-abelian

case, the situation is different: although it is not obvious, the right–hand side of Eq. (9.57) –

a highly nonlinear functional of the group-valued fields g – does not renormalize. For a proof

of this feature we refer to Problem 9.7.3.

� Above, we have seen that bilinears ∼ ψ†
±ψ± composed of left- or right-moving fermions afford

a representation in terms of the Bose fields. Without proof, we mention that even bilinears

involving fermions of different chirality can be expressed in terms of bosonic fields:

ψr†
+ ψr′

− ∼ grr
′
. (9.63)

However, unlike in the abelian case (see Eq. (4.46)), no boson representation of individual

fermion operators is known. This is quite unfortunate as it excludes the applicability of the

formalism to several interesting fields of investigation, notably the physics of fermions in the

presence of disorder.

� In fact, the U(N ) action introduced in Eq. (9.57) defines two independent field theories at

once: every matrix g ∈ U(N ) can be decomposed as g = ei2φg′ into a matrix g′ ∈ SU(N )

and a phase factor ei2Nφ = det(g) ∈ U(1). Substituting this decomposition into the action, we

obtain

S[g] = S[g′] +
N

2π

∫
S2

d2x (∂μφ)
2. (9.64)

Equation (9.64) tells us that the action decomposes into a WZW action for an SU(N )-valued

field variable and an independent second action for the phase degree of freedom. Recalling that

the invariance of the action under a homogeneous phase (gauge) transformation corresponds

to the conservation of electric charge, we identify the phase action as that of the collective

charge degrees of freedom (the charge density waves), while the SU(N)-action describes the

spin degrees of freedom.

Renormalization group flow of the WZW model

The action (9.57) describes a free fermion fixed point, if not in an obvious manner. To

understand better the behavior of the WZW model under renormalization, let us generalize

the free fermion action by introducing an arbitrary coupling constant λ−1 in front of the

gradient term. We thus consider the action

S =
1

λ

∫
S2

d2x tr(∂μg ∂μg
−1)− i

12π

∫
B3

d3x εijktr(g−1∂ig g−1∂jg g−1∂kg), (9.65)

where g ∈ SU(N ) (and the complementary U(1) action is trivially free). Except for the

presence of the WZ term, the model defined by this action is equivalent to the SU(N )

nonlinear σ-model studied in Section 8.5. However, the latter is known not to have a fixed

72 A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge
University Press, 1998).
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point at finite values of λ. This tells us that the WZ term must have a crucial impact

on the RG flow. Suppose, then, we started renormalizing the model at small values of λ.

In this regime, the gradient term dominantly suppresses field fluctuations and we expect

the WZ term to be of little significance. Consequently, the RG flow will initially resemble

that of the standard SU(N ) model – towards larger values of λ. Eventually, however, λ

and the coupling constant i/12π of the WZ term will become of the same order. At this

point, at last, the coupling constant will interfere with the flow. As we know that λ =

8π defines a fixed point, we expect that it will simply truncate the flow of the coupling

constant.

To confirm this expectation, we need to go through the RG program, at least to one-loop

order. Fortunately, however, the RG analysis of the WZW model (see Problem 9.7.3) almost

exactly parallels that of the standard SU(N) model. As a result, we can infer the scaling

equation

dλ

d ln b
=

Nλ

4π

[
1−

(
λ

8π

)2
]
. (9.66)

This result confirms our qualitative expectation: the value λ∗ = 8π defines an (attractive)

fixed point at which the upwards flow of λ comes to an end. Using the methods of conformal

field theory, one can indeed show (see Witten’s original paper65) that λ∗ defines an exactly

solvable reference point. (This is important additional information inasmuch as our one-loop

analysis does not rigorously prove that λ∗ is a fixed point.)

WZW model of interacting fermions

All we have accomplished so far is a highly complicated reformulation of the trivial free

fermion problem. However, as we shall see in a moment, this exercise has been far from

useless: as with the abelian case, it will turn out that the boson language is of unsurpassed

efficiency when it comes to the discussion of particle interactions.

As usual, the most relevant particle interactions are mediated by certain four-fermion

operators. Important constraints on the structure of these operators follow, once again, from

the symmetries of the model. Above we have seen that the non-interacting model is invariant

under transformations by U(2Nc)×U(2Nc), where the first/second factor acts on spin and

color indices of the left-/right-moving fermions. However, the Hubbard–type interaction

Eq. (9.52) reduces this symmetry. Inspection of the interaction operator shows that chiral

symmetry gets lost (i.e. only transformations that act identically on the left-/right-moving

sector are permitted, U(2Nc) × U(2Nc) → U(2Nc)), and the remaining U(2Nc) → U(1) ×
SU(2)×SU(Nc) gets reduced to symmetry transformations that act on the charge/spin/color

sector separately.

There are a number of continuum interaction operators that are compatible with the

symmetries of the lattice system. Consider, for example, the bilinears jqs ≡ ψ†α
saψ

α
sa, j

s,i
s ≡

ψ†α
saσ

i,αβψβ
sa and jcs,j ≡ ψ†α

saTaa′ψα
sa′ , where T j ∈ u(Nc), j = 1, · · · , n2

c−1 are the generators

of U(Nc) transformations, and s = +/−. These are the left-/right-moving components

of the conserved currents jq,s,c = jq,s,c+ + jq,s,c− , generated by U(1), SU(2), and SU(Nc)
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transformations, respectively. As in the abelian case, interactions solely between left- or

right-moving fermions are largely inessential. However, the operators

λq = jq+j
q
−, λs = tr(js+j

s
−), λc = tr(jc+j

c
−), (9.67)

are physically relevant and compatible with the symmetries of the model. Another relevant

player is the “umklapp operator” λuk(ψ
α†
+aσ

αβ
2 ψ†β

+a) (ψ
α′
−a′σ

α′β′
2 ψβ′

−a′) + h.c.73 For the dis-

cussion of a few more allowed interaction operators, we refer to the original reference of

Affleck and Haldane.62

EXERCISE Show that the umklapp operator is invariant under the action of all three symmetry

groups.

Expressed in terms of the continuum fields, the Hund’s rules coupling Eq. (9.52) translates

to a sum of the interaction operators listed above. The question we now have to answer is

how these operators – which at sufficiently large strength will turn the free fermion model

into the Heisenberg model in which we are interested – affect the long-distance dynamics

of the model. Naturally, we shall address this question in the bosonized language developed

in the previous section. As a warm-up to the case of arbitrary spin, we shall begin with the

discussion of the colorless case, Nc = 1, i.e. the spin-1/2 chain.

Writing g = ei2φg′, where g′ ∈ SU(2) acts on the spin indices, and using Eq. (9.60) for

the bosonic representation of the currents, we obtain jq = − i√
2π

∂zφ and js = 1√
8π

g′−1∂zg
′

for the spin current. Reflecting its invariance under spin transformations, the bosonic rep-

resentation of the umklapp operator reads ∼ λuk cos 4φ.

EXERCISE To obtain the bosonic representation of the umklapp operator, substitute Eq. (9.63)

into its definition and obtain ∼ λuke
i4φtr(g′σ2g

′Tσ2)+h.c. ∼ λuk cos(4φ). Here the last equality

is best proven by using the representation g′ = exp(iv · σ).

The action generalized for the presence of these interaction operators takes the form

S[φ, g′] = S[φ] + S[g′], where

S[φ] =
1

2π
(1− λq)

∫
d2x

(
(∂φ)2 + Cλuk cos(

√
4φ)

)
,

S[g′] = SWZW[g′] + λs

∫
d2x tr(∂g′∂g′−1).

(9.68)

Notably, the action still decouples into a spin and a charge sector (the separation of spin

and charge characteristic of one-dimensional systems). Further, both S[φ] and S[g′] are old

acquaintances: S[φ] is the action of the two-dimensional sine–Gordon model. In Section 8.6

we have seen that, for λq < 0 (repulsive interactions), it flows towards a phase with a

mass gap. This flow is driven by the umklapp operator. What this tells us is that umklapp

scattering leads to the presence of an excitation gap for charge density waves. This gap

73 Recall that umklapp scattering is the scattering of two fermion states of opposite spin from one point of the
Fermi surface (±kF) to the other (∓kF). At half filling, kF = π/2a, the momentum transferred in this process
is of magnitude 2(π/2a− (−π/2a)) = 2π/a = G, where G = 2π/a is the reciprocal lattice vector. Since lattice
momentum is conserved only up to multiples of G, umklapp scattering (at half filling) is a permissible process.
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is nothing but the Mott–Hubbard gap present in the spectrum of interacting fermions

at half filling. (Recall that the presence of umklapp processes is tied to the case of half

filling.) Turning to the action S[g′], we note that the λs-perturbation merely renormalizes

the coupling constant of the gradient term of SWZW, 1/8π → (1/8π) + λs. However, in the

previous section, we have seen that this change does not alter the long-range behavior of the

system: irrespective of the value of the coupling constant, the model will flow back towards

the free fermion fixed point at λ∗ = 1/8π.

Summarizing, we have found that the Nc = 1 interacting fermion system builds up a

Mott–Hubbard gap for its charge excitations while the spin excitations are described by

a critical WZW theory. Now, our entire analysis was based on the presumed equivalence

(Nc = 1 interaction fermion system) ⇔ (S = 1/2 Heisenberg chain). The existence of long-

range excitations in the former then implies that the latter must be in an ordered phase

(since a disordered phase would be defined by the absence of long-range excitations). This,

however, is a result with which we are familiar.74 The truly interesting question is what

happens for larger values of the spin (i.e. larger values of Nc).

At Nc > 1, the structure of the theory gets significantly more involved. Referring for a

more detailed analysis to the original paper by Affleck and Haldane,62 we restrict ourselves

here to a qualitative discussion of the most relevant aspects.

� Consider a matrix field g′ ∈ SU(2) × SU(Nc).
75 Among the various interaction operators

there is one that drives excitations of the color sector into a massive phase. This means

that the soft excitations of the model can be parameterized as g′ = ĝ × 1Nc , where ĝ acts

in the spin sector. Substituting these configurations into the free fermion reference action,

we obtain SWZW[g′] = NcSWZW[ĝ], where the prefactor Nc arises from the tracing out

of the color sector. Remembering our discussion of the quantization of the WZ coupling

constant in Section 9.4.2, we identify this model as aWZWmodel of level k = 2Nc.

� Among the plethora of conceivable perturbations of the critical theory, one operator family

deserves special attention: tr(gn), where g ∈ SU(2). (Here, we are writing g instead of

ĝ for notational simplicity and n is some integer.) For two reasons, these are interesting

operators: firstly, they represent the most relevant perturbations of the theory (due to

the absence of derivatives); secondly, they relate to an important discrete symmetry of

the model. To understand why, let us return to the lattice version of the theory and

consider the fermion representation of the spin operator Sj
l = ψα†

l σαβψβ
l . Decomposing

the fermion into left- and right-moving components, ψl = eikFlψ+(xl) + e−ikFlψ−(xl),

where xl = la, we obtain Sj
l =

∑
s ψ

†
s(xl)σ

jψs(xl) + [(−)lψ+(xl)
†σjψ−(xl) + h.c.] =

tr([c(js++js−)+c′(−)l(g+g−1)]σj), where c and c′ are numerical constants. Here, we have

used the relation eilkfx = ei(π/a)la = (−)l as well as the bosonization identity Eq. (9.63).

The second term under the trace is of particular interest. It tells us that translation by

one site, l → l + 1, corresponds to a sign change of the field g. This observation can be

read in different ways. For example, contributions to the action that are not invariant

74 Recall that the S = 1/2 chain can be subjected to a Jordan–Wigner transformation whereupon it becomes a
model of spinless interacting fermions. The existence of gapless excitations (charge density waves) thus proves
the existence of long-range order in the spin chain.

75 We will ignore the gapped charge sector throughout.
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under g → −g explicitly break translational invariance on the lattice. Similarly, a

ground state that is not sign invariant cannot be translationally invariant, etc.

� After these preparatory remarks, let us return to the discussion of the operators tr(gn).

As we are not interested in modeling situations where the Hamiltonian explicitly breaks

translational invariance, only contributions with n even will be allowed. Physically, these

operators correspond to products of n left-moving and n right-moving fermion states.

In the case considered previously, Nc = 1, there is only one such contribution, namely

the backscattering operator discussed above. However, for Nc > 1, terms tr(g2n≤Nc) are

physically allowed. Let us, then, consider the action S[g] = NcSWZW + λ
∫
d2x tr(g2).76

Void of derivatives, the new contribution acts as a potential contribution to the action

(although it is still invariant under the SU(2) symmetry transformation g → h−1gh). This

being so, the physical behavior of the model crucially depends on the sign of the coupling

constant λ.

� For λ < 0, the term λ
∫
trg2 favors the mean-field configurations ḡ = 1 or ḡ = −1.

Both ground states break the discrete sign inversion symmetry g → −g and, therefore,

they cannot be translationally invariant. Before identifying the physical meaning of these

ground states, let us briefly discuss the issue of fluctuations. Writing g = eiφ
jσj/2ḡ and

expanding to quadratic order in φ, we obtain a mass term λ
2

∫
d2x (φj)2. This means

that spin fluctuations around ḡ are gapped. There is, indeed, one well known low-energy

state of the spin chain that displays these features, the dimer phase. In this phase

(see Fig. 9.15), spins at neighboring sites form spin singlets. Obviously, this state is not

invariant under translation by one site (while translation by two sites is a symmetry).

Further, there is no room for massless spin fluctuations, i.e. the system indeed shows an

excitation gap.

� We next discuss the complementary case, λ > 0. In this case, configurations ḡ with eigen-

values (i,−i) are energetically favored. There is a continuous family of such states, namely

ḡ = exp(iπn · σ/2), where |n| = 1. Again, these states break translational invariance

(g → −g). However, they also break SU(2) symmetry g → hgh−1. This means that, unlike

the dimerized case, the continuous spin rotation symmetry is spontaneously broken. Its

breaking of both translational and spin rotational invariance identifies ḡ as the Néel

state of the chain.

� To describe the physics of the Goldstone modes corresponding to the symmetry broken

state, we note that h exp(iπn ·σ)h−1 = exp(iπn′ ·σ), where the unit vector n′ = Rn and

R ∈ SO(3) is a rotation matrix canonically corresponding to the SU(2)-matrix h.77 Each

n′ defines a new ground state, i.e. we have identified the 2-sphere as the Goldstone mode

manifold.

EXERCISE Try to guess what the action of the Goldstone modes might be!

To identify the Goldstone mode action, we substitute the soft field configurations

exp(iπn(x) ·σ/2) = in ·σ into the action. It is straightforward to verify that the gradient

76 The operator tr(g2) can be shown to be the most relevant of the family.
77 To any element h ∈ SU(2), the prescription above assigns an element R ∈ SO(3). The correspondence is 2–1

and not 1–1 because both h and −h map onto the same R.
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(a) (b)

Figure 9.15 Dimerized phase of the spin chain (a) vs. Néel phase (b).

term of the WZW action simply becomes S0[in · σ] = Nc

8π

∫
d2x (∂n)2. As to the WZ

functional, we show in Problem 9.7.2 that NcΓ[in ·σ] = Nc

4

∫
S2 n·∂1n×∂2n = πNcStop[n],

i.e. the θ-term of the 2-sphere. Recalling that Nc = 2S, we conclude that, for large values

of S (this is where the massive fluctuations around the Goldstone mode manifold can be

neglected), the system is controlled by the action of the O(3) nonlinear σ-model with

topological angle 2πS,

S[n] =
1

2λ

∫
d2x (∂n)2 + 2πS Stop[n], (9.69)

the same S[n] identified earlier on semi-classical grounds as the low-energy action of the

spin chain.

This is now a good point to pause and consider what we have obtained. At first sight, it

seems as if nothing much has been achieved: as a result of a long series of derivations we

have arrived back at the semi-classical representation of the chain, the σ-model. However,

it turns out that it is the interplay between the WZW and the σ-model that enables us

to really understand the physics of the problem. To see this, let us consider the S = 1/2

chain in the presence of a next-nearest neighbor ferromagnetic coupling – admittedly an

artificial model but, for the sake of the present argument, this does not matter. One can show

that the long-range physics of this system is described by the O(3)-model with topological

angle 2πS = π. On the other hand, we might have approached the problem via the WZW

route discussed above. Within that context, the ferromagnetic perturbation turns out to be

irrelevant (see Affleck and Haldane62), i.e. the long-range physics of the system is described

by the critical free fermion WZW action. Comparing these two findings we can conclude

that

The O(3) nonlinear σ-model with topological angle π × (odd integer) is equivalent

to the SU(2) WZW action at critical coupling,

(although no explicit field theoretical proof of this equivalence is known). This was the last

missing piece of information needed to understand the long-range behavior of the spin chain.

To summarize, we have found that (see Fig. 9.16) the antiferromagnetic spin S chain can

be described in terms of a perturbed WZW action of level k = 2S. Depending on the sign

of the most relevant perturbation ∼ λ
∫

tr(g2) (which is set by the material parameters of

the problem), this model can be either in a globally gapped phase – the dimer phase of the

chain – or in a Néel phase. The fluctuations superimposed on the Néel phase are described

by an O(3) model with topological angle 2πS. For integer spin, this model flows towards a

strong coupling phase, i.e. the spin chain is in a disordered state. However, for S half-integer,
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spin S chain 

dimer phase

level 1 SU(2) WZW model
O(3) nonlinear σ-model with

topological angle 2πS

integer S

half integer S

massive phase
ordered phase

level 2S SU(2) WZW model

Figure 9.16 On the long-range physics of the antiferromagnetic spin chain. For a discussion, see
the main text.

it becomes equivalent to the level 1 WZW model at criticality, implying ordered behavior

of the chain.

Notice that none of the conclusions summarized above was established rigorously. More

often than not we had to trust in the principle of adiabatic continuity, i.e. the belief that the

physics of a system does not change qualitatively upon interpolating between the regime

of weak interactions (where various approximation schemes work) to the regime of strong

interactions (in which we are actually interested). Similarly, connections between differ-

ent theories were constructed on the basis of symmetry arguments and indirect reasoning

(rather than by “hard-boiled” calculations). In this way various pieces of evidence were

pieced together to form a network that was intrinsically consistent and made physical sense.

In recent years, this type of semi-quantitative research has become more and more prevalent

in various areas of condensed matter physics. This development is driven by the increas-

ing complexity of the questions and, relatedly, the absence of straightforward perturbative

schemes. In the next section, we shall turn to another problem field where such “detective

work” has been successful, the fractional quantum Hall effect.

9.5 Chern–Simons terms

As our third and last example of topological field theories with relevance to condensed

matter physics, we now turn to the discussion of Chern–Simons (CS) theories. However,

deviating from the strategy pursued in previous sections, this time we do not begin with

a formal analysis of the underlying geometrical framework. Instead, we directly turn to

a review of the master application of CS field theory in condensed matter physics, the

fractional quantum Hall effect. It will then turn out that, once we have left the qualitative

level and turned to the field integral description, we readily wind up in the basin of attraction

of CS field theory.
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9.5.1 Fractional quantum Hall effect (FQHE)

In Section 9.3.4 we interpreted the QHE as a topological phenomenon. Depending on the

chosen perspective, the integer number setting the Hall conductance can be interpreted

as the number of occupied edge channels or, more formally, as the number of instanton

excitations in Pruisken’s field theory. Both figures appear to be largely impervious to changes

in the parameters of the system.

In essence, the basic mechanism behind the formation of integer-valued Hall conductance

had been understood shortly after the discovery of the effect. It thus came as a surprise when

Tsui et al.78 discovered a sequence of plateaus at fractional values of the Hall conductance.

More specifically, it turned out that:

� Fractional values σxy = ν e2

h , ν ≡ n
m , of the Hall conductance are observed only in the

purest samples. This indicates that, unlike with the integer effect, disorder does not

stabilize the FQHE.

� Not every rational n/m qualifies as a plateau value. The most prominent plateaus are

observed for the “principal sequence” 1/m, where m is odd. More generally, plateaus have

been observed for n
m = p

2sp+1 , s, p ∈ N.79

� Curiously, it has turned out that, at certain even-denominator fractions (formally, the

limit p → ∞ in the hierarchy) the system largely behaves as if no magnetic field were

present at all! For instance, in the vicinity of ν = 1/2, pronounced Shubnikov–de Haas

oscillations (otherwise shown by Fermi liquids subject to a weak field) are observed.

At first sight, the coexistence of phenomena of that degree of complexity with the (seemingly

so robust) integer QHE may cause some consternation. But, then, let us recall that we are

considering an isolated Landau level at fractional filling! In other words, we are considering a

hugely degenerate quantum state that is only partially populated. Within that environment,

a macroscopic restructuring of the electron gas can be afforded at little cost (which will

be set by “residual” mechanisms such as electron–electron interactions and/or disorder

scattering). On the same footing, it is clear that perturbative expansions around any given

trial ground state will be pretty fragile. (Perturbations enjoy a huge phase volume while

“energy denominators” are small.)

Keeping these things in mind, it is perhaps no longer surprising that dramatic things hap-

pen in the fractionally filled Landau level. The considerations above suggest that elementary

electrons – subject to the full strength of Coulomb interactions, at fully “quenched” kinetic

energy – will hardly qualify as stable elementary excitations of the system. At the same

time, the appearance of Fermi-liquid-like states at least for some filling fractions suggests

that the dominant players in the game are elementary fermionic particles.

78 D.C. Tsui, H.L. Stormer, and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit,
Phys. Rev. Lett. 48 (1982), 1559–62.

79 In fact, the two-parameter “hierarchy” defined by the right-hand side of this equation still is not general enough
to account for all experimentally observed values. (The prominent exception is a fragile plateau at ν = 5/2.)
However, to explain these anomalous values of the Hall conductance, one has to keep track of the polarization
of the electron spin, an extra level of complexity which we would here rather avoid.
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(a) (b)

Figure 9.17 Illustrating the idea of the composite fermion approach. Imagine that an even number
of flux quanta constituting the magnetic field get tied to the electrons in the system. The new
composite particles (“electron+ (2n) flux quanta”) continue to be fermions. They only see the
remaining “free” flux quanta, i.e. a reduced external field (indicated by the lighter shading in part
(b)).

Remarkably, it is not at all difficult80 to conceive of a fermionic quasi-particle picture

wherein – at least at a mean-field level – the plethora of phenomena above admits a straight-

forward explanation: imagine the external magnetic field as a large number Nφ of flux tubes

piercing the plane of the two–dimensional electron gas (see Fig. 9.17). The ratio ν ≡ N/Nφ,

where N denotes the number of electrons, defines the filling fraction of the system. Since we

are working under “fractional” conditions, 0 < ν < 1, the number of flux quanta exceeds the

number of charge carriers.81 Now assume that, by some mechanism, each electron matches

up with an even number of flux quanta to form a composite particle. (By way of example,

consider ν = 1/3, in which case there would be enough flux quanta around to let every

electron pair with two flux tubes.) What can be said about the properties of these composite

objects?

� Firstly, they would still be fermions. To understand why, recall that the statistics of

particles can be probed by exchanging their position in space. However, our composite

particles and the original electrons differ only in the presence of an even number of integer

flux tubes. The flux tubes give rise to additional phase factors, so that our new particles

are fermionic: one speaks of composite fermions (CFs).

� TheCFs see an effectively reduced external field. For example, for ν = 1/3, each electron has

absorbed two flux quanta. Thus, the residual field seen by the CFs is three times lower than

theoriginal field. Inotherwords, thenumberof remainingfluxquanta,Nφ−2N = N , is equal

to the number of CFs. Forgetting for a moment about the origin of the composite particles,

we are considering a large number N of (composite) fermions subject to N flux quanta, i.e.

a situation where the integer QHE should arise. This picture suggests an interpretation of

the FQHE as an IQHE of composite fermions.82 In the specific case of a half-filled (ν = 1/2)

80 However, our discussion should not deceive the reader about the fact that the composite fermion picture rep-
resents the outgrowth of years of most intensive research!

81 If ν > 1, ν − [ν], where [ν] is the largest integer smaller than ν, sets the filling fraction of the highest occupied
Landau level and our discussion applies to that level.

82 Moregenerally, let us assume that every fermionbinds 2sfluxquanta to it. Further suppose thatN/(Nφ−2nN) = p,
i.e. that p Landau levels of the residual field are occupied. In this case, the CFs will also display the IQHE. This
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band,Nφ − 2N = 0, i.e. the CFs experience a mean-field of vanishing strength. This nicely

conforms with the experimental observation of Fermi-liquid-like behavior (noQHE) close to

half filling.

� We have seen in Section 9.3.4 that, when a flux quantum is adiabatically pushed through

an annular quantum Hall geometry, an electron charge flows from the inner to the outer

perimeter of the sample. In a way, the phase vortex created by the addition of the gauge

flux leads to an expulsion of electronic charge. Similarly, the flux tubes involved in the

construction of the CF picture effectively carry a positive charge ν. These “screen” the

charge carried by the bare electron, so that the CF is not exposed to the full strength of

the unit-charge Coulomb interaction.

In the history of the FQHE, the introduction of the CF picture by Jain83 was pre-

ceded by a number of other important developments. Shortly after the experimental dis-

covery of the effect, Laughlin84 proposed a trial wavefunction which, in a close-to-optimal

way,85 minimizes the Coulomb repulsion between the quasi-particles in the lowest Landau

level. Most of the concepts central to the subsequent introduction of the CF picture –

fractionally charged quasi-particles, incompressibility of the QH state, the importance of

correlations, etc. – have effectively been motivated by this trial wavefunction. Later, the

theory of the (many-body) CF system was formulated in terms of a Chern–Simons type

field theory.86 This effective field theory has become the basis of many subsequent analyses

of FQHE phenomena.

In this text, we shall turn the sequence of historical developments upside down: starting

from a field theoretical description, we shall identify the CF degrees of freedom and then

rediscover Laughlin’s wavefunction. Once these structures are in place, the computation of

the fractional Hall conductance will be little more than a straightforward exercise.

9.5.2 Chern–Simons field theory: construction

Consider the Hamiltonian of two-dimensional interacting electrons subject to a perpendic-

ular magnetic field of strength B: Ĥ = Ĥ0 + Ĥint where

Ĥ0 =

∫
d2x a†(x)

[
1

2m
(−i∂x +Aext)

2 + V (x)

]
a(x),

Hint =
1

2

∫
d2x d2x′ (ρ̂(x)− ρ̂0)V (x− x′)(ρ̂(x′)− ρ̂0).

happens for filling fractions ν = N/Nφ = p/(2sp+ 1). In essence, this simple picture explains the structure of the
rationals where the FQHE is observed.

83 J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63 (1989),
199–202.

84 R. B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged
excitations, Phys. Rev. Lett. 50 (1983), 1395–8.

85 For certain short-range correlated model interactions, the Laughlin wavefunction can even be shown to be an
exact ground state, see F. D. M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible
quantum fluid states, Phys. Rev. Lett. 51 (1983), 605–8.

86 A. López and E. Fradkin, Fractional quantum Hall effect and Chern–Simons gauge theories, Phys. Rev. B 44
(1991), 5246–62.
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Here, Aext = Bext

2 (y,−x)T is the vector potential of the external magnetic field (sym-

metric gauge), V is a single-particle potential created by the presence of, for example,

impurities, and Ĥint describes the particle interaction on the background of a constant

counter-density ρ0.

Singular gauge transformation

After our discussion in the previous section, we do not expect bare electrons to be a useful

reference for the construction of a low-energy field theory. Certainly, it will be more promis-

ing to start out from composite fermions as discussed above. As we have seen, a CF is an

electron with 2s integer flux tubes attached to it. Other fermions moving around the CF

along a circular contour will acquire the winding phase 2sφ indicative of the presence of 2s

flux quanta. Within a first-quantized framework, these phase vortices can be attached87 to

the position of each fermion by virtue of the “gauge transformation”

Ψ(x1, . . . ,xN ) → Ψ(x1, . . . ,xN )exp

⎡⎣−2is
∑
i<j

arg(xi − xj)

⎤⎦ , (9.70)

where Ψ is the many-body wavefunction, and arg(x) = tan−1(x2/x1) is the angle enclosed

between x ∈ R2 and the positive real axis. The transformation Eq. (9.70) becomes singular

whenever two coordinates xi → xj approach each other, i.e. it does not represent an ortho-

dox gauge transformation. In fact, the vector potential corresponding to the phase factor

above, a = −2s∂x
∑

i arg(x − xi) = −2s
∑

i
(x1−xi,1)e2−(x2−xi,2)e1

|x−xi|2 , creates a perpendicular

magnetic field88 of strength

b = εij∂xiaj = −4πs
∑
i

δ(x− xi), (9.71)

i.e. the field corresponding to 2sN flux tubes centered at the coordinates of the fermions.

Summarizing, the singular gauge transformation above converts the N fermions into a

system of CFs (fermions with 2s flux lines attached).

Derivation of the Chern–Simons action

Within the framework of the second quantization, the transformation Eq. (9.70) amounts

to the replacement

a†(x) → a†(x)exp
[
−2is

∫
d2x′arg (x− x′)ρ̂(x′)

]
,

where, as usual, ρ = a†a.

EXERCISE Check that, with this definition, a quantum many-body wavefunction |Ψ〉 ≡�N
i=1 a

†
λi
|0〉 transforms according to Eq. (9.70). (The index λ refers to the states |λ〉 of a suitably

chosen single-particle basis [e.g. a basis of Landau states].)

87 In fact, the attachment of these phases is equivalent to placing flux quanta at the winding center.
88 This would, of course, not be possible for a non-singular gauge transformation.
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Substituting the transformed operators into the Hamiltonian, one obtains

Ĥ0 →
∫

d2x a†(x)
[

1

2m
(−i∂x + Â)2 + V (x)

]
a(x),

where Â = Aext + â and

â(x) = −2s

∫
d2x′ (x1 − x′

1)e2 − (x2 − x′
2)e1

|x− x′|2 ρ̂(x′). (9.72)

At this stage it is convenient to switch to a real-time field integral representation. We

thus introduce the partition function Z = N
∫
D(ψ̄, ψ) eiS[ψ̄,ψ], where the action S[ψ̄, ψ] =

S0[ψ̄, ψ] + Sint[ψ̄, ψ], with

S0[ψ̄, ψ] =

∫
dt d2x ψ̄

[
i∂t + μ− 1

2m
(−i∂x +A[ψ̄, ψ])2 − V (x)

]
ψ,

Sint[ψ̄, ψ] = −1

2

∫
dt

∫
d2x d2x′ (ρ(x)− ρ0)V (x− x′)(ρ(x′)− ρ0),

is obtained in the usual way by trading field operators for coherent state amplitudes (specif-

ically, ρ = ψ̄ψ and A[ψ̄, ψ] ≡ Â(a,a†)→(ψ,ψ̄)). Thanks to the presence of the vector potential

A[ψ̄, ψ], the kinetic energy operator has become a pretty unpleasant object, depending

non-locally on up to six field amplitudes ψ, ψ̄. To avoid this complication89 let us shift

the nonlinearities implied by the singular gauge transformation to some other place in the

action. This can be achieved by promoting the vector potential to an integration variable

whose value is set so as to generate the flux pattern: i.e. multiply the partition function

by 1 = N
∫
Da⊥

∏
x,t δ (b(x, t) + 4πsρ(x, t)), where b = εij∂ia⊥,j and the subscript “⊥”

indicates that the integration extends only over transversal configurations of the vector

potential (that is, configurations obeying ∂iai = 0).90 As a result, we obtain the double

functional integral,

Z = N
∫

D(ψ̄, ψ)Da⊥
∏
x,t

δ (b(x, t) + 4πsρ(x, t)) exp
(
−S[ψ̄, ψ,a⊥]

)
= N

∫
D(ψ̄, ψ)Da⊥ Dφ exp

(
iS[ψ̄, ψ,a⊥]− i

∫
d2x dt φ

(
b

4πs
+ ρ

))
≡ N

∫
D(ψ̄, ψ)Da⊥ Dφ exp

(
iSCF[ψ, ψ̄,a⊥, φ] + i

θ

2
SCS[a⊥, φ]

)
,

where we have introduced the common shorthand notation θ ≡ 1/2πs, the action

S[ψ̄, ψ, a⊥] ≡ S[ψ̄, ψ]
∣∣
A[ψ̄,ψ]→Aext+a⊥

is obtained by replacing the fixed vector potential

89 Technically, it is not advisable to disturb the structure of the most basic operator of the theory.
90 This latter condition is necessary because the δ-distribution does not fix the longitudinal, or gauge, freedoms of

the potential. In two dimensions, the decomposition of the vector potential into longitudinal (ϕ) and transverse
(θ) components is achieved by setting ai = ∂iϕ + εij∂jθ.
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a[ψ̄, ψ] by the integration variable a⊥,91

SCF[ψ, ψ̄, a⊥] =
∫

d2x dt ψ̄

(
i∂t + μ− φ+

1

2m
(−i∂x +A)2 − V

)
ψ + Sint[ψ̄, ψ], (9.73)

SCS[a⊥] = −
∫

d2x dt φεij∂ia⊥,j , (9.74)

and A = Aext + a⊥. At this stage, we have fulfilled our intermediate goal; a field integral

representation has been derived wherein particles are tightly bound to fluxes. There is,

however, something unsatisfactory about the present representation of the theory: the way

the variables a⊥ and φ enter the action (9.74) suggests an interpretation of the theory as one

of fermions coupled to a (2 + 1)-dimensional electromagnetic gauge potential a⊥ ≡ (φ,a⊥).
However, the action SCF + SCS falls short of the two standard criteria any decent theory

of electromagnetism should obey: (i) in its present representation, it has nothing to say

about the longitudinal degrees of freedom a‖ of the vector potential and, relatedly, (ii) the

contribution SCS is not gauge invariant (which means that, using a covariant representation

x = {xμ} ≡ (x0 ≡ t, x1, x2), under a transformation aμ → aμ + ∂μf , μ = 0, 1, 2, it changes

value).

We now claim that the action SCS possesses a natural gauge-invariant extension, namely

the well-studied Chern–Simons action92

SCS[a] = −
∫

d3x εμνσaμ∂νaσ. (9.75)

Firstly, a straightforward integration by parts shows that SCS is gauge invariant. Secondly,

one verifies (exercise!) that, for a purely transverse configuration a⊥ = (φ, ∂2θ,−∂1θ),

SCS[a⊥] reduces to the form given in Eq. (9.74). Put differently, the prototypical action

(9.74) is but the gauge-invariant Chern–Simons action evaluated in a particular gauge,

namely the Coulomb or radiation gauge a‖ = 0. The gauge-invariant extension of the

theory is obtained by integration over all gauge sectors,

Z = N
∫

D(ψ̄, ψ) Da exp

(
iSCF[ψ̄, ψ, a] + i

θ

4
SCS[a]

)
, (9.76)

where

SCF[ψ, ψ̄, a] =

∫
d3x ψ̄

(
i∂0 + μ− φ+

1

2m
(−i∂x +Aext − a)2 − V

)
ψ+Sint[ψ̄, ψ], (9.77)

91 Notice that Eq. (9.72) is purely transversal, so that the replacement â → a⊥ makes sense.
92 Recall that space-time vectorial components are defined as xμ = (x0, x1, x2), while ∂μ = (−∂0, ∂1, ∂2).
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x1

x2

Figure 9.18 Different ways of realizing constructive particle exchange along transmutation paths.

is but the action (9.74) generalized to arbitrary gauge field configurations.93 In the following

we will investigate what information can be obtained from the functional integral Eq. (9.76)

about the physical behavior of the FQH system.

Particle exchange in two dimensions

Before embarking on this program, it may be of interest to discuss a few general aspects

of Chern–Simons field theory and particle transmutation statistics. In undergraduate

quantum mechanics courses we learn to discriminate between particles with bosonic and

fermionic statistics. On the formal level, the distinction between the two is met by consid-

ering the behavior of the wavefunction under an “exchange of particles,” namely

Ψ(. . . , x1, . . . , x2, . . .) = ±Ψ(. . . , x2, . . . , x1, . . .), (9.78)

for bosons/fermions respectively. In fact, however, this definition should leave one with a

certain feeling of uneasiness: what is actually meant by the phrase “exchange of particles”?

Surely, the definition above does not imply a concrete physical prescription, i.e. strictly

speaking it does not make sense.

To appreciate the fact that we are not just discussing a formal subtlety, let us try to give

the exchange of particles a more physical meaning. (The construction below follows closely

an argument from chapter I.2 of Wilczek.94) Consider two quantum particles occupying

positions x1, x2 in a two-dimensional system. Suppose we were interested in computing the

amplitude for these particles to re-occupy the positions x1, x2 after some time t. Clearly,

these amplitudes receive two distinct contributions, (i) x1 → x1, x2 → x2 and (ii) x1 →
x2, x2 → x1 where x → y denotes the single-particle amplitude for propagation from x → y.

Interpreting the second process as an operation of particle exchange, we are interested in

identifying a fixed relative phase between (i) and (ii). Thinking about the total transition

process in terms of a coherent double sum over single-particle paths, it is clear that con-

tributions from (i) cannot be continuously deformed into those of type (ii). The path-sum

falls into disconnected pieces, implying that there will be no variational (or classical) prin-

ciples telling us about the relative phase. Yet, quantum mechanics itself provides us with

93 As usual with gauge theories, the integral Eq. (9.76) must be interpreted in a qualified sense: the very fact that
the action is gauge invariant implies that the integration over all the different gauge realizations yields the –
infinite – volume of the gauge sector. To give the functional integral some meaning, a gauge fixing contribution
Sfix[a] has to be added to the action, i.e. a contribution that restricts the integration to a specific reference
gauge. Mostly, however, the presence of the gauge fixing action is not indicated explicitly.

94 F. Wilczek, Frictional Statistics and Anyons Superconductivity (World Scientific Publishing, 1990).
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an important clue: from the point of view of the first of the two particles, the net result of

a (i)-process will be a rotation of particle 2 (around the position of particle 1) by an angle

φ ∈ 2πZ. This is illustrated for φ = 0 (left) and φ = 2π (right) in Fig. 9.18. Conversely, a

(ii)-process corresponds to a rotation by φ ∈ (2Z + 1)π. (For φ = π, see the center of the

figure.)

Now, let us suppose that the topologically distinct processes differ by some phase κ(φ).

If we iterate transmutation processes, (x1, x2)
t→ (x2, x1)

t′→ (x1, x2), the winding angles

add while quantum mechanics requires that the topological phases multiply, κ(φ + φ′) =

κ(φ)κ(φ′), implying that κ(φ) = exp(iψφ), where ψ ∈ [0, 2] is some parameter.95

Specifically, a single exchange operation (x1, x2) → (x2, x1) corresponds to a phase eiπψ.

Let us compare this with the formal exchange definition above. According to Eq. (9.78),

a twofold exchange, (x1, x2) → (x2, x1) → (x1, x2), leaves the wavefunction unaltered. In

contrast, even the most elementary “physical” exchange procedure corresponds to a winding

angle φ = π and, therefore, to a topological phase exp(2πiψ). Only for the special choices

ψ = 0 (bosons) or ψ = 1 (fermions) do we recover the result of the formal exchange.

For a beautiful (yet non-path-integral-oriented) extension of the arguments above to a

physically meaningful exchange prescription for general N -particle systems we refer to the

seminal paper of Leinaas and Myrheim.96 Presently, all we need to appreciate is that a

constructive exchange operation appears to leave more room for non-trivial (i.e. �= 1,−1)

transmutation statistics. Particles with ψ �= 0, 1 have been dubbed anyons, where the

“any” stands for “any exchange statistics.” Skeptical readers may justly object that the

overwhelming majority of particles observed in physics are of either bosonic or fermionic

type. So where, then, does anyonic exchange statistics play a role? The short answer to

this question is that our discussion above was critically tied to the two-dimensional system.

In three or more dimensions, the winding angle φ is defined only mod 2π. For example,

in the three-dimensional world, you might use the dimension perpendicular to the paper

plane to contract the process shown in the right hand of Fig. 9.18, φ = 2π, to a φ = 0

type process. This forces ψ to be an integer, i.e. ψ = 0 (bosons) and ψ = 1 (fermions)

simply exhaust the list of possible options:97 in d �= 2 anyons do not exist.98 Yet, in various

two-dimensional applications, anyonic excitations do play an important role. For example,

a theoretical approach to the FQHE competing with the CF approach discussed in the text

is based on composite bosons.99 Although these are not anyons in the strict sense, here, too,

the exchange statistics has been externally modified (in this case to manufacture bosons

from fermions). Indeed, for a while, attempts were made to link anyons to the subject

95 Since φ is a multiple of π, ψ is defined only mod 2.
96 J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37 (1977), 1–23.
97 In d = 1, particles cannot be exchanged anyway, which accounts for the interchangeability of bosonic and

fermionic modelings.
98 Another argument can be developed to the same effect: according to the spin-statistics theorem, the exchange

statistics of particles is intimately tied to the quantization of angular momentum. The latter, in turn, is a
direct consequence of the SU(2) commutation relations [Ĵi, Ĵj ] = iεijkJk: the structure of the right-hand side
fixes the dimension of the irreducible representations of SU(2) and, thereby, the particle statistics. Yet, when
restricted to a two-dimensional world, the algebra of angular momentum becomes one-dimensional, i.e. abelian.
The absence of angular momentum quantization then implies that the spin statistics theorem loses its meaning.

99 S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field theory model for the fractional quantum Hall effect,
Phys. Rev. Lett. 62 (1989), 82–5.
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of high-temperature superconductivity.100 Further, there is compelling evidence that the

quasi-particle excitations in quasi-one-dimensional FQHE systems show fractional statistics,

etc. Finally, field theories of anyons have been considered as prototypical model systems of

matter fields coupled to massive gauge field excitations. These applications are motivation

enough to briefly discuss the quantitative theoretical framework of anyon dynamics in two-

dimensional systems.

Let us start out from the following functional setup:

Z =

∫
Da Dφ exp

[
iS0[φ] + i

∫
d3x j↑μa

μ
↓ +

iθ

4
SCS[a]

]
,

where either
∫
Dφ =

∫
D(ψ̄, ψ) may stand for a coherent state field integral, or

∫
Dφ =∫ ∏N

i=1 D(xi, ẋi) for a multiple path integral over the configuration space trajectories {xi}
of N particles. In the latter case (see the exercise below), j(x) =

∑N
i=1(1, ẋ

i)δ(x− xi(t)) is

the current density carried by the world lines of N particles.

EXERCISE Subject the first-quantized many-particle Hamiltonian Ĥ =
∑N

i=1(
p̂i2

2m
+ V (x̂i)) to

the singular gauge transformation (9.70). Then construct a path integral representation for the

transition amplitude 〈x1, . . . ,xN |Û(t)|y1, . . . ,yN 〉. Show that the decoupling of the nonlinear

gauge field contribution acquired by the Hamiltonian exactly parallels the field integral scheme

discussed above. As before, the action contains the Chern–Simons contribution Eq. (9.75) and a

current vector potential coupling. The latter is given by the canonical expression∫
dt

∑
i

(−φ(xi) + ẋi · ai(x
i)) ≡

∫
dt

∑
i

aμ(x
i)jμ(xi, ẋi) ≡

∫
d3x aμ(x)j

μ(x).

In the first line, j(ẋ) ≡ (1, ẋ) denotes the (2+ 1)-dimensional current carried by a point particle

while, in the second line, j(x) ≡
∑

i(1, ẋ
i)δ(x− xi) represents the corresponding current density.

(Upon space integration,
∫
d2x jμ(x) =

∑
i j

μ(ẋi).)

We next employ the path integral variant to show that the statistical angle θ controls

the transmutation statistics of the planar particle system. Let us consider a system of

N = 2 particles initially (t = ti) prepared to occupy the coordinates (y1, y2). We want to

analyze the transition amplitude 〈y1, y2|Û(tf , ti)|y1, y2〉 to reoccupy the same state at a time

tf . As in our qualitative construction above, the path integral describing this amplitude

receives contributions from topologically distinct pairs of trajectories. (The world lines of

two trajectories with winding angle φ = 0 (left) and φ = 2π (right) are shown in the figure.)

To explore the impact of the statistical vector potential on the transition amplitude it is

convenient to switch to an imaginary time formalism. Upon analytic continuation t → −iτ ,

a0 → ia0, the path integral for the two transition amplitudes assumes the form

Z =

∫
D(x1,x2) exp

[
−S0[φ] +

∫
d3x jμaμ − iθ

4
SCS

]
,

100 R. B. Laughlin, The relationship between high-temperature superconductivity and the fractional quantum Hall
effect, Science 242 (1988), 525–33.



9.5 Chern–Simons terms 579

x2 x2

x1 x1

t t

where jμ = i
∂xμ(τ)

∂τ δ(x − x(τ)) is the (2 + 1)-

dimensional imaginary time current. The most

important consequence of the transition t → −iτ ∈
−i[0, β] is that the initial and final points of our two

space-time trajectories now have to be identified

(the usual temporally periodic boundary conditions

of the imaginary time formulation101). A glance at

the figure shows that this leads to a pair of two

closed world line curves which, for a winding angle

φ = 2πn, are n-fold intertwined.102 Focusing on the

two most elementary variants φ = 0 and φ = 2π,

we next evaluate the Chern–Simons action on these

trajectory pairs.

We begin by integrating out the statistical vector

potential. For now, it will be convenient to perform

this integration in the radiation gauge, ∂μaμ = 0. (Remember that, to integrate over a gauge

field, a specific gauge has to be chosen.) This gauge can be selected by adding a gauge fixing

contribution α
∫
d3x (∂μaμ)

2 to the action. In the limit α → ∞, configurations with ∂μaμ no

longer contribute to the integration and the gauge is effectively fixed. Equivalently, one may

limit the integration from the outset so that only the two components of a(q) perpendicular

to q are integrated over. Either way, one finds (exercise) 〈aμ(q)aν(q′)〉a = 2
θ
εμνσqσ

q2 δq+q′ ,

where 〈· · · 〉a denotes functional averaging over the (imaginary time) Chern–Simons action.

Using this result, we obtain

Z =

∫
D(x1,x2) exp

[
−S0[φ] +

1

2

∫
d3x d3x′ jμ(x)jν(x′) 〈aμ(x)aν(x′)〉a

]

=

∫
D(x1,x2) exp

⎡⎣−S0[φ] +
1

2

∑
qq′

jμ(q)jν(q
′) 〈aμ(q)aν(q′)〉a

⎤⎦
=

∫
D(x1,x2) exp

[
−S0[φ] +

εμνσ
θ

∑
q

jμ(q)
qσ
q2

jν(−q)

]
.

Let us now try to understand the meaning of the last term in the action, the remnant of

the Chern–Simons integration. In fact, this term will turn out to be a topological invariant

which tells us about the degree of knotting of the two integration paths. To see this, let us

define

j̃μ ≡ −ijμ = ∂τ
∑
a=1,2

xa
μ(τ)δ(x1 − xa

1(τ))δ(x2 − xa
2(τ)),

where x = (τ, x1, x2). Temporarily forgetting about the time-like origin of the first compo-

nent, we may think of j̃ as the current vector field created by two loops in three-dimensional

101 For the present, however, the parameter β does not carry any physical significance.
102 For the moment, we do not consider odd multiples φ = (2n+1)π (corresponding to a particle exchange) since

for y1 �= y2 these cases do not have a meaningful imaginary time extension.
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x0

x2

x1

1

Figure 9.19 Two intertwined current loops in (2+1)-dimensional Euclidean space–time.

space, each carrying a current I = 1 of unit103 strength (see Fig. 9.19). The key point now

is that, according to Ampère’s law, bμ = −iεμνσ
qν
q2 j̃σ is the magnetic field created by

a static104 current distribution j̃. We may thus write the topological contribution to the

action as

Stop[x
1, x2] = − i

θ

∑
aa′

∫
d3x j̃aμ(x)b

a′
(x) = − i

θ

∑
aa′

∫
dτ

dxa(τ)

dτ
· ba′

(x)

= − i

θ

∑
aa′

∮
γa

ds · ba′
= − i

θ

∑
aa′

∫
Sa

dS · curl ba′
= − i

θ

∑
aa′

∫
Sa

dS j̃a
′

= −2i

θ
I(γa, γa′

).

Here, γa is a shorthand for the curve {τ, xa
1 , x

a
2}, and Sa a surface spanned by γa. The

crucial last line states that the topological action is proportional to the current I(γa, γa′
)

flowing through the area spanned by loop a′ due to the presence of loop a (see Fig. 9.19).

Obviously, I(γa, γa) = 0. For a �= a′, I(γa, γa′
) ∈ Z is equal to the number of times γa

pierces Sa′
or, in other words, the degree to which the two loops are intertwined.

Specifically, amplitudes where one of the particles encircles the other n times acquire a

phase κ(2πn) = e2πinψ, where ψ = 1/(πθ). We have thus found that the Chern–Simons

action does the book-keeping of the anyonic exchange phases discussed qualitatively above.

In fact, it is relatively straightforward to extend our present two-particle analysis to N

particles, or to the fully-fledged formalism of the coherent state field integral. In the specific

case of the Chern–Simons field theory of the FQHE, θ = (2πs)−1, i.e. fermions get trans-

formed to (composite) fermions. In general, however, θ may be tuned so as to generate any

form of exchange statistics.

103 To compute the strength of the current, one may integrate j̃ over a space-like surface x0 = τ = const.
intersecting the loop (see Fig. 9.19). The integral gives I =

∫
dx1 dx2 j̃0(x) = j̃0(τ, x1(τ), x2(τ)) = 1.

104 Keep in mind that, in our present picture, the 0-direction of space no longer carries the significance of time.



9.5 Chern–Simons terms 581

9.5.3 Chern–Simons field theory II: analysis

Equation (9.76) defines an exact reformulation of the FQHE field integral in terms of a

Chern–Simons action. Trusting that the CS gauge field degree of freedom is sufficiently

benign, we now proceed to our familiar program “mean-field + fluctuations.” We begin by

subjecting the Coulomb interaction Sint to a Hubbard–Stratonovich transformation,

eiSint[ψ̄,ψ] =

∫
Dσ e

i
2

∫
d3x d3x′ σ(x)[V −1(x−x′)δ(x0−x′

0)]σ(x
′)+i

∫
d3x (ρ̂(x)−ρ0)σ(x),

where V −1 denotes the inverse of the interaction kernel. Integration over the – now

Gaussian – CF degrees of freedom ψ then brings us to the partition function, Z =

N
∫
Da Dσ eiS[a,σ], where

S[a, σ] = −i tr ln

[
i∂0 + μ− φ− σ +

1

2m
(−i∇+A)2 − V

]
− ρ0

∫
d3xσ(x)

+
1

2

∫
d3x d3x′ σ(x)V −1(x− x′)δ(x0 − x′

0)σ(x
′) +

θ

4
SCS[a]. (9.79)

Starting from this representation, we now subject the theory to a mean-field analysis.

Mean-field equations

Let us seek for solutions of the equations

δS[a, σ]

δaμ(x)

∣∣∣∣
σ̄,ā

=
δS[a, σ]

δσ(x)

∣∣∣∣
σ̄,ā

= 0.

Explicitly performing the differentiation with respect to a0 = φ, one may see that the first

of these equations translates to the – by now familiar – form

ρ[ā, σ̄] =
1

4πs
b̄, (9.80)

where ρ[a, σ](x) = i(i∂0+μ−φ−σ+ 1
2m (−i∇+A)2−V )−1(x, x) denotes the local density

of CFs, and the notation emphasizes the functional dependence of ρ on a and the Hubbard–

Stratonovich potential σ. The differentiation with respect to the space-like components a

does not yield independent new information; all it gives us is two relations expressing the

compatibility of Eq. (9.80) with the continuity equation. Finally, differentiation with respect

to σ gives

σ(x) = −
∫

d2x′ V (x− x′) (ρ[ā, σ̄](x′)− ρ0)|x′
0=x0

. (9.81)

This equation also affords a transparent interpretation: on the mean-field level the potential

∼
∫
V [ρ− ρ0] created by local density fluctuations compensates the interaction potential. In

the absence of fluctuations of the external potential V (x), Eq. (9.80) and (9.81) possess the

obvious homogeneous solution

ρ[ā, 0] = ρ0 = const., σ = φ = 0, b̄ = 4πsρ0 ⇔ a = 2sνAext.

The particle density is homogeneous, implying that no mean-field interaction σ is generated.

The strength of the equally homogeneous CS mean-field b̄ is set by the average density ρ of
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composite fermions. As expected, the effective field seen by the CFs, B = Bext − b, turns

out to be lower than that of the external magnetic field. Specifically, for a half-filled band,

ν = 1/2, ρ0 = Bext/4π. In this case, CFs with two flux quanta attached, s = 1, experience

a mean-field B of vanishing strength.

Now let us investigate the stability of the mean-field with respect to fluctuations. In

many respects the N CFs behave like ordinary fermions subject to a perpendicular field

of strength B. In particular, they will undergo a Landau quantization where, typically, the

highest Landau level will be only partially occupied. Foreseeably, these generic configura-

tions will be highly susceptible to all sorts of fluctuation effects (i.e. poor candidates for

mean-field schemes): the massive degeneracy of the Landau levels leads to “small-energy

denominators,” so that even a slight perturbation/fluctuation may cause dramatic effects.

We thus expect our present mean-field scheme to work only in the vicinity of filling fractions

ν where an integer number p of CF Landau levels are fully occupied. These filling fractions

are determined by the equation νeff = p or Φeff = 2πN/p, where Φeff = BL2 denotes the

total effective flux piercing the system. Using the relation B = Bext−b where b = 4πsNL−2,

it is straightforward to solve these equations to obtain

ν =
2πN

BextL2
=

p

2sp+ 1
,

in agreement with the experimental observation. Summarizing, the mean-field analysis of

the Chern–Simons action confirms the basic expectation formulated on page 571 that

the fractional QHE can be interpreted as an integer QHE of composite fermions.

INFO There is one more aspect of the theory that can be explored on the level of plain mean-

field theory, namely the charge of the composite fermions. To this end, let us consider the

functional expectation value of the operator

O(x, x′) ≡
〈
ψ̄(x)ψ(x′)

〉
.

The correlation function O describes the amplitude for creation of a CF at a space-time point

x and its annihilation at x′. Let us regard this amplitude as the coherent sum over all paths γ

connecting x and x′. Due to the presence of the external magnetic field, each such contribution

acquires an Aharonov–Bohm phase φγ ≡ −qeff
:
γ
dxμ Aμ

ext, where the coefficient qeff defines the

effective charge of the particle. (As we shall see, the presence of the statistical field makes qeff
different from the bare electron value q = 1.) Performing the Gaussian integral over ψ, we

represent O as

O(x, x′) =

〈
〈x|(i∂0 + μ− φ− σ +

1

2m
(−i∇+A)2 − V )−1|x′〉

〉
a,σ

= 〈〈x|U(t, t′)|x′〉〉a,σ

=

〈∫
x(t)=x

x(t′)=x′
Dx exp

[
iS0[x, σ]− i

∫
dt (φ−A · ẋ)

]〉
a,σ

MF≈ const.×
∫

x(t)=x

x(t′)=x′

Dx exp

[
iS0[x, 0]− iqeff

∫
dx ·Aext

]
.
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In the first line, the angular brackets denote the functional averaging over the Chern–Simons

action (a) and the interaction kernel (σ). Further, we have made use of the fact that the (retarded)

real time Green function is equal to the time evolution operator U . The latter is represented

as a path (as opposed to a “field”) integral. The action of the path integral contains a field-

independent contribution S0, the coupling to the scalar field component φ, and the canonical

coupling to the vector potential A. Until now, all manipulations have been exact. In the crucial

last line, we then evaluate the (a, σ)-integration in a mean-field approximation. Assuming that

fluctuations (lumped into the “const.” in front of the integral) will be small, this amounts to a

substitution (a, σ) → (ā, 0) in the action. Using the fact that aext = 2sνAext, we arrive at the

last line, where the coupling constant

qeff = 1− 2sν =
1

1 + 2sp
, (9.82)

is identified as the effective charge of the CF. The line of reasoning above tells us that CFs

effectively carry fractional charge. The partial “screening” of the bare electron charge, 0 <

qeff < 1, is explained by the tendency of the phase vortices to expel electronic charge. In the

specific case, ν = 1/2 � qeff = 0, the electron charge becomes completely screened by 2s =

2 vortices, a result that led some authors105 to interpret the ν = 1/2 FQHE as a dynamic

phenomenon of charge dipoles – each comprising one electron (q = 1) and two vortices (“q =

−2× 1/2 = −1”).

Fluctuations

We now proceed to explore the role of quadratic fluctuations around the homogeneous

mean-field. In particular:

� What does the field theory have to say about the electromagnetic response of the system?

� What else (beyond the fractional transmutation statistics) does it tell us about the micro-

scopic features of the composite fermions?

To answer these questions, we do not have to go into much quantitative detail. Rather the

ubiquitous condition of gauge invariance and the presence of an excitation gap (an integer

number of CF Landau levels are fully occupied!) suffice to fix the structure of the quadratic

action.

Shifting a → ā + a and σ → σ̄ + σ, our goal is to expand the action to second order in

the deviations (a, σ). Let us begin by considering the interaction field σ. A shift a0 = φ →
φ + σ removes σ from the “tr ln” component of the action and makes it reappear in the

Chern–Simons action. More specifically, the Chern–Simons acquires a linear contribution106

SCS[a] → SCS[a]− 2
∫
d3xσb so that the total σ-expansion of the action now reads

S[a, σ] = S[a]− θ

2

∫
d3xσ(x)b(x) +

1

2

∫
d3x d3x′ σ(x)V −1(x− x′)δ(x0 − x′

0)σ(x
′).

105 A. Stern, B. I. Halperin, F. von Oppen, and S. H. Simon, Half-filled Landau level as a Fermi liquid of dipolar
quasiparticles, Phys. Rev. B 59 (1999), 12547–67.

106 Here b = εij∂iaj describes the fluctuations of the statistical magnetic field around its mean value b̄.
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After the straightforward Gaussian integration over σ we then obtain

S[a, σ]

∫
Dσ−→ S[a] +

1

2

∫
d3x d3x′ b(x)V (x− x′)δ(x0 − x′

0)b(x
′).

The physical interpretation of the induced term is obvious: in the CS theory, fluctuations

of the particle density are tied to fluctuations of the statistical magnetic field. Accordingly,

spatial inhomogeneities of the statistical magnetic field get penalized by an interaction

contribution, as described by the second term above. However, as far as the two basic

questions above are concerned, we may temporarily forget about this contribution (see,

however, the concluding remarks below) and focus attention on the action S[a].

Let us, then, consider the action S[a,A′] ≡ SCF[ā+ a+A′] + θ
4SCS[ā+ a], where

SCF[a] = −i tr ln

(
i∂0 + μ− a0 −

1

2m
(−i∇− a)2 − V

)
,

denotes the CF contribution to the action to which we have coupled a source potential A′.
As usual, a two-fold differentiation with respect to elements of A′ will later tell us about

the relevant transport coefficients of the system. Next, we develop the formal expansion

S[a,A′] ≡
∑

n S
(n)[a,A′], where S(n)[a,A′] is of total order n in a and A′. The zeroth-

order term S(0) describes the CF system on the mean-field level and will not be of further

interest to us. The first-order term S(1) does not contain a as we are expanding around a

stationary configuration. Moreover, its A dependence S(1)[A] = iAμj̄
μ is inessential because

the mean-field CF density j̄0 is structureless and a mean-field current j̄ = 0 does not flow.

However, at the second-order level S(2), things start becoming more interesting. Formally,

the second-order contribution can be represented as

S(2)[a,A′] =
1

2

∫
d3x d3x′ (a+A′)μ(x)Kμν(x, x

′)(a+A′)ν(x′) +
θ

4
SCS[a], (9.83)

where Kμν(x, x
′) = δ2SCF[a]

δaμ(x)δaν(x′)

∣∣∣
a=ā

. By construction, K is but the linear response kernel

discussed in Section 7.2. For the moment, all we need to recall about this object is that

it (a) is gauge invariant, ∂μK
μν = Kμν

←
∂ ν= 0, (b) is generally short-range (K(q) can be

expanded in powers of q), and (c) contains information about both the polarizability of the

medium and its conductivity.

Building on property (b), one can expand the second-order action in derivatives:

S(2)[a,A′] =
∑∞

l=0 S
(2,l)[a,A′], where S(2,l)[a,A′] is of lth order in derivatives (∂0, ∂x)

and, as usual, one may focus attention on the contribution with the least number of

derivatives. As discussed before, no gauge-invariant zero derivative term S(2,0) can be

constructed. However, with the contribution linear in the number of derivatives, S(2,1),

the situation is more tricky. While in general there are no gauge invariant contributions

of first order in q ↔ −i∇, terms nominally scaling as |q| for q → 0 exist. (For example,

in systems with a non-vanishing longitudinal conductivity, the action takes the form

S(2,1)[A′] ∼ A′
μ(q)

qμqν−q2

Dq2+iω A′
ν(−q), where D denotes the diffusion constant.) However, the

system at hand is an insulator, so that no such term is present.

Yet, in two-dimensional systems, there exists one more gauge-invariant first-order deriva-

tive term, namely the notorious Chern–Simons term! Thus, we are led to the preliminary
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identification S(2,1)[a,A′] = c SCS[a+A′]+ θ
4SCS[a], where the first contribution is obtained

by a first-order gradient expansion of the CF action while the second contribution has been

present from the outset. Of course, the coupling constant c remains to be determined. This

can be done by explicit – and quite laborious – calculation or by the following more elegant

construction: remembering that SCS[a] = −
∫
d3x εμνσaμ∂νaσ = −i

∑
q εμνσaμ(q)qνaσ(−q),

and comparing with Eq. (9.83), our findings so far translate to the relation

Kμν(q) = −i2c εμσνqσ +O(q2). (9.84)

INFO To fully describe the electromagnetism of the statistical gauge field, we should

also include the second-order derivative contribution S(2,2) in our analysis: gauge-invariant con-

tributions of second order are obtained as bilinears formed from elements of the field tensor

Fμν = ∂μa
′
ν−∂νa

′
μ. These terms are then combined into an action S(2,2) = 1

2

∫
d3x (εe′ ·e′+χb2),

where e′i = ∂0a
′
i − ∂ia

′
0 is the electric field derived from the gauge field a′, and ε and χ are

the electric and magnetic permeabilities, respectively. Physically, the action S(2,2) describes the

electric and magnetic susceptibility of the (mean-field) CF medium to the presence of gauge field

fluctuations. However, as far as our present objectives are concerned, these effects turn out to

be of lesser relevance.

On the other hand, we know the conductivity of the system relates to the linear response

kernel through the relation σ0
12 = −i limq→0 ω

−1K12(ω,q). For the present, we have to

interpret σ0
12 = p

2π as the quantized Hall conductivity carried by the CF system at the

mean-field level. Comparison with Eq. (9.84) then leads to the identification c = σ12/2, or

S(2,1)[a,A′] =
σ0
12

2
SCS[a+A′] +

θ

4
SCS[a].

Of course, σ0
12 does not coincide with the actual Hall conductance σ12 carried by the system –

within our present level of approximation, the latter is obtained by two-fold differentiation

with respect to A′ after the statistical gauge field has been integrated out. Now, there is

a simple general formula telling us what happens to two quadratic actions (such as the

Chern–Simons actions) upon integration over one half of the fields:

c1S[a+ b] + c2S[a]

∫
Da−→

(
c−1
1 + c−1

2

)−1
S[b]. (9.85)

EXERCISE Of course, Eq. (9.85) can be proven by straightforward Gaussian integration over a.

A more elegant procedure is based on the fact that, for any quadratic action, S[a, b]
∫
Da−→ S[b, ā[b]],

where ā[b] is the solution of the mean-field equation δaS[a, b]
∣∣
a=ā

= 0. To make use of this

identity, let us formally write S[a] = aTKa, where K is a non-degenerate107 operator kernel.

Find the solution of the mean-field equations corresponding to the left-hand side of Eq. (9.85)

and show that, upon substitution back into the action, we obtain the right-hand side. If you are

critical, you may object that our CS actions are not, in fact, non-degenerate: when evaluated on

107 Otherwise the field integration would create a headache!
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a pure gauge configuration aμ = ∂μf , they vanish. Nevertheless, you may convince yourself that

Eq. (9.85) remains valid if the integration over a is performed in some fixed reference gauge.

When applied to our action S(2,1) above, the auxiliary identity Eq. (9.85) tells us that

S(2,1)[a,A′]
∫
Da−→ Seff [A

′] ≡ σ12

2
SCS[A

′],

where σ12 ≡ ( 1
σ0
12

+ 2
θ )

−1. The terminology “σ12” is justified because, as seen above, the

constant in front of a CS source action is but theHall conductance of the system. Recalling

that θ = 1/2πs and σ0
12 = p/2π, we find

σ12 =
1

2π

p

1 + 2sp
,

i.e. we confirm the expectation of fractional Hall quantization. Let us recall that this result

is critically linked to the absence of a longitudinal conductance σ11. In our analysis

above, alluding to the striking analogies that exist between CFs and ordinary electrons

in a magnetic field, we simply postulated σ11 = 0 at CF filling p. (Technically, this hap-

pened when we said that the CF “tr ln” does not support a longitudinal current–voltage

relation.) However, one may note that the actual problem of Anderson localization of

CFs has not yet been attacked on a truly microscopic level. What makes the problem so

difficult is the massive inter-CF correlations induced by fluctuations of the statistical gauge

field. In the absence of disorder, the full extent of this correlation mechanism does not yet

become clear (at least not on the level of our simplistic “mean-field plus quadratic fluc-

tuations” analysis). However, once external inhomogeneities are present, things instantly

become more complicated. For example, a static impurity potential will be screened by an

inhomogeneous CF distribution. This creates an accumulation of statistical flux that in turn

acts as a scattering center of CFs, etc. Thus, we readily wind up with a full-blown problem

“interaction+disorder+ strong magnetic field” whose rigorous microscopic solution seems

to be elusive. Nonetheless, all evidence suggests that eventually the CFs will be localized,

so that the analogy (FQHE of fermions) ↔ (IQHE of composite fermions) remains valid.

INFO As mentioned above, the field theory approach to the FQHE was preceded by a number of

other developments. Perhaps most importantly, shortly after the experimental discovery of the

effect, Laughlin proposed a trial wavefunction – nowadays generally referred to as Laughlin’s

wavefunction108 – which did a fantastic job at explaining much of the phenomenology of the

FQHE.

With the benefit of hindsight (!) it is not difficult to motivate the structure of the Laugh-

lin wavefunctions from a few simple considerations. Consider a clean FQHE system at a filling

fraction ν = 1/(2s+1) belonging to the principal series.109 Any ground state many-body eigen-

function should (a) be built by superposition of single-particle states belonging to the lowest

108 R. B. Laughlin, Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged
excitations, Phys. Rev. Lett. 50 (1983), 1395–8.

109 For an extension to more complex fractions, see F. D. M. Haldane, Fractional quantization of the Hall effect:
a hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51 (1983), 605–8, and B. I. Halperin,
Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett. 52 (1984),
1583–6.
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Landau level, (b) optimally account for the effects of Coulomb repulsion (recall that the strongest

player in the Hamiltonian, the kinetic energy, is completely degenerate), and (c) obey Fermi

statistics.

Robert B. Laughlin 1950–
Theoretical condensed matter physicist.
Laughlin was awarded one third of the 1998
Nobel Prsize for his groundbreaking contri-
butions to the explanation of the FQHE. The
complementary share went to the experimen-
talists Horst L. Störmer (1949–) and Dan
C. Tsui (1939–) for the experimental discov-
ery of the effect.

As to (a), we have seen in Section 9.3.4

that any function of the form ψ(z) =

f(z)exp(−|z|2/(4l20)) automatically belongs

to the lowest Landau level, provided that

f(z) is analytic.110 So let us seek a many-

body wavefunction of the form

Ψ = F ({zi − zj})e
− 1

4l20

∑
i |zi|2

,

where F must depend only on differences of

coordinates (the translational invariance of

the clean system). The antisymmetry of the

wavefunction (c) requires that F is skew-

symmetric under any exchange zi ↔ zj .

Also, (b) F should vanish whenever two

coordinates approach each other. Taken

together, (a)–(c) motivate the ansatz

Ψ(z1, z̄1, . . . , zN , z̄N ) = N
�
i<j

(zi − zj)
me

− 1
4l20

∑
i |zi|2

(9.86)

with some a priori undetermined integer coefficient m. Equation (9.86) defines Laughlin’s wave-

function. Notice its high degree of universality (except for the integer m, the trial wavefunction

does not contain a single adjustable parameter!) and the simplicity of its structure. Nonetheless,

the ansatz Eq. (9.86) offers a straightforward explanation of many observable features of the

FQHE. Specifically, it can be shown that:

� The integer m relates to the filling factor as m = ν−1 = 2s+ 1.

� For certain types of short-range interaction, ψ is an exact ground state of the Hamiltonian.

Numerical analyses have shown that, even for the long-range Coulomb interaction, ψ has a

close to perfect overlap with the exact ground state.

� Single-particle excitations superimposed on ψ are gapped and fractionally charged.

� In fact, one may readily rewrite ψ in a way that suggests an interpretation in terms of composite

fermions; simply factor out a power (zi − zj)
m−1 to obtain

ψ =
∏
i<j

(zi − zj)
2sψ

∣∣
m=1

.

Here, ψm=1 is the wavefunction at an integer filling factor while the prefactor adds 2s winding

phases to each particle coordinate. In other words, the prefactor converts fermions to composite

fermions, so that ψ can be interpreted as a CF wavefunction at integer filling. Indeed, this

anticipates the field theoretical picture constructed above.

110 To be precise, in Section 9.3.4, we considered wavefunctions ψ(z) = f(z̄)exp(−|z|2/(4l20)) with an anti-
holomorphic prefactor. One can switch from one form to the other by inversion of the external field B → −B.
For notational simplicity, we shall use the analytic form throughout.
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9.6 Summary and outlook

This concludes our introduction to topological quantum field theory.111 We have seen the

way “large-scale” geometric structures of quantum fields may lead to intriguing physical

phenomena – phenomena, in fact, whose understanding required the application of the entire

spectrum of field integral techniques developed earlier in this text. Once again, this chapter

could provide no more than a very preliminary impression of the diversity of topology-related

quantum phenomena in condensed matter physics. Given the rapid development of the field,

we encourage readers motivated to deepen their knowledge in topological condensed matter

field theory to turn to the original literature. (For an excellent particle-physics-oriented

introduction we refer to Ryder.13 A comprehensive discussion of topological textures in

classical physics can be found in Efetov.112)

9.7 Problems

9.7.1 Persistent current of a disordered ring

In the main text we have argued that, contrary to a long-standing belief, the presence of disorder

does not conflict with the formation of persistent currents in normal metal rings. Here we support this

assertion by a microscopic calculation.

Consider a quasi-one-dimensional ring of circumference L � � and transverse extension

λF � L⊥ < �, where � is the mean free path. We assume that the ring is pierced by a

magnetic flux Φ. Using the fact that L⊥/L � 1, variations in transverse direction of the

vector potential A may be neglected, i.e. A = (Φ/L)e‖, where e‖ is the unit vector in

the longitudinal direction and units e = � = 1 are used. We are interested in the typical

value Ityp ≡
√
〈I2〉 of the persistent current I = −∂ΦF , where F is the flux-dependent free

energy.113 Assuming that the ring is metallic in the sense that its dimensionless conductance

g � 1, we will be content with computing the first contribution to Ityp in an expansion in

powers of g−1. For notational simplicity, we assume the flux Φ to be measured in units of

Φ0 throughout.

(a) Represent 〈I(Φ1)I(Φ2)〉 as a correlation function of two non-interacting Green functions.

Without going into quantitative detail, convince yourself that the dominant contribution

to the correlation function is given by the sum of diagrams shown in Fig. 9.20, where

the dots denote the operator
(
−i∂‖ − (Φ/L)

)
/m ≡ −v̂‖ and ∂‖ is the derivative along

the ring. Estimate the relative contributions of the four diagrams. (Hint: Recall the

derivation of low-momentum diffusion modes in Section 6.5. Owing to the thinness of

the ring, fluctuations of the diffuson/cooperon modes in the radial direction may safely

be neglected.)

111 Strictly speaking, the terminology “topological quantum field theory” is reserved for field theories whose
behavior is solely determined by topological terms. However, we use it here in a more liberal sense to denote
field theories where topological aspects play a significant role.

112 K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1996).
113 In the presence of static disorder, the sign of I sensitively depends on the impurity configuration, i.e. 〈I〉 � Ityp

is much smaller than the typical value of the current for a fixed impurity configuration.
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c1 c2 d1 d2

Figure 9.20 Four diagrams contributing at leading order to the correlation function 〈I(Φ1)I(Φ2)〉
of the persistent current in a disordered ring.

(b) To quantitatively compute the correlation function, we employ the formalism of the

field integral. Using the fact that F = −T limR→0
1
R (ZR − 1), construct a generaliza-

tion of the nonlinear σ-model action S[Q] suitable to compute the current correlation

function. (Hint: Introduce a two-component index t = 1, 2 discriminating between the

two currents, and derive the form of the vector potential by minimal substitution, cf.

Eq. (6.64), i.e. by recalling that the flux dependence of the Hamiltonian may be formally

removed by a gauge transformation.)

(c) As in Problem 8.8.4, introduce the parameterization Q = eiWΛe−iW = Λ(1 − 2iW −
2W 2+· · · ), where the generatorsW are given in Eq. (8.53) (block structure in Matsubara

space). Notice that B = {Bnatσ,n′a′t′σ′} are matrices in Matsubara (n), replica (a),

current (t), and time-reversal (σ) spaces. Expand the action to second order in B. It is

convenient to split B = Bd + Bc into contributions diagonal and off-diagonal in time

reversal space. Explore the symmetries of the constituent matrices Bd,c and perform

the Gaussian integrals. Show that

〈I(Φ1)I(Φ2)〉 � ∂2
Φ1,Φ2

T 2
∑

q,ωn>0,ωn′<0

Γq−(Φ1−Φ2)/L,nn′ +(Φ1−Φ2 → Φ1+Φ2), (9.87)

where Γqnn′ ≡ 1
2πντ

[
Dq2 + |ωn − ωn′ |

]−1
is the diffusion mode.

(d) The final step in the evaluation of the correlation function, the summation over

q, ωn, ωn′ , is a good exercise in executing tricky integrals (here defined as integrals

which have to be simplified by physically motivated approximations).

EXERCISE Differentiate with respect to the flux before doing the frequency/momentum

summations; identify four contributions corresponding to the diagrams above in Fig. 9.20.

What prevents the expression above from vanishing is the discreteness of the momentum

sum; were we able to approximate the sum by an integral, a shift q → q + Φ/L would

remove the flux dependence of the integrand. The validity of an integral approximation

in turn depends on the value of |ω|. For |ω| > (2π)2D/L2 ≡ Ec much larger than

the magnitude of the lowest non-vanishing quantized q-mode (physically, the Thouless

energy, i.e. the inverse time of diffusion around the ring), many modes contribute to the

integral and a continuum approximation is valid. Thus, the dominant contribution to
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the correlation function comes from frequencies |ω| < Ec, for which the discreteness of

the sum really matters.114

Carry out the sum over momenta by the methods otherwise employed in performing

frequency summations. Approximate the subsequent sum over Matsubara frequencies

|ω| < Ec by an integral. Show that, for small values of the flux, Ityp ∼ EcΦ(− ln(Φ))1/2.

(Hint: Do not try to do the frequency integral rigorously; keeping the relevant infor-

mation on board, simplify the integrand to obtain a manageable integral. As to the

q-summation, use the freedom to do the flux derivatives before or after the summation

to obtain a contour integral that is as simple as possible.)

The most important feature of this result is that it depends only algebraically on the

disorder concentration, i.e. through EC ∼ D ∼ τ . In contrast, the long-standing yet

erroneous expectation that impurity scattering destroys the phase coherence required to

maintain a stable persistent current inevitably leads to the prediction Ityp ∼ exp(−L/�).

For experimentally “realistic” values L/� = O(102), the difference between the two

results is dramatic. Irritatingly, the actually observed value of the current turns out to

be roughly two orders of magnitude larger than our result above. Although the origin of

this discrepancy is unknown, it is clear that it cannot be resolved within the framework

of a non-interacting theory.

Answer:

(a) Using the fact that the free energy of a non-interacting Fermion system is given by

F = −T
∑

n tr ln(iωn − Ĥ), where Ĥ = 1
2m (p̂ −A)2 + V̂ and V̂ represents the single-

particle potential of the problem (the sum of disorder and confining potentials), we

obtain I(Φ) = −T
∑

n tr(Ĝn∂ΦĤ) = T
L

∑
n tr(Ĝnv̂‖). Expanding the Green function in

the impurity operator and constructing ladder diagrams at one-loop order, we identify

the two cooperon (c1 and c2) and two diffuson (d1 and d2) diagrams in Fig. 9.20.

Focusing on the cooperon sector, we note that the ladder diagram depends only on the

sum q−(Φ1+Φ2)/L of the fast momenta p−(Φi/L)e‖ carried by the Green functions.115

More specifically, an individual cooperon ladder contributes a factor (see Section 6.5)

∼ Γq−(Φ1+Φ2)/L,nn′ ≡ 1
2πντ

[
D(q − (Φ1 +Φ2)/L)

2 + |ωn − ωn′ |
]−1

. Up to constants, the

contribution of diagram c1 is thus given by Γq−(Φ1+Φ2)/L,nn′ . Turning to diagram c2,

we need to take into account the fact that the vector vertices ∼ v‖ indicated by the dots

are now integrated independently over the fast momenta (because they are separated

by impurity lines; recall the momentum structure of a ladder diagram). In the limit of

zero momentum difference, q − (Φ1 + Φ2)/L → 0, the two Green function insertions

carrying a dot vanish (think about it). This means that diagram c2 will be proportional

114 This statement conforms with the expectation that the minimal time t ∼ ω−1 required to sense the flux
through a disordered ring is the diffusion time, i.e. the time for a quantum particle to traverse the ring at least
once.

115 Due to the thinness of the ring, fluctuations of the cooperon in the transverse direction are negligible, i.e. the
momentum q is a scalar quantity measuring fluctuations in the longitudinal direction.
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to ∼ (q − (Φ1 + Φ2)/L)
2Γ2

q−(Φ1+Φ2)/L,nn′ , where the factor Γ2 accounts for the two

ladders. The diffuson diagrams d1, d2 are obtained by replacing Φ1 +Φ2 → Φ1 − Φ2.

(b) Defining Z =
∫
D(ψ̄, ψ) exp(−S[ψ̄, ψ]) where

S[ψ̄, ψ] =

∫
ddr dτ ψ̄at(∂τ + Ĥ(At)− μ)ψat,

and At = (Φt/L)e‖, we have the representation 〈I(Φ1)I(Φ2)〉 = limR→0
T 2

R2 ∂
2
Φ1,Φ2

Z.

All we need to do to deduce the structure of the low-energy action is to notice that

the composite index (a, t) can be identified with a “replica index” of doubled dimension

2R. Noting that the flux dependence of the Hamiltonian may be formally (i.e. at the

price of changing boundary conditions) removed by the transformation ψ → eiΦtr‖ ,

where r‖ is the coordinate along the ring, and recalling the discussion above Eq. (6.64),

we conclude that the action is given by S[Q] = πν
2

∫
dr‖ tr

[
D
4 ((∂ − i[A, ])Q)

2 − ω̂Q
]
,

where the vector potential A = {δat,a′t′(Φt/L)} ⊗ σtr
3 .

(c) Using the symmetry relation W = −σtr
2 Wσtr

2 ⇒ BT = −σtr
2 B

†σtr
2 , we verify that

Bd = Etr
11bd − Etr

22b
∗
d, Bc = Etr

12bc + Etr
21b

∗
c ,

where bd,c = {bnat,n
′a′t′

d,c } are complex matrices. Substituting this representation into

the action and expanding to quadratic order, it is a straightforward matter to obtain

S(2)[B,B†] =
L

Tτ

∑
q,n>0,n′<0

tr
(
(bd)

tt′
nn′Γq−(Φt−Φt′ )/L,nn′(b†d)

t′t
n′n

)
+(bd → bc,Φt − Φt′ → Φt +Φt′).

We finally integrate over the fields bd,c and arrive at

Z =
∏

q,n>0,n′<0

(Γq−(Φ1−Φ2)/L,nn′)R
2

+ (Φ1 − Φ2 → Φ1 +Φ2),

where the factor of R2 counts the independent replica channels, constant factors

CR2 R→0→ 1 have been omitted, and we also omitted those contributions to the integral

that depend exclusively on Φ1 or on Φ2 (as they do not contribute to the two-fold

derivative limR→0 R
−2∂2

Φ1Φ2
[check!]). Differentiating with respect to the flux and

sending R → 0, we obtain Eq. (9.87).

(d) Our strategy will be to do the momentum sum by contour integral methods. As it is not

convenient to integrate over a function containing branch cuts (such as our logarithm), we

do one of the flux derivatives, ∂Φ1 , say, first. Focussing on the diffuson contribution, and

introducing the shorthand notation Φ = Φ1 − Φ2, |ω| = |ωn − ω′
n|, we have

∂Φ2L
−1

∑
q

D(q − Φ/L)

D(q − Φ/L)2 + |ω| = ∂Φ2

1

4πi

∮
dz coth(zL/2)

D(−iz − Φ/L)

D(−iz − Φ/L)2 + |ω|

= −1

2
∂Φ2

Im coth([(|ω|/Ec)
1/2 + iΦ]/2),
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where the integration contour is a circle at infinity avoiding the two poles of the inte-

grand.116 Notice that our result is 2π-periodic in the flux Φ, as it should be.

Turning to the frequency summation, we use the fact that |ω|/Ec < 1 to approx-

imate coth([(|ω|/Ec)
1/2 + iΦ]/2) � 2[(|ω|/Ec)

1/2 + i(Φ mod 2π)]−1. This leads to the

expression

∂2
Φ1Φ2

T 2
∑
q,n,n′

Θ(n)Θ(−n′)Γq−Φ/L,nn′ � −∂Φ2(2π)
2 Im

∫ Ec

0

dω
ω

(|ω|/Ec)1/2 + iΦ

= ∂Φ2(2πEc)
2Φ

∫ 1

0

dx
x

x+Φ2
= (2πEc)

2∂Φ2

(
Φ− Φ3 ln

(
Φ2 + 1

Φ2

))
.

For small values of the flux, the logarithm can be approximated as − ln(Φ2) and

∂Φ2Φ
3 ln(Φ2) � 3Φ2 ln(Φ2). Using this approximation and adding the cooperon contri-

bution, we obtain

〈I(Φ1)I(Φ2)〉 � −(2πEc)
2
(
3(Φ1 − Φ2)

2 ln((Φ1 − Φ2)
2)− 3(Φ1 +Φ2)

2 ln((Φ1 +Φ2)
2)
)
.

Setting Φ1 = Φ2 we arrive at the required result.

9.7.2 Working with the SU(N ) Wess–Zumino term

In this problem, we develop some of the amazing mathematical features of the SU(N ) WZ term

Eq. (9.58). The problem also illustrates the superiority of the coordinate-free calculus of differential

forms in topological quantum field theory. (Expressed in the standard languages of calculus, all formulae

below become intolerably messy – not to mention the fact that the underlying structures are much more

difficult to understand!)

(a) WZ terms generally originate from a closed (but only locally exact) differential form on

the target manifold ω. Show that, on SU(N), the form ω = tr(g−1dg∧g−1dg∧g−1dg) is

closed. (Why is it only locally exact? This question will be addressed in part (c) below.)

(b) Verify Eq. (9.61). Let us try to understand the normalization of the WZW action.

To start with, let us recall a statement from group theory stated in the Info block on

page 549: as far as topology is concerned, the subgroup SU(2) ⊂ SU(N) preempts the

structure of SU(N), i.e. without loss of generality, we may restrict our discussion to the

SU(2) WZ action.

We next turn to the normalization of the WZW action. To start with, let us consider

S2 as the boundary of the northern hemisphere S3+ of the 3-sphere. We define the

WZW term by integration over S3+.117 To parameterize S3+, we introduce a third

coordinate x3 (in addition to the two coordinates (x1, x2) parameterizing S2), such that

x3 = 0 defines the north pole and x3 = π/2, the equatorial plane, S2. For any field

g(x1, x2) ∈ SU(2), the WZW action then becomes Γ+[g] = iN
∫ π/2

0
dx3 Γ[g, x3], where

116 In spite of the weak convergence ∼ z−1 of the integrand at large values of z, it is permissible to do the integral
in this manner: the second flux derivative implicitly levels the decay up to ∼ z−2.

117 Topologically, this domain is equivalent to the three-dimensional unit ball B3 used in the text (just as the
northern hemisphere of the 2-sphere is topologically equivalent to the unit disk B2).
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Γ[g, x3] ≡
∫
dx1 dx2 εμνσ tr(g−1∂μgg

−1∂νgg
−1∂σg), μ, ν, σ = 1, 2, 3, and g(x1, x2, x3)

is a smooth extension of g(x1, x2) from S2 to S3+. But, of course, it would have been

just as good to take the southern hemisphere S3− as our reference domain. To explore

the consequences of this ambiguity, we extend the definition of the third coordinate in

such a way that x3 = π corresponds to the south pole of S3. In this case, the WZW

action would assume the form Γ−[g] = −iN
∫ π

π/2
dx3,Γ [g, x3], where Γ[g, x3] is defined

as above (albeit for an extension g(x1, x2, x3 < 0).

For any reference field g(x1, x2), the ambiguity,

Γ+ − Γ− = iN
∫ π

0

dx3

∫
dx1 dx2 εμνσtr(g−1∂μgg

−1∂νgg
−1∂σg)

!
= 2πn,

must be an integer multiple of 2π.118 Consider, thus, the field g(x1, x2) ≡ in(x1, x2) ·σ,
where n(x1, x2) is a unit vector. As its extension into the northern/southern hemisphere,

we choose g(x1, x2, x3) = cos(x3) + i sin(x3)g(x1, x2) = exp(ix3n(x1, x2) · σ) ∈ SU(2).

This is an SU(2)-instanton, i.e. a mapping S3 → SU(2) that cannot be continuously

deformed to the unit mapping.

(c) Show that Γ+[g] − Γ−[g] = iN24π2 × (integer), which enforces N = 1/12π as the

normalization of the WZW action. As a corollary, we note that the form ω on which

all of our discussion is based cannot be globally exact. (If it had been, Stokes’ theorem

would imply a vanishing of the integral over the boundary-less manifold S3.)

(d) Show that, for the particular reference configuration considered in part (c), g = in ·σ ∈
SU(2), the WZW action reduces to the θ-term for the unit-modular field n ∈ S2 :

Γ[in · σ] = πStop[n], where Stop[n] =
1
4π

∫
S2 d

2x n · (∂1n× ∂2n).

Answer:

(a) Using the fact that g−1dg g−1 = −dg−1 (why?) the form ω can be rewritten as ω =

tr(dg−1∧dg∧dg−1 g), i.e. dω = −tr(dg−1∧dg∧dg−1∧dg). To show that this expression

vanishes, one may make use of the fact that, for arbitrary matrix-valued forms, tr(ω1 ∧
ω2) = (−)deg(ω1)deg(ω2)tr(ω2 ∧ ω1).

119 Applied to dω, this yields dω = +tr(dg ∧ dg−1 ∧
dg ∧ dg−1) = tr(dg−1 ∧ dg ∧ dg−1 ∧ dg) = −dω, where in the last step we applied the

formula g−1dg = −dg−1 g to all derivatives.

118 Geometrically, this is the integral of the differential 3-form g∗ω (i.e. the pullback of the SU(2) form ω by the
field g to a form on S3) over S3.

119 Proof: tr(ω ∧ η) =
∑

ij ωij ∧ ηji = (−)deg(ω)deg(η) ∑
ij ηji ∧ ωij = (−)deg(ω)deg(η)tr(η ∧ ω).
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(b) We want to explore what happens to the integral Γ[g] = − i
12π

∫
B3 g

∗ω upon variation

g → eW g � (1 +W )g. Using the relation g−1dg → g−1dg + g−1dW g, we obtain

Γ[(1 +W )g]− Γ[g] � − i

4π

∫
B3

tr(g−1dW g ∧ g−1dg ∧ g−1dg)

=
i

4π

∫
B3

tr(dW ∧ dg ∧ dg−1) =
i

4π

∫
B3

d
[
tr(W ∧ dg ∧ dg−1)

]
=

i

4π

∫
S2

tr(W ∧ dg ∧ dg−1),

where, in the last line, we have made use of Stokes’ theorem.

(c) By an elementary rearrangement of fields,

Γ+ − Γ− = 3iN
∫ π

0

dx3

∫
dx1 dx2 εijtr(g∂3g

−1 ∂ig ∂jg
−1),

where the coordinates i, j = 1, 2. A straightforward calculation shows that g∂3g
−1 =

−in ·σ. Using the auxiliary identities ∂ig = i sin(x3)∂in ·σ and tr(n1 ·σ n2 ·σ n3 ·σ) =
2in1 · (n2 × n3), we thus obtain,

Γ+ − Γ− = 6iN
∫ π

0

dx3 sin
2(x3)

∫
dx1 dx2 εijn · (∂in× ∂jn)

= 6iπN
∫

dx1dx2n · (∂1n× ∂2n) = 24iπ2 × (integer),

where the integer is the number of times the unit vector n wraps around the unit sphere.

(d) By analogy with the calculation performed in (c), we obtain Γ+[in · σ] = Γ+ =

6iπN
∫
dx1 dx2 n · (∂1n× ∂2n) = πStop[n].

9.7.3 Renormalization group analysis of the SU(N) Wess–Zumino model

Before embarking on this problem, it is helpful to recapitulate the RG analysis of the SU(N ) nonlinear

σ-model discussed in Section 8.5. We want to study the RG flow of the SU(N ) WZW model, as specified

by Eq. (9.65). As in our previous analyses of nonlinear σ-models, we can split a general field configuration

g = gsgf into a slow and a fast part, and expand the latter as gf = 1 + W + W 2/2 + · · · , where
W ∈ su(N ), i.e. W lives in the Lie algebra su(N ) (the algebra of anti-Hermitian traceless matrices).

To compute the one-loop RG equations, we need to expand the action to quadratic order in W and

compute all contributions to the functional integral that contain (a) one fast momentum integration

and (b) no more than two derivatives acting on a slow field.

(a) Show that the expansion of the action S[gsgf ] to second order in the generators takes

the form S[gfgs] = S[gs] + S[gs,W ] + S(2)[W ], where

S(2)[W ] = − 1

λ

∫
S2

d2x tr(∂μW∂μW ),

S[gs,W ] = − 1

λ

∫
S2

d2x tr

[(
g−1
s ∂μgs −

iλ

8π
εμνg

−1
s ∂νgs

)
[∂μW,W ]

]
.

(9.88)
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(b) One-loopcorrections to theactionareobtainedbyexpanding the functional to secondorder

in S(2)[gs,W ] and integrating over W : S[g] → S[gs] − 1
2 〈S[gs,W ]2〉W . Use the results of

Section 8.5 (in particular those derived in the exercises on page 463) to confirm that (i) only

the gradient term of the action is renormalized and (ii) the RG equation for its coupling

constant is given by Eq. (9.66).

Answer:

(a) The first line of Eq. (9.88) and the first term in the second line are obtained by sub-

stitution of gsgf into the gradient term of the action (9.57) and expanding to second

order in the generators W . The second term in S[gs,W ], a descendant of the WZ action,

is best derived in the language of differential forms: substitution of (gsgf)
−1d(gsgf) =

g−1
f (g−1

s dgs+(dgf)g
−1
f )gf into the pullback (gsgf)

∗ω = tr(g−1dg∧ g−1dg∧ g−1dg)|g=gsgf

gives

(gsgf)
∗ω = g∗s (ω) +

3

2
tr(dg−1

s ∧ dgs ∧ [W,dW ]) + 3tr(dW ∧ dW ∧ g−1
s dgs) +O(W 3)

= g∗s (ω) +
3

2
d
[
tr([W,dW ] ∧ g−1

s dgs)
]
+O(W 3).

Application of Stokes’ theorem thus leads to

Γ[gsgf ] = − i

12π

∫
B3

(gsgf)
∗ω = Γ[gs]−

i

8π

∫
B3

d
[
tr([W,dW ] ∧ g−1

s dgs)
]
+O(W 3)

= Γ[gs]−
i

8π

∫
S2

tr([W,dW ] ∧ g−1
s dgs) +O(W 3)

= Γ[gs]−
i

8π

∫
S2

d2xεμνtr([W,∂μW ] ∧ g−1
s ∂νgs) +O(W 3),

where the O(W 2) term appears as the second contribution to the action S[gs,W ].

(b) Defining Φμ ≡ g−1
s (∂μ + iλ

8π εμν∂ν)gs, the action S[gs,W ] assumes the form S[gs,W ] =
2iLd

λ

∑
pq pμtr(ΦμΦμ). But for the difference in the definition of the field Φ, this is equal

to the fast–slow action of the standard SU(N) model. Using the results derived in the

exercises on page 463, we thus obtain

−1

2
〈S[gs,W ]2〉W = −N ln b

8π

∫
d2x tr(ΦμΦμ)

= −N ln b

8π

(
1−

(
λ

8π

)2
)∫

d2x tr(∂gs∂g
−1
s ).

This result confirms that only the gradient term in the action is renormalized. By

proceeding in direct analogy to the discussion of Section 8.5, it is a straightforward

matter to derive the corresponding RG equation. The result is given by Eq. (9.66)



596 Topology

D

∂D

h(x)

v

V

x⊥

x

Figure 9.21 On the formation of surface wave excitations in an FQHE droplet. For an explanation,
see the main text.

9.7.4 Fractional quantum Hall effect: physics at the edge

In Section 9.3.7 above, we have seen that the bulk physics of an integer quantum Hall system is intimately

connected to thatof itsboundaries.Theseconnectionscouldbedisclosed frombothdirectphysical reasoning

(the essence of the Laughlin–Halperin semi-phenomenological approach) and an analysis of the behavior of

the microscopic theory under gauge transformations. Following the seminal work of Wen,120 here we show

that an equally close connection between bulk and boundaries exists for the FQHE. Again, we will be able to

deduce the boundary physics by phenomenological, and by field-theory-oriented, reasoning.

Consider a finite FQHE system. For simplicity, we assume the system to be disc-shaped,

although the details of the geometry will not be of relevance throughout. At the system

boundaries, the two-dimensional electron gas is confined by a boundary potential V which we

assume to be linear (see Fig. 9.21). In the first part of this problem, we want to describe the

dynamics of edge excitations on phenomenological grounds. An important first observation is

that the bulk system – presumed to sit at an FQHE plateau value – is in an “incompressible

state.” This follows from the fact that, for an integer number of composite fermion Landau

levels, the system does not support gapless excitations: ∂μ/∂N → ∞. Now,121 ∂μ/∂N ∼
κ−1 ≡ −V (∂P/∂V )N is proportional to the inverse compressibility, i.e. the lack of low-

energy excitations implies an incompressible state. We should, therefore, think of our system

as a rigid “liquid” rather than as a gas.

Given that the state is incompressible, the lowest-energy excitations of the system will

be deformations of the boundary (similar to boundary distortions of a puddle of water). We

may characterize these distortions by a surface density profile ρ(x), where x parameterizes

the boundary.122

(a) To derive the boundary action on phenomenological grounds, proceed in two steps. First

derive the energy of a boundary distortion ρ. Second, argue why a distortion profile

ρ(x, t) propagates along the boundary at some constant velocity v. Derive an effective

equation of motion for ρ and use it to determine the canonical momentum associated

120 For a review, see X. G. Wen, Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys. B6
(1992), 1711–62.

121 G. Mahan, Many Particle Physics (Plenum Press, 1981).
122 More precisely, the geometric shape of the system is described by some height function h(x) (see Fig. 9.21).

Using the fact that the constant charge density of the system (cf. Eq. (9.17)) is given by νB
2π dx dx⊥, where

x⊥ is the coordinate perpendicular to the system boundary, ρ(x)dx = νB
2π

∫ h(x)
0 dx⊥ dx = νB

2π h(x)dx, i.e. the
height profile is proportional to a density profile.
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with the “displacement field” φ defined by ∂xφ = 2πρ. Show that the Hamiltonian

action of the displacement field is given by

S[φ] =
1

4πν

∫
dx dτ

(
v(∂xφ)

2 − i∂xφ∂τφ
)
, (9.89)

the action of a “chiral Luttinger liquid” – the terminology follows from the fact that

Eq. (9.89) describes the uni-directional propagation of a density field. (The connection

to the Luttinger liquid is made explicit by decomposing the coordinate–momentum pair

describing one-dimensional charge density modes, (∂xφ, θ), into left- and right-moving

components, φ = φL + φR, θ = φL − φR. Substituting this representation into the

action (4.49), the latter decomposes into a left- and a right-moving chiral action.) (Hint:

A boundary distortion costs energy because of the presence of a voltage gradient. The

presence of a constant drift follows, e.g. from the finiteness of the Hall conductivity.

Also remember Eq. (9.17) for the density of a quantum Hall system.)

(b) We next derive the action from a complementary, bulk-oriented perspective. To this

end, consider the CS action of the bulk system, Eq. (9.75). Throughout, it will be

convenient (although not strictly necessary as one may translate all expressions back to

the traditional representation) to use the language of differential forms. Interpreting aμ
as the coefficients of a differential 1-form, a = aμdxμ, Eq. (9.75) assumes the compact

form

SCS[a] = −
∫
D×S1

a ∧ da,

where the integral extends over the Cartesian product of the bulk of the system, D,

and imaginary time S1. Show that SCS is gauge invariant up to a boundary term. To

“cure” the gauge deficiency of the action, we adopt a gauge-fixing condition a0|∂D =

0. Use this condition to integrate over the component a0 in the entire system. Show

that this integration leads to the global constraint fij = 0, where fij are the real-

space components of the field strength tensor f = da = ∂μaνdxμ ∧ dxν . This condition

implies that the real-space component of the vector potential a can be represented as

a pure gauge, a = dφ ≡ ∂iφdxi, where we use the symbol d to denote the real space

contribution to the exterior derivative. Plug this ansatz into the residual contribution

to the action (after a0 has been integrated out) to reduce the field strength tensor to

the boundary action S[φ] =
∫
∂B

dx
∫
dτ ∂xφ∂τφ. Recalling that the CS action enters

the theory as exp( i
4πνSCS),

123 we conclude that the effective boundary action induced

by the gauge non-invariance of SCS reads

Seff [φ] = − i

4πν

∫
∂B

dx

∫
dτ ∂xφ∂τφ.

123 To be precise, the coupling constant 1/4πν appeared after (a) the system had been coupled to an external
vector potential, (b) the coupling between the statistical vector potential and the matter degrees of freedom
had been taken into account, and (c) the statistical vector potential had been integrated out (see Section
9.5.3). Here we assume that all these steps are implied, i.e. we should think of a as an external electromagnetic
field and i

4πν SCS as the dominant (first-order derivative) contribution to its action.
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(c) One may recognize Seff [φ] as the second contribution to the action (9.89). The obvious

next question to ask is why we did not obtain the full action of the chiral Luttinger liquid.

Indeed, it takes only a moment’s thought to realize that a first principles derivation

of the full boundary action from the bulk theory is out of the question. The point

is that the missing contribution ∼ v(∂xφ)
2 depends on the boundary velocity, which

in turn is determined by the steepness of the boundary potential. However, the bulk

action does not know of the structure of the boundary. We can, however, employ a

trick to infuse the required information on the system boundaries into the bulk theory.

(Although this manipulation is fairly ad hoc, it shows, at least, that the bulk and the

boundary theory are not inconsistent.) Indeed, the gauge-fixing condition employed in

the construction above involves a lot of arbitrariness. For example, instead of a0 = 0

the linear combination a0 + vax = 0 would have been just as good.

To explore the consequences of the new gauge-fixing condition, let us introduce a new

set of coordinates, x̃ = x−vt, t̃ = t, and x̃⊥ = x⊥. Recalling the transformation behavior

of differential forms (see page 537) under coordinate changes, compute the components

of the vector potential a = ãμdx̃μ. Show that the gauge fixing condition translates to

ã0 = 0. We now benefit from the fact that we have expressed the CS term in a coordinate-

invariant manner, i.e. it keeps the same form, no matter whether we express it in terms

of the old or the new coordinates (a point on which to reflect!). However, in the new

coordinates, the gauge-fixing condition assumes the same form ã0 as that considered in

(b). This means that SCS can be reduced to a boundary contribution, which, however,

is expressed in new coordinates. Finally, translate back to the old coordinates to obtain

the full chiral Luttinger action. The message to be taken home from this construction is

that a boundary-gauge-fixing condition can be used to establish the equivalence between

the boundary Luttinger and the bulk CS description of the system.

(d) Notwithstanding its innocuous appearance, the action (9.89) describes astonishingly

rich physics. Referring for an in-depth discussion to the literature (see Wen’s review

article120), we here mention only a few of the characteristic features of the system

described by Eq. (9.89). To establish contact with physically observable quantities, we

first need to derive an expression for the electron operator c† (the chiral analog of the

fermion relation (4.46)). Arguing as in Section 4.3 above, we start from the observation

that the creation of an electron goes along with the creation of a unit charge. Building

on the connection between the displacement field and the charge operator, show that

the chiral bosonic representation of the fermion operator will contain a piece

c† ∼ e−iν−1φ.

To complete the manufacturing of a fermion operator, we need to ensure that c† obeys

fermionic exchange statistics. Use the commutator relations of the field φ to show that

eiν
−1φ(x)eiν

−1φ(x′) = eiν
−1φ(x′)eiν

−1φ(x) × eiπν
−1sgn(x−x′).

This means that exp(iν−1φ) describes a fermion provided that ν = 1/m belongs to the

principal sequence.
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INFO But what will happen for a general ν = n/m? It is, in fact, not clear how to repair the

ansatz above so as to generate fermion statistics for general filling fractions. Indeed,

it turns out that the entire edge construction above is too narrow to describe the general

case. We have seen in our discussion of the IQHE above that, in cases where p > 1 Landau

levels are occupied, the edge hosts p edge channels. Similarly, an FQHE system with filling

fraction ν = p/(2sp+1) (i.e. a system in which the composite fermions experience an effective

ν = 1/p IQHE) will have p chiral edge channels circulating at its boundaries. However, the

construction of this edge channel hierarchy is beyond the scope of the present text and we

refer to the literature.

Notice that we may interpret eiν
−1φ = (eiφ)ν

−1

as the ν−1th power of the more elemen-

tary object eiφ. According to the construction above, eiφ creates an entity of fractional

charge e × ν. Also, the states created by eiφ obey fractional exchange statistics. Com-

paring with our discussion in the main text, we identify exp(iφ) as the creator of the

boundary variant of the fractionally charged Laughlin quasi-particles.

Answer:

(a) Owing to the presence of an (approximately linear) confining potential V = Ex⊥,
a boundary distortion costs an energy (notation taken from footnote122) H =∫
dx

∫ h(x)

0
dx⊥σEx⊥ = νEB

4π

∫
dx h2(x) = E

4πνB

∫
dx (∂xφ)

2.

To understand why the density profile propagates along the boundary, notice that the

(confining) electric field E perpendicular to the boundary will generate a Hall current

density j ∼ σ12E = σB−1E tangential to the boundary. The total boundary current is

obtained by integrating the current density from 0 to h(x), i.e. I ∼ ρE/B = ∂xφE/2πB.

Integrating the continuity equation ∂tρ = ∂xj over x and substituting the identification

of the current above, we obtain the equation of motion ∂tφ = v∂xφ, where the velocity

v ∼ E/B depends in a non-universal way on the boundary potential. This equation is

solved by φ = φ(x+ vt), i.e. a uniformly propagating density distribution. Switching to

momentum space, we may interpret φ̇k = δH/δπk = vikφk as an Hamiltonian equation

of motion determining the momentum π conjugate to φ. Comparison124 with H =
v

2πν

∑
k k

2φkφ−k leads to the identification πk = 1
2πν (−ik)φ−k, i.e. the strange looking

prediction that the variable φk is canonically conjugate to its own derivative,

[∂xφ(x), φ(x
′)] = 2πiνδ(x− x′). (9.90)

Remembering that the Hamiltonian action of a system is given by
∫
dτ (H − iπ∂τφ),

we arrive at the required result.

124 Deviating from our standard conventions, we define the Fourier transform by φk = L−1/2
∫
dx eikxφ(x).
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(b) Under a change of gauge, a → a+ dg, where g is a function, the CS action transforms

as

SCS[a+ dg] = −
∫
D×S1

(a+ dg) ∧ d(a+ dg) = SCS[a]−
∫
D×S1

dg ∧ da

= SCS[a]−
∫
∂D×S1

dag,

where we noticed that dg ∧ da = d(gda) and applied Stokes, theorem. To remove the

boundary gauge ambiguity, we need to fix a gauge at ∂D×S1, e.g. by setting a0|∂D = 0.

Decomposing a = a0 + a and d = ∂0dτ + ∂idxi ≡ d0 + d into temporal and real-space

contributions, the action assumes the form

SCS[a0,a] = −
∫
D×S1

(a0 + a) ∧ (d0 + d)(a0 + a)

= −
∫
D×S1

(a0 ∧ da+ a ∧ d0a+ a ∧ da0 + a ∧ da)

= −
∫
D×S1

(2a0 ∧ da+ a ∧ d0a+ a ∧ da) ,

where we have used the skew-symmetry of the exterior product and in the crucial second

equality integrated by parts.125 The boundary term corresponding to this integration

vanishes due to the gauge-fixing condition a0|∂D = 0. Linearly coupled to the action,

the temporal component a0 can be integrated out. As a result, we obtain a functional

δ-distribution globally enforcing the constraint da ≡ f = 0, i.e. a vanishing of the spatial

components of the field strength tensor. This in turn implies that a is a pure gauge,

a = dφ, where φ is some function. Substituting this representation into the action, we

obtain S[φ] = −
∫
D×S1 dφ ∧ d0dφ = −

∫
D×S1 d(dφ ∧ d0φ) = −

∫
∂D×S1(dφ ∧ d0φ) =∫

∂D
dx

∫
dτ ∂xφ ∂τφ, where in the last step we switched back to conventional notation.

(c) Using the fact that a = aμdxμ = aμ(∂xμ/∂x̃ν)dx̃ν ≡ ãνdx̃ν , and comparing coefficients,

we obtain the identifications ãx = ax, ãx⊥ = ax⊥ , ã0 = a0 + vax. “Form invariance” of

the CS-action means that it does not matter whether we express it in terms of the old

or the new coordinates:

SCS[a] = −
∫
(aμdxμ)∧

(
dxν

∂

∂xν

)
∧ (aνdxν) = −

∫
(ãμdx̃μ)∧

(
dx̃ν

∂

∂x̃ν

)
∧ (ãνdx̃ν).

Focusing on the second representation (wherein ã0|∂D = 0), and repeating the analysis

of (b), we obtain the real-time representation of the action SCS =
∫
∂D

dx̃
∫
dt̃ ∂x̃φ ∂t̃φ.

Finally, using the fact that ∂x = ∂x̃ and ∂t̃ = v∂x + ∂t, we arrive at SCS[φ] =∫
∂D

dx
∫
dt

[
v(∂xφ)

2 + ∂xφ ∂tφ
]
. Switching back to imaginary time and attaching the

coupling constant, we obtain Eq. (9.89).

125 That is, we have applied Stokes’ theorem:
D×S1

a∧da0 = −

D×S1

[d(a ∧ a0) − da ∧ a0] = −

∂D×S1

a∧a0+


D×S1

da∧a0
a0|∂D=0

=


D×S1

da∧a0.
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(d) Since ρ = 1
2π∂xφ, the presence of a unit charge localized at x0, ρ(x) = ρ(x − x0),

amounts to the presence of a “kink” of height 2π in φ, i.e. φ(x) = 2πθ(x − x0). Now,

according to Eq. (9.90), φ and ∂xφ/2πν form a canonically conjugate pair. This implies

that Ud(x) ≡ exp(−id∂xφ/2πν) acts like a unit translation operator on φ: Ud(x)φ(x
′) =

φ(x′)+ dδ(x−x′). The unit-charge kink is generated by the action of
∫∞
x0

dx′ U2π(x
′) =

exp(−iφ/ν) on the field φ. Reformulating Eq. (9.90) as [φ(x), φ(x′)] = iπν sgn(x− x′),
we find that

eiν
−1φ(x)eiν

−1φ(x′) = eiν
−1φ(x′)

(
e−iν−1φ(x′)eiν

−1φ(x)eiν
−1φ(x′)

)
= eiν

−1φ(x′) eiν
−1exp(−iν−1[φ(x′), ])φ(x)

= eiν
−1φ(x′)eiν

−1φ(x) × eiπν
−1 sgn(x−x′).
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Nonequilibrium (classical)

This chapter provides an introduction to nonequilibrium statistical (field) theory. In the following, we

introduce a spectrum of concepts central to the description of many particle systems out of statistical

equilibrium. We will see that key elements of the theory – Langevin theory and the formalism of the

Fokker–Planck equation – can be developed from the coherent framework of a path integral formalism.

Applications discussed below include metastability, macroscopic quantum tunneling, driven diffusive

lattices, and directed percolation. While the emphasis in this chapter is on classical nonequilibrium

phenomena, the quantum theory of nonequilibrium systems will be discussed in the next chapter.

The world is a place full of nonequilibrium phenomena: an avalanche sliding down a

sandpile, a traffic jam forming at rush hour, the dynamics of electrons inside a strongly

voltage-biased electronic device, the turmoil of markets following an economic instability,

the diffusion-limited reaction of chemical constituents and many others are examples of sit-

uations where a large number of correlated constituents evolves under “out-of-equilibrium”

conditions. Statistical nonequilibrium physics is concerned with the identification and under-

standing of universal structures that characterise these phenomena. Notwithstanding the

existence of powerful principles of unification, it is clear that a theory addressing the dazzling

multitude of nonequilibrium phenomena must be multi-faceted. And indeed, nonequilibrium

statistical physics is a strongly diversified field comprising many independent sub-disciplines.

But this is not the only remarkable feature of this branch of physics. Considering the devel-

opment of physics in, say, the last two decades, one may observe that nonequilibrium physics

is a field of disproportionate growth. Occasionally one may get the impression that many

particle theory as a whole is drifting towards the nonequilibrium!

INFO What does the attribute “nonequilibrium” actually define? Perhaps the most straight-

forward definition identifies it as the opposite of thermodynamic equilibrium, where the latter is

defined by the following two conditions:1

� An equilibrium system is characterized by a unique set of extensive and intensive variables

which do not change in time.

� After isolation of the system from its environment, all the variables remain unchanged.

The latter condition is necessary to distinguish equilibrium from stationary nonequilibrium

states. For example, the particle distribution function of an electronic conductor subject to a

1 W. Ebeling and I. M. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems,
(World Scientific,2005).
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strong time-independent voltage bias will be time-independent (first condition fulfilled), yet dif-

ferent from the equilibrium Gibbs distribution – a stationary nonequilibrium situation. However,

after removal of the voltage carrying leads, or “environment,” it will relax back to the Gibbs

form (second condition violated).

The restrictiveness of the two conditions above vividly illustrates that thermodynamic equi-

librium is a rare exception, a Platonic ideal scarcely realised in “real life.”

What are the driving forces behind this development? For one thing, nonequilibrium statis-

tical physics is a field of unusually high application potential. Many of the rapidly evolving

interdisciplinary activities between physics and biology, or physics and the socio-economical

sciences, expressly address nonequilibrium problems. But there is, of course, also intrinsic

interest in the physics of nonequilibrium. For example, the response of an electronic device

to shake-up by a sudden electromagnetic pulse evidently contains more structured informa-

tion on its intrinsic dynamics than the (near equilibrium) linear response. The wealth of

information encoded in the dynamics of strongly-driven many particle systems motivates

the extension of existing (equilibrium) theories into the realm of nonequilibrium. Also, var-

ious many particle systems of interest are observed under nonequilibrium conditions (e.g.

cold atom condensates), or intrinsically in a state of nonequilibrium (e.g. lasers). To under-

stand the rich physical behavior of such systems, we need to develop a quantum theory of

nonequilibrium phenomena.

From what has been said above, it should be clear that we will not be able to adequately

introduce the full body of nonequilibrium statistical physics in this textbook; we really have

to restrict ourselves to an absolute minimum of essentials. In the following we focus on

areas of nonequilibrium statistical physics that are of relevance specifically to condensed

matter physics. Interesting developments relevant to, say, the physics of biological or socio-

economic systems are not covered. In line with the general philosophy of the book, the

material is organized according to the conceptual structure of the theory (rather than by

fields of application). We start by introducing elements of probability theory and stochas-

tic processes, Langevin theory, the theory of noise, and the theory of the Fokker Planck

equation. It will then be seen that various connections between these elements can be under-

stood from the unifying field theoretical framework of the Martin–Siggia–Rose–Janssen–de

Dominicis (MSRJD) field integral. We apply the MSRJD formalism to introduce elements

of the theory of dynamic phase transitions. In the next chapter we then identify the MSRJD

field integral as the classical limit of a more general theory, the Keldysh field integral of

quantum nonequilibrium statistical mechanics.

INFO In this chapter, there is a lot of discussion about different types of “probability.” For

the convenience of the reader, a few elements of probability theory are summarized below.

(This material need not be studied in a coherent fashion, and can be used as a glossary whenever

necessary.)

Although we shall not enter a discussion of the foundations of probability theory, it may be

worthwhile to note that the notion of “probability” is difficult to grasp. There exist different

and, in fact, controversial definitions of what is meant by “the probability” of certain events.

Here, we will sidestep these complications by assuming that the probabilities of certain basic

events are a priori known (e.g. the probability of individual faces when throwing dice). The
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task of probability theory then is to describe the probability of more complex, compound events

(e.g. the probability of winning a certain game of dice). The probability P that a basic variable

X take values xi, i = 1, . . . N (or continuous values x ∈ [a, b]), is described by the probability

distribution,

discrete: pi ≡ P (X = xi), pi ≥ 0,

N∑
i=1

pi = 1,

continuous: p(x)dx ≡ P (x < X < x+ dx), p(x) ≥ 0,

∫ b

a

p(x) dx = 1.

A variable whose defining properties are encapsulated in a probability distribution is called a

random variable. To avoid discrete/continuous case distinctions, we may express the distribu-

tion of a discrete random variable in continuum form, p(x)dx ≡
∑

i δ(x−xi)dx. Furthermore, we

shall formulate our discussion for scalar random variables. The extension to multi-dimensional

variables X ∈ Rn should be obvious.

Expectation values of functions f(X) depending on the random variable are defined as

〈f(X)〉 ≡
∫

dx p(x)f(x).

Below we list a number of important examples of expectation values:

� The mean value 〈X〉 ≡
∫
dx p(x)x of the distribution and its moments Xn ≡ 〈Xn〉 ≡∫

dx p(x)xn. Notice that the moments of distributions need not necessarily exist. For example,

the Lorentzian distribution p(x) = 1
π

a
a2+x2 does not have moments at all.

� The cumulants

μ1 ≡ X1,

μ2 ≡ X2 −X2
1 ,

μ3 ≡ X3 − 3X1X2 + 2X3
1 ,

μ4 ≡ . . . , (10.1)

contain information about the degree of “correlation” in a probability distribution. They

describe the way in which high moments differ from products of moments of lesser degree.

A systematic way to define cumulants is by expansion of the cumulant generating function:

ln〈exp(itX)〉 =
∑∞

i=1
(it)n

n!
μn. Exercise: Think about connections between cumulants and the

connectedness of diagrams resulting from the expansion of free energies (symbolic notation)

F = −T ln〈
∫
Dφ exp(−S[φ])〉.

� The probability distribution may be formally represented as the expectation value of a δ-

distribution,

p(x) = 〈δ(x−X)〉.

Far better than a useless tautology, this relation represents a vehicle to generate derived

probability distributions: let F (X) be some function and define Y ≡ F (X). This is a new

random variable which inherits its probability distribution p(y) from p(x). The connection

between the two can be obtained as

p(y) = 〈δ(y − Y )〉 =
∫

dx p(x)δ(y − F (x)) = p(x(y))

∣∣∣∣∂x∂y
∣∣∣∣
x=x(y)

,
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where we assumed a unique functional relation y = F (x). This relation may also be obtained

by direct transformation of the probability measure, p(x)dx = p(x(y))|∂x/∂y|dy ≡ p(y)dy. In

practice, however, the δ-representation is often more convenient to use.

� The full set of information on a random variable is contained in the expectation value

g(t) ≡ 〈exp(itX)〉. (10.2)

From this generating function, all moments can be obtained by power series expansion and

all cumulants by expansion of ln g(t):

g(t) =
∞∑

n=0

(it)n

n!
Xn, ln(g(t)) =

∞∑
n=0

(it)n

n!
μn.

The full probability distribution can be obtained (exercise) from the generating function by

Fourier transformation,

p(x) =

∫
dt

2π
e−itxg(t).

For concreteness and later reference let us discuss a few distributions of outstanding impor-

tance. The Gaussian distribution is given by the familiar expression

p(x)dx =
1√
2πμ2

exp

(
(x− μ1)

2

2μ2

)
dx. (10.3)

Typically, it describes the probability of variables x =
∑N

n=1 xn that are obtained as the sum of

a large number of elementary random variables, xn, distributed according to some distribution p̃

with first and second cumulant μ̃1 and μ̃2, respectively. In this case – the statement of the central

limit theorem2 – the probability of x is given by Eq. (10.3), with first and second cumulant

μ1 = Nμ̃1 and μ2 = Nμ̃2, respectively. (All higher cumulants of the Gaussian distribution

vanish. Exercise: verify this statement by showing that the generating function of the Gaussian

distribution is again a Gaussian.) The ubiquity of additive random variables in nature explains

the importance of Gaussians in natural sciences.

The Poisson distribution p(m) describes the probability to observe m events in n � 1 trials

when the events are mutually uncorrelated3 and occur with low individual probability p. (As

an example, consider the probability to count m cars passing a counter at a cross country road

late at night in a time window of 100min when the passage probability per minute, p = 0.05.)

2 The proof of the central limit theorem amounts to an instructive miniature version of the large N-expansion
methods introduced in chapter 5.3:

p(x) = 〈δ(x −
n∑

n=1

xn)〉 =

N�
n=1


dxn p(xn)


dk e

ik(xn−x)

=


dk exp

	
N ln


dx p(x)e

ikx − ixk



=


dk exp (N ln g(k) − ixk)

=


dk exp(N

�
ik(μ1 − x/N) − k

2
μ2/2 + O(k

3
)
�
) � 1√

2πNμ2

exp

�
(x − Nμ1)

2

2Nμ2

�
,

where in the first line we used the Fourier representation of the δ-function, g in the second line is the generating
function of the distribution p, and in the crucial last equality we used the fact that anharmonic corrections to
the quadratic k-exponent vanish in the large N limit.

3 Two random variables X and Y are said to be uncorrelated if 〈XY 〉 = 〈X〉 〈Y 〉. The correlation obviously
vanishes if X and Y are independent random variables, i.e. if p(x, y) = px(x)py(y). (The opposite conclusion,
“lack of correlation → independence,” is not valid in general.)



606 Nonequilibrium (classical)

Assuming that the probability to observe the event in question at any individual trial is p 	 1

while n � m, the Poisson distribution asymptotes to4

P (m) =
(np)m

m!
exp(−np). (10.4)

The Poisson distribution has constant cumulants μl = np. (Exercise: compute the generating

function to prove this result.)

The Lorentzian distribution a.k.a.Breit–Wigner distribution orCauchy distribution

is defined by

p(x) =
1

π

a

(x− x0)2 + a2
. (10.5)

In physics, the Lorentzian distribution describes the energy dependence of scattering resonances,

(relatedly) the broadening of many particle spectral functions by interactions, the line shape

distribution of damped electromagnetic modes, and many other phenomena governed by an inter-

play of driving/oscillation/damping. As mentioned above, its moments are undefined. Loosely

speaking, the distribution is centered around x0, has width a, and is exceptionally broad.

In probability theory one is often interested in computing the composite probability p(x2, x1),

from information about the probabilities p1(x1) and p2(x2) of elementary random variables X1

andX2. In this context, a natural question to ask is “what is the probability to obtain x2 provided

x1 has been observed?” By definition, the answer is given by the conditional probability,

p(x2|x1). It is implicitly defined by

p(x2, x1) = p(x2|x1)p1(x1). (10.6)

Summing over all possible realizations of the random variable X2, we get the raw distribution

of X2,
∫
dx1 p(x2, x1) = p(x2), or

p(x2) =

∫
dx1 p(x2|x1)p1(x1).

won’t Considering the case where x1 by itself is a composite random variable, x2 → xn and x1 →
(xn−1, . . . , x1), we obtain an important generalization of Eq. (10.6). Iteration of the definition

then leads to

p(xn, . . . , x1) = p(xn|xn−1, . . . , x1)p(xn−1|xn−2, . . . , x1) . . . p(x2|x1)p1(x1). (10.7)

EXERCISE The characteristic function of a probability distribution P (x) is defined as

g(t) = 〈eitX〉 =
∫

dx p(x)eitx.

Compute the characteristic function for (a) the Gaussian distribution, p(x) = 1√
2πσ

e−
(x−x0)2

2σ ,

(b) the Lorentzian distribution, p(x) = 1
π

a
(x−x0)2+a2 , and (c) the Poisson distribution, p(x) =

4 The probability to observe m successes is given by P (m) =
� n
m

�
(1−p)n−mpm. For n � 1 and p � 1,

� n
m

� � nm

and (1 − p)n−m � (1 − p)n = (1 − (np)/n)n � exp(−np). Combining these estimates, we obtain the Poisson
distribution. (Exercise: show that the derivation becomes exact in the limit n → ∞, p → 0 at fixed product np.
Show that for n → ∞ at fixed p the Gaussian distribution is obtained.)
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νx

x!
e−ν . Consider the distribution, p(x) = 1

π
1√

x(1−x)
, for x ∈ (0, 1) and zero otherwise. Show

that its characteristic function has the limiting behavior

g(t) ∼ (1− i)(i+ eit)√
2πt

for t → ∞.

10.1 Fundamental questions of (nonequilibrium) statistical mechanics

From the discussion above, it should be obvious that thermodynamic equilibrium represents

an exception, rather than a rule. The one reason why many particle theory has focused

historically on the description of (near-)equilibrium states is that the latter are so much

easier to describe. In thermal equilibrium we know that the state of an N -particle system is

governed by the thermal density operator Z−1exp(−βĤ). “All’ that remains to be done is

to compute physical observables from this distribution. However, in thermal nonequilibrium

the distribution of the system in phase or Hilbert space is apriori unknown, a lack of

knowledge that bears important consequences:

� Getting the relevant many particle distribution functions under control is an essential

part of the theoretical challenge (and usually the first one to be addressed).

� Concepts which we tend to take for granted (the existence of a uniquely defined temper-

ature, homogeneity of thermodynamic variables, etc.) need to be critically re-examined.

� There is no reason to hope that nonequilibrium statistical physics as a whole (whatever

that is) will be nearly as universal as the equilibrium theory.

Ludwig Boltzmann 1844–1906
Austrian physicist famous for his
pioneering contributions to sta-
tistical mechanics. Concepts such
as Maxwell–Boltzmann statistics,
the Boltzmann distribution, or the
logarithmic connection between
entropy and probability remain
foundations of this field. Boltzmann was one of the
most important supporters of early atomic theory, at
a time when the reality of atoms was still controver-
sial.

Imagine, then, a situation where no

apriori information about the state

of a many particle system is available.

How can we compute the distribution

of its states (classical or quantum)?

Indeed, even the formulation of the

problem that needs to be solved is

not entirely obvious.

In principle, the state of a classical

d-dimensional N -particle system can

be represented by a point X ∈ R2Nd

in 2Nd dimensional phase space. The full information about its dynamics, and all derived

physical properties is then contained in some high-dimensional Hamiltonian equation of

motion.

The above view is formally exact, but largely useless in practice. However, in the late

nineteenth century, Boltzmann introduced an alternative picture which turned out to be

much more powerful: Boltzmann suggested describing the system in terms of a “swarm” of

N points in 2d-dimensional phase space, rather than by a single point in an incredibly high

dimensional space. This idea paved the way to a statistical formulation of the problem and

may be considered as the starting point of statistical mechanics as an independent branch
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of physics. Indeed, we may trade much of the excessive fine structure information encoded

in the full coordinate data of the “swarm” by introducing a measure

f(x, t)ddx,

p

qdq

dp

where x = (q,p) is a point in phase space

and the dimensionless function f(x, t) is

the (distribution of the) number of parti-

cles found at time t in the volume element

ddx =
∑d

i=1 dqidpi (see the figure), i.e. f is

normalized according to∫
Γ

ddx f(x) = N,

where
∫
Γ
is an integral over classical phase

space. The function f is the prime information carrier of the theory. Average values of

physical observables X can be calculated according to the relation,

〈X〉 =
∫

ddx f(x, t)X(x),

whereX(x) is the phase space function representing the observable. For example, the energy

carried by the system is obtained as E = 〈H〉 =
∫
ddx f(x, t)H(x), where H(x) is the

Hamiltonian, etc.

Since the state of the system is essentially described by its distribution function, we can

reformulate the questions raised above as follows: How can we compute f for a given system

if the Hamiltonian and an initial state f( . , t) are specified? However, before addressing

this problem in full, we should be able to answer two less ambitious questions: what is the

equilibrium structure of f , and how does the system approach that equilibrium configuration

if it is allowed to evolve unperturbed according to its own dynamics?

To begin, let us try to understand the (time-independent) equilibrium form of the dis-

tribution function, f(x). Imagine a system prepared in some initial distribution. Think of

the long-time density function f(x, t → ∞) as a probabilistic object where averaging is over

different initial conditions. We assume that the system is weakly interacting, or gaseous, in

the sense that the dynamics is essentially of single particle type. Collisions between particles,

(x1,x2) → (x′
1,x

′
2) will serve as a mechanism of relaxation towards an equilibrium state by

exchange of energy and momentum between individual particles. Under these conditions,

it is safe to assume that the distribution of particles will be independent in the sense that

the joint probability to observe particles at x1 and x2, respectively, N
2p(x1,x2), factorizes

into independent particle distributions N2p(x1,x2) = (Np(x1))× (Np(x2)) ≡ f(x1)f(x2).

By virtue of this assumption, the function f acquires the status of a statistical distribution,

fully describing the state of the system.

EXERCISE Discuss: in what sense may this description become problematic once interactions

become strong?
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The fact that coordinate configurations (x1,x2) ↔ (x′
1,x

′
2) are coupled by an elementary

scattering event implies conservation of probability, f(x1,x2) = f(x1)f(x2) = f(x′
1)f(x

′
2) =

f(x′
1,x

′
2). Assuming that f(x) = f(H(x)) ≡ f(ε) is a function of energy, we conclude

that probability conservation is compatible with energy conservation, ε1 + ε2 = ε′1 + ε′2,
if ln f(ε) = aε + b is linear in energy. In this case, f(x1)f(x2) = exp(a(ε1 + ε2) + 2b) =

exp(a(ε′1 + ε′2) + 2b) = f(x′
1)f(x

′
2) is indeed satisfied. To fix the constants a and b we

require normalization of the partition function and employ the equipartition theorem, i.e.

we use the fact that in thermodynamic equilibrium, the expectation value of the energy

of each of the 2Nd degrees of freedom must equal T/2.5 Normalization requires (exercise)

b = lnN − ln
∫
ddx exp(aε) and from the equipartition theorem we obtain

NdT
!
= dN

∫
Γ
ddx eaH(x)H(x)∫
Γ
ddx eaH(x)

= −Nd

a
⇒ a = − 1

T
= −β,

where, again, a quadratic Hamiltonian was assumed. We thus arrive at the conclusion:

f(x) = N
e−βH(x)∫

Γ
dx e−βH(x)

, (10.8)

which is the famous Maxwell–Boltzmann distribution. Exercise: in what sense is

Eq. (10.8) a direct descendant of the many particle Gibbs distribution?

The derivation above can tell us the form of the equilibrium distribution, but it is much

too indirect to describe how equilibrium is actually approached. For that purpose we need

to develop far more explicit ways to describe the dynamics of the distribution function. The

construction of such theories is the subject of the next two sections.

10.2 Langevin theory

Imagine a situation where, at time t = 0, some initial distribution f(x, 0) has been prepared.

We wish to understand its dynamics. Specifically, we wish to understand how the Maxwell–

Boltzmann distribution is approached if the system is kept in isolation. It will also be of

interest to explore deviations from equilibrium if the system is externally perturbed.

A purist might argue that phase space points x
t→ x(t) = exp(t{H, . })x develop accord-

ing to the deterministic time evolution of Hamiltonian dynamics. This view will lead to

f(x, t) = f(x(−t), 0), or ∂tf(x, t) = ∂s
∣∣
s=0

f(x, t + s) = −∂s
∣∣
s=0

f(x(s), t) = {H, f(x, t)}.
Deterministic time evolution is thus described by the equation,

(∂t − {H, . }) f(x, t) = 0. (10.9)

Now, this equation clearly does not capture the irreversible approach to equilibrium. What

it neglects is that we are actually concerned with a many particle system. The presence of

other particles will affect the dynamics in two different ways.

5 Here we assume that, close to thermal equilibrium, the dynamics of each particle will be approximately oscillator-
like, and energy comprises kinetic energy (d momentum degrees of freedom) and potential energy (d spatial
degrees of freedom).
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Paul Langevin 1872–1946
French physicist known who
developed the concept of
Langevin dynamics. He is also
known for his modern interpreta-
tion of para- and diamagnetism
in terms of the electron spin.
Langevin was a devoted anti-
fascist and lost his academic position under the
Vichy regime. (Shortly before his death he was
rehabilitated.)

First, it will hinder the ballistic

motion of individual particles and,

in a coarse-grained perspective, will

lead to friction. Second, repeated

collisions with other particles will

effectively act as a fluctuating

force. As we shall see, these two

mechanisms, dissipative friction and

fluctuations are not independent. In

thermal equilibrium they do, in fact,

completely determine each other, a

correlation we will identify as a manifestation of the fluctuation–dissipation theorem.

In a seminal work 6 the French physicist Paul Langevin proposed to describe the concerted

action of dissipation and fluctuation in terms of a stochastic generalization of Newton’s

equation, the celebrated Langevin equation,

Mdtv +mγv − F = ξ(t), (10.10)

where v is the single particle velocity, F = −∂qH a macroscopic force acting on the particles,

γ a phenomenological friction coefficient, and ξ a randomly fluctuating force describing

the effect of erratic pair collisions. Langevin proposed to model the force in terms of a

short-range correlated Gaussian random variable with zero mean, 〈ξi(t)〉 = 0 and variance

〈ξi(t)ξi′(t′)〉 = Aδii′δ(t− t′), (10.11)

where A > 0 is a constant.

INFO The development of Langevin’s theory was motivated by the phenomenon of Brown-

ian motion. In 1827 the Scottish botanist, Robert Brown, observed7 unceasing erratic motion

of pollen particles in aqueous immersion. First qualitative explanations of the phenomenon in

terms of random particle collisions appeared in the late nineteenth century. Langevin suggested

Eq. (10.10) as an effective equation of motion controlling the dynamics of “mesoscopic” particles,

subject to inter-particle collisions. The erratic nature of solutions of the Langevin equation –

qualitatively consistent with Brownian motion – is illustrated in Fig. 10.1.

Before turning to the analysis of this equation, let us make a few general remarks:

� One of the important predictions of the theory is that, in thermal equilibrium, the fric-

tion coefficient, γ, and the fluctuation strength, A, are mutually dependent parameters:

fluctuations and dissipative damping are twin effects – again, a manifestation of the

fluctuation-dissipation theorem.

6 P. Langevin, Sur la théorie du mouvement Brownien, CR Hebd. Acad. Sci. 146, 530-3 (1908).
7 The phenomenon had, in fact, been observed earlier by the Dutch physician Jan Ingenhousz in 1785.
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Figure 10.1 A few two-dimensional solutions of Eq. (10.10) for different fluctuation force configu-
rations. The paths start at time t = 0 at x = y = 0. Qualitatively, they resemble the paths traced
out by fictitious “Brownian particles”.

� We may expect multiple particle collisions to cause effectively stochastic, or diffusive

motion of individual particles. Indeed, we will identify the inverse A−1 as an effective

measure of the diffusivity of the medium.

� A specific solution q(t) of the Langevin equation defines a realization of what is called a

stochastic process. A stochastic process (cf. the more comprehensive discussion in Sec-

tion 10.4 below) is described by a time-dependent random variable X(t). Here, “random”

means that no deterministic statements about the time dependence of X can be made.

The best we can obtain is results on the probability distribution P (X(t)) of realizations

of X. In the present context there are two alternatives: we may discuss the Langevin

equation in terms of v[ξ], i.e. specific realizations of the velocity, randomly dependent on

the realization ξ. Suitable averages over ξ will then lead to a statistical description of

velocity distributions, etc. This is the strategy originally proposed by Langevin. Alterna-

tively, we may aim to describe the velocity distribution P [v] directly in terms of certain

statistical propositions. This latter strategy was proposed by Einstein in his famous work

on Brownian dynamics (see below).

10.2.1 Fluctuation–Dissipation Theorem (FDT)

To discuss the connection between dissipation and fluctuation in an unperturbed system,

we consider the Langevin equation in the absence of driving forces, F = 0. Temporal Fourier

transformation v(ω) =
∫
dt exp(iωt)v(t), obtains the formal solution v(ω) = 1

m(−iω+γ)ξ(ω).

According to this relation, the “induced” random variable v has zero mean, 〈vi(t)〉 = 0,
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and second moment (exercise)

〈v2i (t)〉 =
A

m2

∫ ∞

−∞

dω

2π

1

ω2 + γ2
=

A

2m2γ
.

However, in thermal equilibrium, the equipartition theorem establishes a connection between

the average kinetic energy per degree of freedom and temperature, m〈v2i 〉/2
!
= T/2. Com-

parison with the result above then leads to the Einstein relation,

A = 2mγT, (10.12)

i.e. in thermal equilibrium, the variance of environmental fluctuating forces is proportional

to the strength of dissipative (frictional) forces, and to temperature.

INFO Let us briefly review Einstein’s derivation of Eq. (10.12). Einstein’s approach is

phenomenological but contains additional information inasmuch as it establishes a connection

between the strength of fluctuation forces and the concept of diffusion. The basis of the argument

is that, in a medium governed by frequent inter-particle collisions, the dynamics of individual

particles will be diffusive. Similarly, externally applied forces will cause drift motion, rather

than free ballistic acceleration. The first postulate implies that a density gradient, ∂f , in the

medium will lead to a diffusion current,

jd = −D∇f, (10.13)

i.e. a current acting to restore a uniform density profile. Equation (10.13) is generally known

as Fick’s (first) law. Application of the continuity equation dtf = −∇ · jd then shows that

∂tf = DΔf (Fick’s second law) implying that the dynamics is indeed diffusive.

The second postulate states that jext = γ−1m−1fFext, i.e. an external force generates a

drift current proportional to the force, the density, and the inverse of the friction coefficient.

(This formula may be obtained by dimensional analysis, or by consideration of the stationary

configuration, ∂t〈v〉 = 0 obtained by averaging the Langevin equation (10.10).) In thermal

equilibrium, diffusion current and external current must compensate each other, i.e. jd = −jext,

or D∇f = −f∇V/mγ, where we assumed that the force is generated by some potential, V . This

equation for the density profile is solved by f ∼ exp(−V/Dmγ). However, compatibility with

the Maxwell–Boltzmann distribution (10.8) requires that f ∼ exp(−V/T ), or

D =
T

mγ
. (10.14)

Equation (10.14) is the celebrated Einstein relation. Comparison with Eq. (10.12) finally leads

to the identification,

A =
2T 2

D
, (10.15)

i.e. the variance of the (microscopic) fluctuation forces in the medium is inversely proportional

to its (macroscopic) diffusion constant.
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Figure 10.2 Three realizations of resonator modes subject to the interplay of fluctuations and
dissipation. Left: RLC-electronic circuit; Middle: a resonator mode subject to radiation losses;
Right: damped mechanical oscillator.

10.2.2 A brief compendium on noise

Our discussion above conveys the important message, that dissipation or friction are inti-

mately linked to the presence of fluctuating forces. However, unlike the everyday phe-

nomenon of friction, the corresponding fluctuation forces are usually less noticeable. The

reason is that friction acts in a directed way (cf. the action of a brake), while the response

caused by fluctuations tends to average out. Yet, there are important exceptions to this rule.

For example, high amplification levels render the fluctuations, or noise caused by resistive

elements in electronic circuits a quite noticeable (and usually unwelcome) side effect.

Figure 10.2 shows three prominent setups where the interplay of fluctuations and dissipa-

tion is operational: an electronic RLC-circuit, an electromagnetic cavity mode experiencing

radiative losses, and a damped oscillator. All of these systems are characterised by idealized

non-dissipative dynamics that is harmonic. The presence of dissipation (resistor/radiative

losses/mechanical damping) generates fluctuations. In the case of the macroscopic mechan-

ical oscillators, these fluctuations will be largely inconsequential. However in the first two

systems they cause noticeable effects.

Johnson–Nyquist noise

Let us explore the situation in the example of the RLC-circuit. In this case, we are concerned

with the charge Q transmitted through the circuit (from which current and voltage drop

across the resistive element are obtained as I = Q̇ and U = RQ̇, respectively). In elementary

courses, we learn that the dynamics of charge is governed by the equation,

Ld2tQ+
Q

C
+RdtQ = Uext, (10.16)

where Uext is the externally applied voltage. This is the equation of motion of a dissipatively

damped oscillator. However, in view of our discussion above, we know that Eq. (10.16)

neglects the effect of the fluctuations accompanying dissipation. A correct way to think

about Eq. (10.16) is as an equation for the coordinate 〈Q〉, averaged over realizations of

those fluctuations. A realization specific generalization of Eq. (10.16) compatible with the
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Figure 10.3 Left panel: Noise strength vs. resistance for wires made of different materials. Right
panel: Noise strength vs. temperature for the “advanced wire”. The two data sets display near-
perfect linearity, in agreement with the theory of Johnson–Nyquist noise. Data taken from
J. B. Johnson, Phys. Rev. 32, 97-109 (1928).

fluctuation dissipation theorem is given by

Ld2tQ+
Q

C
+RdtQ = Uext + Ujn(t), (10.17)

where the correlator of the noise term is given by

〈Ujn(t)〉 = 0, 〈Ujn(t)Ujn(t
′)〉 = 2TRδ(t− t′). (10.18)

The noise term in Eq. (10.17) can be interpreted as a time-dependent fluctuating voltage,

additional to the external voltage. It is important to realize that this type of noise is an

inevitable consequence of the presence of resistive elements in electronic circuits; it cannot

be removed by “improving the quality” of the device.

The presence of a fluctuating voltage of strength 〈|Ujn(ω)|2〉 = 2TR was experimentally

discovered by Johnson8 (cf. Fig. 10.3). Nyquist9 explained the phenomenon in terms of the

thermal equipartition of energy of electromagnetic oscillator modes. Reflecting this back-

ground, Ujn is alternatively denoted Johnson noise, Nyquist noise, Johnson–Nyquist

noise, or just thermal noise.

INFO The strength of the noise correlator is fixed by slight modification of the arguments

used in Section 10.2.1 above: Think of a non-resistive LC-circuit as an electronic realization of

the harmonic oscillator. The R = 0, U = 0 variant of Eq. (10.17) is obtained by variation of the

“Lagrangian” action

S = i

∫
dt

(
L

2
Q̇2 − 1

2C
Q2

)
,

8 J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32, 97-110 (1928).
9 H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110-13 (1928).
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where LQ̇2/2 and Q2/2C represent the kinetic (inductive) and potential (capacitive) energy,

respectively. We expect an interplay of fluctuation and dissipation to establish an energy balance

compatible with the equipartition theorem,

L

2
〈Q̇2〉 = 1

2C
〈Q2〉 = T

2
,

i.e. T/2 for both kinetic and potential energy. This energy balance should be established no

matter how strong is the dissipation (R). In the absence of external biasing, Uext = 0, the

temporal Fourier transform is given by

Q(ω) =
Ujn(ω)

iωR− ω2L+ C−1
.

Using Eq. (10.17) and (10.18), it is then straightforward to verify that

L

2
〈Q̇(t)2〉 = 2TR

L

2

∫
dω

2π

ω2

ω2R2 + (ω2L− C−1)2
=

T

2
.

Similar reasoning shows that 1
2C

〈Q2〉 = T
2
.

Although the voltage correlation Eq. (10.18) is consistent with the classical equiparti-

tion theorem, this very consistency generates an annoying problem: the second moment

〈Vjn(t)
2〉 ∝ δ(0) diverges, i.e. our analysis makes the unphysical prediction that a voltmeter

measuring noise amplitudes will detect voltage spikes of arbitrary strength. Equivalently,

we are making the unphysical prediction that the noise fluctuates with constant intensity

at arbitrarily high frequencies. (Expressed more formally, the noise power

S(Ujn, ω) ≡ lim
T→∞

1

T

B∣∣∣∣∣
∫ T

−T

dtUjn(t)e
iωt

∣∣∣∣∣
2C

= RT, (10.19)

which is a measure of the fluctuation intensity at characteristic frequency ω, remains con-

stant.)

This problem disappears if we replace the classical fluctuation energy of the harmonic

oscillator, 2 × T
2 = T → ω(eω/T − 1)−1 by the energy of a quantum oscillator. (Exercise:

explore this point.) For frequencies much larger than temperature, ω � T , the mode does

not store energy and the problem with the diverging noise amplitude disappears.10

Shot noise

Johnson noise is not the only “inevitable” source of noise. In electronic devices, the discrete-

ness of charge quanta generates additional noise. A train of uncorrelated electrons running

down a wire is an example of a Poisson process described in Section 10.4.2. The average

number of electrons, n, passing through the wire in a time interval Δt (large in comparison

to the mean passage time) defines the mean current,

〈I〉 = 〈n〉
Δt

.

10 Notice that the expression ω(eω/T −1)−1 excludes the vacuum or zero-point energy, ω/2. If the vacuum energy
is kept in the energy balance, the problem with the divergence in the integrated noise power reappears. One may
reason that the exclusion of the vacuum energy is justified because only physical transitions can participate in
dissipative processes. For a more satisfactory picture, see below.
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However, it is a characteristic feature of Poisson processes that the variance in the number

of transmitted electrons var(n) = 〈n〉, which means that the variance in the current,

var(I) =
1

Δt
〈I〉.

Although the signal-to-noise ratio 〈I〉2/var(I) = Δt〈I〉 increases with increasing observation

times and increasing mean current strength, the discreteness of charge remains a principal

source of noise. In a continuum model of charge transport this shot noise11 can be modeled

by addition of a suitable noise term to the right hand side of Eq. (10.16), in addition to

the Johnson noise term. (In Section 11.6 of the next chapter we explore how this addition

emerges in a microscopic construction.) Unlike Johnson noise, shot noise is independent of

temperature and resistivity of the circuit. Both have in common that the noise power is

largely independent of frequency.

Other sources of noise

A variety of physical processes produce noise. Empirically one finds that these sources of

noise can add to an overall noise signal that is (a) non-universal in that it depends on all

sorts of system-specific details and (b) strongly frequency dependent (unlike the “universal”

sources of Johnson and shot noise). It is customary to denote noise signals with a power

spectrum

S(ω) ∼ ω−α, 0.5 < α < 2,

as 1/f-noise (“f ,” because in engineering it is customary to use f instead of ω for fre-

quency). For further discussion of 1/f -noise we refer to the literature.12

10.2.3 Fokker–Planck equation I

The network of connections revealed above and in Fig. 10.4 is of fundamental importance to

statistical physics and deserves further investigation. To this end, we will adopt the second

interpretation of the stochastic process v[ξ](t) advocated above and work in terms of a

probability distribution p(v, t). Analysis of the effective equations controlling the probability

distribution leads us straight to the concept of the Fokker–Planck equation, a dynamical

equation whose importance to statistical physics can be compared to that of the Schrödinger

equation to quantum mechanics.

EXERCISE Carefully think about the steps in the derivation below; it is exemplary of a general

scheme to derive Fokker–Planck evolution equations in the theory of stochastic processes.

We wish to derive an equation controlling the evolution of the (conditional) probability

p(v, t|v0, t0) to observe a particle velocity v at time t provided we started out with velocity

11 Shot noise was first observed in vacuum tubes, i.e. devices where electrons are “shot” from some cathode through
empty space.

12 For instance, see P. Dutta and P. M. Horn, Low-frequency fluctuations in solids: 1/f-noise, Rev. Mod. Phys.
53, 497-516 (1981).



10.2 Langevin theory 617

Figure 10.4 Different physical concepts revolving around the physics of the Langevin equation.

v0 at time t0 < t. The evolution of the variable v is controlled by the Langevin equa-

tion (10.10), a first order differential equation in time. This means that the evolution v′ Δt−→
v from some initial configuration v′ to v solely depends on the initial configuration v′ (and,
of course, on the specific realization of the random force, ξ). However, it does not depend

on the pre-history of the particle, i.e. the specific way in which it made it to the initial

configuration v′. (Exercise: consider why this is a specific feature of a first order differential

equation.) This feature, implies the “convolution” property (again a statement to reflect

upon),

p(v, t|v0, t0) =

∫
ddv′ p(v, t|v′, t′)p(v′, t′|v0, t0), (10.20)

where t′ ∈ [t0, t] is arbitrary and the second factor under the integral is the probability to

find v′ at t′ for initial data (v0, t0). Weighing by the conditional probability to move on

to v and summing over all intermediate configurations, v′, we obtain the total probability

(v0, t0) → (v, t). Equation (10.20) is the defining property of a Markovian process,

i.e. a process which is fully determined by one-step probabilities. (For a more systematic

discussion, see Section 10.4.2 below.)

Evaluating Eq. (10.20) for the specific choice of time arguments t → t + δt and t′ → t,

and suppressing the initial value argument (v0, t0) for notational simplicity, we obtain an

equation for the incremental evolution of probability,

p(v, t+ δt) =

∫
dduw(v − u, t;u, δt)p(v − u, t),

where we have introduced the notation

w(v, t; Δv,Δt) ≡ p(v +Δv, t+Δt|v, t),

for the probability of “transitions” (v, t) → (v+Δv, t+Δt). We next make use of the fact

that, for diffusive motion, the “step width” u in a sufficiently small time window, δt, will be

small in comparison to the length scales over which the probability distribution p changes

considerably. It then makes sense to Taylor expand in the argument v − u around u, i.e.

to expand in the underlined arguments in w(v − u, t;u, δt)p(v − u, t). It is important to

appreciate that the legitimacy of this so called Kramers–Moyal expansion hinges on the
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kinematics of the process. In cases where one-step transitions are over large distances (as is

the case in, say, ballistic collisions in dilute gases) other procedures have to be applied. One

of these alternative approaches, Boltzmann kinematic theory, is discussed in Section (10.3)

below.

Performing the expansion, we obtain the infinite order differential equation,

p(v, t+ δt) = (α(0)p)(v, t)− ∂vi
(α

(1)
i p)(v, t) +

1

2
∂2
vi,vj (α

(2)
i,j p)(v, t) + . . . , (10.21)

where

α(0)(v, t) =

∫
dduw(v, t;u, δt),

α
(1)
i (v, t) =

∫
dduw(v, t;u, δt)ui,

α
(2)
i,j (v, t) =

∫
dduw(v, t;u, δt)uiuj .

To compute the coefficients, w, we use the fact that for sufficiently small δt, the Langevin

equation assumes the approximate form

v(t+ δt) = v − δtγv +
δt

m
ξ(t).

The second and third term on the right–hand side tell us how the random variable v(t+ δt)

relates to the random variable ξ, provided v(t) = v was realized. This means that the

transition probability is obtained as

w(v, t;u, δt) = p(v + u, t+ δt|v, t) = 〈δ(v + u− v(t+ δt))〉ξ
= 〈δ(u+ δtγv − δtξ(t)/m)〉ξ .

Now, the functional distribution function controlling the fluctuation force is given by,

p([ξ]) = N
∫
Dξ exp(− 1

2A

∫
dt |ξ(t)|2) → N

∫
Dξ exp(− δt

2A

∑
t |ξ(t)|2) (cf. Eq. (10.11)),

where N ensures normalization and in the second representation we used δt as our funda-

mental time step discretization. The distribution factorizes, and the probability to find ξ

at time t is given by

p(ξ(t)) = N exp

(
− δt

2A
|ξ(t)|2)

)
.

Using this result, we get

w(v, t;u, δt) =

∫
ddξ p(ξ) δ(u+ δtγv − δtξ/m) = N exp

(
− m2

2Aδt
|u+ γδtv|2

)
,

where N → Nm/δt is a renormalized constant ensuring normalization of the probability,∫
dduw(v, t;u, δt) = 1. With these results, it is straightforward to obtain the coefficients

α(n) as

α(0)(v, t) = 1, α
(1)
i (v, t) = −γδtvi, α

(2)
i,j (v, t) = δij

2δtA

m2
+ (γδt)2vivj .
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Coefficients α(n>2)(v, t) = O(δt2) are vanishingly small in the limit δt → 0. Substitution of

these results into Eq. (10.21), followed by first order expansion in δt leads to the Fokker–

Planck equation,13 (
∂t − ∂viγvi − ∂2

vivi
Dv

)
p(v, t) = 0, (10.22)

where

Dv =
A

2m2
,

is the diffusion constant of velocity. In equilibrium, Dv = Tγ/m (cf. Eq. (10.15)), which is

related to the particle diffusion constant (10.14) through the relation Dv = γ2D.

Eq. (10.22) is a partial second order differ-

ential equation for the probability distribu-

tion. It has to be solved with initial condi-

tion p(v, t = t0) = δ(v − v0), i.e. Eq. (10.22)

defines an initial value problem (much like

the time-dependent Schrödinger equation in

quantum mechanics). The second and third

contribution to the Fokker–Planck operator

describe the competition of drift and diffu-

sion, respectively. The Fokker–Planck equa-

tion, thus, represents the “theory” behind the chain of connections shown in Fig. 10.4.

Derived from the Langevin equation with its interplay of dissipation and fluctuation, it

predicts diffusion and drift for the dominant transport mechanisms at large times. By way

of example, the figure above shows a set of trajectories with a constant drift contribution

but subject to different noise contributions leading to diffusion.

In the following, we discuss the dynamics described by Eq. (10.22) from a number of

different perspectives. Specifically, we wish to understand the meaning of the diffusion and

the drift term, the competition between the two, and at last, the approach to thermal

equilibrium within the framework of Langevin theory.

� To understand the meaning of the drift term, consider the Langevin equation in the pres-

ence of a constant external driving force F. Browsing through the steps in the derivation of

the Fokker–Planck equation, one verifies that the essential14 effect of this generalization is

a shift α
(1)
i → δt(−γvi+m−1Fi) of the drift coefficient. The Fokker–Planck equation thus

generalizes to
(
∂t − ∂vi(γvi −m−1F )− ∂2

vivi
Dv

)
p(v, t) = 0. Multiplying this equation by

vi, and integrating over velocity we obtain,

dt〈v〉+ γ〈v〉 −m−1F = 0,

13 Anticipating later generalizations to the case of v-dependent coefficients, v,Dv , we place the latter to the right
of the differential operators ∂vi

.
14 However, we also have to bear in mind that the presence of a constant external force drives the system out

of equilibrium. (Switching off the force will change the state of the system, a criterion for a nonequilibrium
situation.) This means that dissipation and fluctuation are no longer related to each other by the fluctuation–
dissipation theorem.
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a result that can equally be obtained by averaging the Langevin equation over noise. This

equation describes the relaxation of the velocity expectation value to a stationary drift

configuration 〈v〉 → 1
mγF. Identifying that expectation value with the force-induced drift

current, we obtain jd = F/mγ, in agreement with the phenomenological reasoning above.

� The third term in Eq. (10.22) describes diffusion. The influence of the diffusion term on

the dynamics is visualized in the figure above for the case of particles in two dimensions

subject to a uniform driving force F = const.× (2ex + ey). Diffusion leads to a stochastic

spreading around the (deterministic) drift trajectory. The corresponding distribution p(v)

is predicted by the stationary long time limit of the Fokker–Planck equation, (∂vi(γvi −
m−1Fi) +Dv∂

2
vivi)p(v) = 0, or(

γvi −m−1Fi +Dv∂vi

)
p(v) = 0.

This is solved by p(v) ∼ e−
γ

2Dv
|v− 1

mγ F|2 , i.e. a “diffusion cloud” centered around the drift

trajectory. At F = 0, the diffusion constant Dv = Tγ/m assumes its equilibrium value

and p(v) = e−
m
2T |v|2 reduces to the Maxwell–Boltzmann distribution. We thus draw

the important conclusion that

in the absence of external driving, a conspiracy of diffusion and

drift sends the system into a state of thermal equilibrium.

EXERCISE Our discussion above focused on the diffusive character of the velocity distribution,

p(v, t). To describe the diffusive dynamics of the particle coordinates, q, let us consider

a force-free (F = 0) Langevin equation in the overdamped limit, mγdtq = ξ, i.e. a limit void of

external forces where ballistic acceleration ∼ md2tq is negligible. Show that the Fokker–Planck

equation for p(q, t) takes the form

(∂t −D∂2
q )p(q, t) = 0, (10.23)

where D is given by Eq. (10.14). This confirms the expectation that in thermal equilibrium

the coordinate will perform drift-less diffusive motion whose level of agitation increases with

temperature.

EXERCISE Imagine that the single particle dynamics is governed by some Hamiltonian H(x)

(as usual, x = (q,p)). Again, we model the influence of the environment by a combination

of dissipation and fluctuation. This leads to the generalized phase space Langevin equation,

dtq = ∂H
∂p

, dtp = − ∂H
∂q

− γp + ξ. Show that the probability distribution p(x, t) is governed by

the phase space Fokker–Planck equation,

dtp(x, t) = −{H, p(x, t)}+ ∂

∂p

[
γp+Dp

∂

∂p

]
p(x, t), (10.24)

where Dp = m2Dv = Tγm is the diffusion constant of momentum. The second operator on

the right–hand side describes the dissipation/fluctuation generalization of deterministic single

particle dynamics (cf. Eq. (10.9)).
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q −cε(t) −f(v)ε(t)

Figure 10.5 Schematic showing the “daily routine” of an amoeba. Left: energy intake at a rate
q. Middle: dissipative energy losses due to basic metabolic activity, rate −cε(t), where ε(t) is the
instantaneous energy stored in the organism. Right: motion at a velocity v leads to an energy loss
proportional to both, ε(t) and a velocity dependent loss function, f(v).

10.2.4 Beyond equilibrium

We have seen how the Langevin equation describes the approach to equilibrium: dissipative

energy losses and the intake of energy through fluctuations balance each other in a way

to form an equilibrium configuration. However, the descriptive power of Langevin theory

extends well-beyond the physics of equilibrium. Effective Langevin equations with dissipa-

tion/fluctuation imbalances can be employed to describe rather complex out-of-equilibrium

phenomena in physics, life sciences, and socio-economics.

Active Brownian motion

By way of example, we here discuss the construction of a minimalistic model to describe

the phenomenon of collective biological motion (“swarming”). Of course, we do not aim to

describe the actual behavior of a concrete species. Rather, our objective is to formulate an

as-simple-as-possible model of collective intake of energy and its conversion into kinematic

action. For the formulation of more powerful models and a survey of the recent literature,

we refer to Ebeling and Sokolov.1

Our strategy is to endow the Brownian “particles” (you may now think of them as amoe-

bae or another not too complex animal) with a mechanism of self-propulsion. To this end,

we imagine the particles endowed with an energy storage. The time-dependent energy level,

ε(t), will (a) increase due to food intake at some rate, q, (b) decrease at rate −cε(t) due

to metabolic activity (notice the assumption that energy loss is the larger the larger the

energy stored in the organism), and (c) decrease due to kinematic activity (see Fig. 10.5).

We assume that motion leads to a loss at rate −ε(t)f(v), where f(v) ≡ κv2. The net change

of the particle’s energy is thus given by,

dtε = q − cε− κv2ε.

We next assume that the kinematic energy loss is translated to a propelling force, F. The

form of that force F = εκv follows from the condition that the work per time interval done

by the force F·dr/dt = F·v must equal the kinematic energy loss, κv2ε, and the assumption

that F � v.
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The particle dynamics is then described by the generalized Langevin equation,

mdtv +mγv = −∇U + εκv + ξ,

where∇U represents an external potential and γ the background friction coefficient. Further

progress with this equation can be made if we assume that the population is in a balanced

state in that the energy “depots” are kept at equal filling levels, on average: dtε = 0, or

ε =
q

c+ κv2
.

This condition can be used to replace ε in the Langevin equation and to obtain an effective

Langevin equation governed by a mechanism of activated friction

mdtv +mγeff(v)v = −∇U + ξ, γeff(v) = γ − qκ

m(c+ κv2)
. (10.25)

An interesting situation arises if the background friction is small in that γ < κq
mc . Under

this condition, the effective friction vanishes for finite velocities,15

|v|2 = v20 ≡ κq −mcγ

mκγ
.

The condition |v|2 = v20 defines a sub-manifold in velocity space on which the dynamics

becomes effectively Liouvillian, i.e. unhindered by friction. To understand how the particles

arrange themselves around that manifold, we need to compute the velocity distribution

function. Inspection of the derivation of the Fokker–Planck equation shows that the gener-

alization to activated friction amounts to a mere replacement γ → γeff(v) in Eq. (10.22).

This means that the steady state probability distribution of the particles is determined by

the equation, (Dv∂vi − γeff(v)vi)p(v) = 0. Integration of this equation leads to

p(v) = N exp

(
− 1

2Dv

(
γ|v|2 − q

m
ln(c+ κ|v|2)

))
,

where N ensures normalization. In the absence of energy supply, q = 0, and the distribution

reduces to the Maxwell–Boltzmann form. However, in general, p(v) is far from equilibrium.

The center of the distribution is determined by the condition ∂|v|2(exponent) = 0 which

is solved by |v|2 = v20 . We conclude that the frictionless manifold |v|2 = v20 is attractive

in that it defines the center of the distribution function. The sharpness of the distribution

is determined by the inverse of the diffusion constant, i.e. the more noisy the Langevin

equation, the less rigid the fixation of the condition |v|2 = v20 .

Swarms

The model above fixes the modulus of the velocity of individual particles. However, to

describe more complex patterns of collective biological motion, we need to (a) think about

mechanisms controlling the direction of velocity, and (b) correlate the motion of many

15 In cases where the velocity v2
0 � cκ−1, the effective friction function γeff (v) � c + c′v2 may be effectively

linearized in the squared velocity. Activated friction profiles were employed by Rayleigh to describe the complex
energy feedback of musical instruments. (J. W. S. Rayleigh, On the resultant of a large number of vibrations
of the same pitch and of arbitrary phases, Phil. Mag. 10, 73-8 (1880).)
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particles to form collective entities. Crudely speaking, three prototypes of collective motion

are frequently observed in nature: translational motion (a wandering herd of elephants),

rotational motion (a school of fish), and uncorrelated motion (bacteria, etc.). Theorists are

trying to mimic such types of collective dynamics by extended effective friction models.

Referring for a more comprehensive discussion to chapter 12 of Ebeling and Sokolov.1, we

here restrict ourselves to a brief review of a few concepts relevant to this field.

One aim is to characterize a swarm of N particles in terms of a center coordinate ∼
∑

vi

and relative motion. Often, the dynamics of the center is of limited concern. One may, then,

decide to impose an external mean velocity V(t). The more interesting relative dynamics

of the particles is governed by a combination of a one and a two-particle potential

U(q1, . . . ,qN ) =

N∑
i=1

U (1)(qi) +

N∑
i,j=1

U (2)(qi,qj).

The interactions may be attractive (e.g. when one seeks to model motion of a school of

fish in open water), or repulsive (insects in a confined geometry). Collective and relative

dynamics are described by the set of equations

mdtvi +mγeff(vi) + c(vi −V(t)) = −∂qiU(q1, . . . ,qN ) + ξ(t), (10.26)

where the term c(vi −V(t)), c > 0 drives the particle velocity towards the mean velocity

of the swarm.

This is about as much as can be said in general. Approximation schemes employed to

describe specific types of motion include approximate decoupling of the equations into an

equation for the center coordinate and N − 1 equations for the relative coordinates, and

mean field treatment of the pair interaction. For example, assuming that the mean field

interaction potential is of the form, U (2) ∼ c
2 (qi − Q)2, where Q is the center of mass

coordinate, the equations for the relative coordinates decouple into the form

mdtv
′
i +mγeff(v

′
i) = −cq′

i + ξ(t),

where the primes indicate relative coordinates, and we assumed that |v′
i| � V, so that the

friction force depends dominantly on the relative velocity. The four-dimensional dynamics

predicted by these equations converges to a limit cycle on the frictionless manifold |v′|2 =

v20 and with radius specified by c|q′|2/2 = mv20/2 (equipartition of potential and kinetic

energy). The dynamics of the many particle system then resembles the rotational motion

of a swarm. For the discussion of other types of collective dynamics we refer to Ebeling and

Sokolov.1.

10.3 Boltzmann kinetic theory

Previously, we have explored the ways in which a sequence “Langevin dynamics → Fokker–

Planck equation → distribution functions” leads to predictions on the macroscopic state of

many particle systems, both in and out of equilibrium. A central step in the derivation of the

Fokker–Planck equation was the Kramers–Moyal expansion, an expansion of the probability
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of short time transitions x
δt→ x′ in the difference x − x′. The Kramers–Moyal expansion

makes sense if, for sufficiently short δt, the hopping steps in phase space become small in

comparison to the typical phase space coordinates themselves. More precisely, we assumed

that the moments 〈(x′ − x)n〉 of the conditional probability p(x′, t+ δt|x, t) exist and scale

with positive powers δtp(n). Only terms with p(n) ≤ 1 (in the specific case of Gaussian

distributed noise, the first two) enter the Fokker–Planck derivative operator. Put differently,

the evolution of the probability distribution can be described in terms of a low order linear

differential equation only if the nth moments of the transition probability are well behaved

in that p(n) > 1 for all but the lowest ns. There are plenty of instances in many particle

physics where this “locality principle” is violated. Below we derive an effective evolution

equation that describes the dynamics of distribution functions under these circumstances.

10.3.1 Derivation of the Boltzmann equation

By way of an example, consider a gaseous system of particles in a container. In the infinitely

dilute limit (where particle collisions can be neglected), the phase space coordinates of

individual particles change according to Newtonian dynamics (cf. Eq. (10.9)). Specifically,

the single particle energy ε is conserved, and (assuming the absence of smooth potential

gradients) momentum is constrained to an energy shell |p|2/2m = ε.

However, once interactions are taken into account,

the rate at which the distribution f(x1, t) changes

gets influenced by particle collisions: losses occur

when particles at phase space point x2 scatter

off particles of the reference momentum x1 into

final states x′
1 and x′

2 (cf. the figure). We denote

the corresponding two-particle transition rate by

w(x′
1,x

′
2;x1,x2)d

dx′
1d

dx′
2d

dx1d
dx2, where the func-

tion w encapsulates kinematic constraints (energy

and momentum conservation) of the collision. The

dtf due to “out” processes then reads

dtf1
∣∣
out

=

∫
d2 d1′ d2′ w(1′, 2′; 1, 2)f1f2,

where we take into account the fact that the total transition rate depends linearly on the

number of available collision partners in the two initial states, and introduce a (standard)

notation wherein coordinate dependencies are indicated by numbers, ddx1 → d1, f(x1) →
f1, etc.

Gain occurs when particles get scattered into the reference state in collisions (1′, 2′) →
(1, 2):

dtf1
∣∣
in
=

∫
d2 d1′ d2′ w(1, 2; 1′, 2′)f1′f2′ .
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The total occupation change due to collisions I[f ] ≡ dtf1
∣∣
in

− dtf1
∣∣
out

is summed up in

what is commonly called the collision integral,

I[f ] =

∫
d2 d1′ d2′ (w(1, 2; 1′, 2′)f1′f2′ − w(1′, 2′; 1, 2)f1f2) . (10.27)

Notice that the collision integral is a nonlinear functional of the distribution functions, i.e.

we are facing up to a nonlinear theory.

The transition rates w are subject to certain symmetry relations which reflect time-

reversal invariance and unitarity of the microscopic laws of physics. For example, microre-

versibility implies that a transition (1, 2) → (1′, 2′) must be as probable as the time-

reversed process (1′T , 2′T ) → (1T , 2T ), where 1T ≡ (q1,p1)
T = (q1,−p1) is the time-reverse

of a phase space point, i.e.

w(1′, 2′; 1, 2) = w(1T , 2T ; 1′T , 2′T ).

The consequences of unitarity are best exposed if we interpret the coefficients w as classical

limits of quantum transition probabilities. Identifying (1, 2) ↔ |i〉 as a classical approxima-

tion to a (coherent) state in two particle Hilbert space,16 and (1′, 2′) ↔ |f〉 as a final state,

we have the identification,

w(1′, 2′; 1, 2) ↔ |Sfi|2,

where Sfi is the scattering matrix. Unitarity means that
∑

i |Sfi|2 =
∑

i |Sif |2 = 1, or∫
d1′d2′ w(1′, 2′; 1, 2) =

∫
d1′d2′ w(1, 2; 1′, 2′).

Using this relation in the out-process, the collision integral can be transformed to

I[f ] =

∫
d2 d1′ d2′ w(1, 2; 1′, 2′) (f1′f2′ − f1f2) . (10.28)

Adding I[f ] ≡ dtf1
∣∣
in
− dtf1

∣∣
out

as the many particle contribution to the changes in the

distribution function to the right–hand side of Eq. (10.9), we obtain the celebrated Boltz-

mann transport equation,17

(∂t − {H, . }) f(x, t) = I[f ]. (10.29)

10.3.2 Discussion of the Boltzmann equation

What is the Boltzmann equation (10.29) good for? First, it has been, and still is, a very

powerful tool in applied many particle physics. Before the advent of the more powerful

16 Here, we consider the particles as distinguishable, i.e. no (anti)symmetrization is implied.
17 In the Russian literature, the Boltzmann equation is usually called the “kinetic equation.”
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techniques reviewed in previous chapters of this book, it used to be the principal tool to cal-

culate physical observables in interacting many particle systems.18 Even today, Boltzmann

equation-based approaches often represent the most economic and straightforward route to

understanding the physics of interacting many particle systems.

Second, the Boltzmann equation is of great conceptual value. Many of the principal

questions raised in the beginning of the chapter have a relatively straightforward answer in

terms of this equation. We first note (cf. the more schematic discussion before Eq. (10.8))

that the collision term vanishes in thermal equilibrium. In equilibrium, the distribution

function is given by the Maxwell–Boltzmann distribution Eq. (10.8). Energy conservation in

elastic collisions, H(x1)+H(x2) = H(x′
1)+H(x′

2), means that f1f2 = f1′f2′ , i.e. vanishing

of I[f ]. In equilibrium the losses and gains due to many particle collisions compensate each

other and I[f ] does not change the distribution. (Since f(x) = f(H(x)), the single particle

dynamics conserves f as well, {H, f} = 0, i.e. the Maxwell–Boltzmann distribution is truly

stationary under (10.29).)

The Boltzmann H-Theorem

However, it is not quite as easy to show that the collision term actually drives the distribu-

tion towards the thermal equilibrium configuration. The defining property of the thermal

equilibrium is that it maximizes entropy, S. In equilibrium statistical mechanics, it is usually

taken for granted (the second law of thermodynamics) that many body relaxation pro-

cesses increase entropy, dtS ≥ 0, before the maximum of the equilibrium configuration is

reached. However, a more general conceptual framework such as Boltzmann kinetic theory

should be able to actually demonstrate the ways in which a microreversible theory leads to

macroscopic irreversibility and entropy increase.

INFO In view of the comparative complexity of this problem, the collision term is sometimes

linearized in what is called the relaxation time approximation. One effects the following

replacement of the complicated nonlinear collision integral,

I[f ] −→ − 1

τ
(f − f0), (10.30)

where f0 is the Maxwell–Boltzmann distribution. The linearized approximation then describes

a tendency to approach equilibrium at a rate set by τ , a time scale interpreted as the mean

collision time of interaction processes.

The manner in which interactions increase entropy was demonstrated by Boltzmann in a

famous construction known as the H-theorem. (It is known as the H-theorem rather than

18 For a detailed account of various applications and computational schemes revolving around the Boltzmann
equation, see L.D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol 10 - Physical Kinetics,
(Butterworth-Heinemann, 1981).
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the S-theorem because Boltzmann called entropy H.) Consider the information-theoretic

definition of entropy19 according to which S = −〈ln(f/e)〉, or

S = −
∫

ddx f(x, t) ln(f(x, t)/e).

The temporal change of S is then given by

dtS = −
∫

ddx ln f ∂tf = −
∫

ddx ln f [{H, f}+ I[f ]] .

Since the full phase space integral of any function is invariant under Hamiltonian flow

(exercise: why?), we have 0 =
∫
ddx {H, f ln(f/e)} =

∫
ddx ln(f){H, f}, i.e. the change in

entropy is entirely due to interactions.

To explore how interactions do the job, consider the collision integral in its prototypi-

cal variant Eq. (10.27). For an arbitrary function φ(x), and using the abbreviation dΓ ≡
d1 d2 d1′ d2′, we have∫

d1φ(1)I[f(1)] =

∫
dΓφ(1) (w(1, 2; 1′, 2′)f1′f2′ − w(1′, 2′; 1, 2)f1f2)

=

∫
dΓ (φ(1)− φ(1′))w(1, 2; 1′, 2′)f1′f2′

=
1

2

∫
dΓ (φ(1) + φ(2)− φ(1′)− φ(2′))w(1, 2; 1′, 2′)f1′f2′ , (10.31)

where in the first equality we relabeled coordinates (1, 2) ↔ (1′, 2′) and the second equality

is based on the symmetry 1 ↔ 2 under exchange of the collision partners.
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From this result, we can derive a few auxiliary

identities. Setting φ = 1, we conclude that the colli-

sion term vanishes upon integration,

0 =

∫
dΓ I[f ] =

∫
dΓw(1, 2; 1′, 2′)(f1′f2′ − f1f2),

where the second representation Eq. (10.28) was

used. Introducing the abbreviations

Λ ≡ f1′f2′

f1f2
, X ≡ w(1, 2; 1′, 2′)f1f2,

this can be written as 0 =
∫
dΓX(Λ − 1). Setting φ = lnΛ, Eq. (10.31) yields 0 =∫

dΓXΛ ln(Λ). Combination of these results finally leads to

dtS =
1

2

∫
dΓX(Λ lnΛ− Λ + 1).

19 If you are not familiar with this definition, consult any advanced textbook on equilibrium statistical mechanics.
Exercise: show that in thermal equilibrium, the above definition reduces to the standard definition of thermo-
dynamics.
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Now, the functionsX and Λ are manifestly positive. For positive Λ, the combination Λ lnΛ−
Λ+1 is positive as well (see the figure or, alternatively, try to prove it). This demonstrates

that elastic particle collisions indeed increase the entropy of the system.

Mesoscopic evolution laws

The arguments used in the derivation of the H-theorem are useful to derive “mesoscopic’

dynamical equations for observables of physical interest – densities, currents, and the like

– i.e. equations that describe their behavior at length scales much larger than the collision

mean free path l = τv (where v is a typical particle velocity) yet smaller than macroscopic

scales.

These equations must reflect the fundamental conservation laws of the system, the con-

servation of energy, particle number, momentum, etc. Now, interactions may change the

energy or momentum of individual particles, but they will not change the total energy and

momentum of a sufficiently large assembly of particles. To see this in quantitative terms, let

δΓ ≡ δV ⊕R3 be a thin slice in phase space containing phase space points in the small vol-

ume element δV at coordinate q and of arbitrary momentum p ∈ R3. The average particle,

energy, and momentum density, respectively, are then given by

ρ(q, t)

ε(q, t)

π(q, t)

⎫⎬⎭ = δV −1

∫
δΓ

ddx f(x, t)

⎧⎨⎩
1

H(x)

p

.

It is now straightforward to prove that interactions do not change these values. To this end,

let us assume that the coefficients w describe an elastic point interaction, i.e. an interaction

local in space that respects energy and momentum conservation. In this case (exercise: think

why), a restriction of Eq. (10.31) to the volume restricted phase space element δΓ holds,

i.e. ∫
δΓ

d1φ(1)I[f(1)] =
1

2

∫
1∈δΓ

dΓ (φ(1) + φ(2)− φ(1′)− φ(1′))w(1′, 2′; 1, 2)f1′f2′ .

Now, particle, energy, and momentum conservation mean that, in the particular cases φ =

1, ε,π, the linear combinations φ(1) + φ(2) − φ(1′) − φ(1′) on the right–hand side of the

equation vanish. We thus conclude

∫
δΓ

d1 I[f(1)]

⎧⎨⎩
1

H(x)

p

= 0 .

This identity is the key to the formal derivation of conserving transport equations. For

example, changes in the particle density are obtained as

∂tρ δV =

∫
δΓ

ddx ∂tf =

∫
δΓ

ddx {H, f} =

∫
δΓ

ddx (∂qαH∂pαf − ∂pαH∂qαf)

� ∂qαH

∫
δΓ

ddx ∂pα
f −

∫
δΓ

ddx vα∂qαf � 0− ∂qαjα,
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where jα ≡ δV −1
∫
δΓ

ddx vαf is the α-component of the particle current density. We thus

obtain the particle density continuity equation,

∂tρ+∇ · j = 0.

If you find this result trivial, keep in mind that it has been derived for arbitrary distribu-

tion functions, and under specific (if reasonably general) assumptions on the nature of the

microscopic interactions. Particle number conservation as well as the energy and momentum

conservation laws discussed in the exercise below impose important consistency constraints

on the validity of the theory.

EXERCISE Show that, for a translationally invariant system, energy and momentum density

obey the conservation laws

∂tε+∇ · j� = 0, ∂tπa + ∂qβΠαβ = 0, (10.32)

where j� ≡ δV −1
∫
δΓ

ddx fHv and Παβ ≡ δV −1
∫
δΓ

ddx fmvαvβ are the energy current density

and the momentum current tensor respectively.

Beyond equilibrium: zero modes of the collision integral

As with Langevin theory, the full potential of the formalism becomes visible once we go

beyond the level of thermal equilibrium. We have seen that the collision integral favours a

Maxwell–Boltzmann distribution, f(x) = N exp(−ε/T ). Importantly, however, it is indis-

criminate as to the value of temperature, or the normalization factor N (which determines

the particle number). In fact, if it were left to the collision integral alone, local equilibrium

configurations described by spatially varying profiles T → T (q), N → N (q) are perfectly

balanced; all the collision integral requests is a logarithmically linear function of energy,

∼ exp(const.× ε). What prevents strong local variations of temperature and normalization

is the left–hand side of the Boltzmann equation, where Liouville flow builds up correla-

tions across the system. Once the system is perturbed out of equilibrium (by application

of a strong electric field, say, or by connection to two thermal reservoirs kept at different

temperature), we may then expect a scenario wherein the collision integral aims to estab-

lish local thermal equilibrium, while the left hand side will try to compromise between the

“cost” of spatial variations and the need to adjust to the conditions imposed by the external

perturbation.

The quantitative description of such competitions is the subject of Boltzmann transport

theory, a substantial field by itself (again, we refer to Landau and Lifshitz 18 for a very

detailed exposure). In the following, we discuss a few basic elements of this theory and

apply them to an example. To this end, let us imagine a system weakly perturbed out

of equilibrium. We may then assume that its effective distribution function is of the form

f = f0 + . . . , where f0 is a Maxwell–Boltzmann distribution with uniform parameters

and the ellipses represent a small deviation. The fact that f0 depends on the phase space

coordinates only through energy, ε(x) ≡ H(x), suggests a representation

f(x) = f0(ε) +
∂f0

∂ε
(ε)χ(x) = f0(ε)− f0(ε)

T
χ(x),
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where χ describes deviations from equilibrium. Substituting this ansatz into the collision

integral (10.28), and using the fact that f0
1 f

0
2 = f0

1′f
0
2′ , we obtain the linear integral operator

I[χ] = −f0
1

T

∫
d2 d1′ d2′ w(1, 2; 1′, 2′)f0

2 (χ1′ + χ2′ − χ1 − χ2) . (10.33)

This operator has a number of manifest “zero modes”: for

χ(x) = c(q), χ(x) = c(q) ε(p), χ(x) = v(q) · p, (10.34)

with space-dependent c(q),v(q),20 we have I[χ] = 0. These zero modes reflect the invariance

of the collision integral under local variations of the equilibrium parameters. For example,

a local change in the particle density can be described by N → N 0 + δN (q). Linearity of

the Maxwell–Boltzmann distribution function in δN then gives

f → f0 +
∂f0

∂N δN(q) = f0 − f0

T

TδN(q)

N 0
,

i.e. with the identification c(q) = TδN(q)/N 0, a variation as in the first equality of

Eq. (10.34).

EXERCISE Extend this argument to show that the second zero mode corresponds to local

changes in temperature, and the third reflects Gallilean invariance, i.e. invariance under Gallilean

transformation to an inertial frame moving with velocity v(q). (Again, the locality of the collision

integral entails that the boost velocity can be spatially varying.)

Example: thermal conductivity of a gas of particles

Even the linearized Boltzmann equation is a complicated integro-differential equation which

is difficult to solve in generality. Often, however, it is possible to resort to certain simplifying

approximations – of which the relaxation time approximation is one of the more popular –

whereupon the Boltzmann equation becomes a highly efficient computational tool. In the

following, we illustrate some of these ideas on the example of the thermal conductivity of a

gas.

Suppose we have imposed a temperature gradient T (q) on a gas of interacting particles.

The gas will respond by the buildup of a heat current jε (cf. Eq. (10.32)). For sufficiently

weak temperature gradients, the current will depend linearly on ∇T , and we may define

the thermal conductivity, κ, through the relation,

jε = −κ∇T. (10.35)

In the following, we outline, how this coefficient may be obtained in a semi-phenomenological

manner from the Boltzmann equation (for a more substantial discussion, cf. §7 of Landau

and Lifshitz.18

If the temperature gradient is small, we may assume a distribution of the form

f(x) = f0(x) +
f0(x)

T (q)
χ(x),

20 Here we assume that the energy conserved in elastic collisions is a function of momentum only, at least on the
microscopic length scales relevant to the interaction processes.
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where f0(x) = N exp(−ε(p)/T (q)) is a local Maxwell–Boltzmann distribution with spa-

tially varying temperature, and χ accounts for the distortion of the system out of the local

equilibrium described by f0. Since χ describes a mere readjustment of the particle concen-

tration, we have
∫
ddx f0χ = 0. The heat current density carried by the system is given by

(cf. Eq. (10.32)

jε =
1

TδV

∫
δΓ

ddx f0χεv,

where we used the fact that the distribution f0 does not support a current.

We next substitute the above ansatz in the Boltzmann equation and linearize: noting

that deviations out of (local) equilibrium are driven by ∂qT , we anticipate that, to leading

order, χ = O(∂qT ). Terms of higher order in ∂qT will be neglected which means that, on

the left hand side of the Boltzmann equation, the zeroth order approximation f � f0 can be

used. On the right hand side, we meet with the linearized collision integral I[χ]. Assuming

stationarity of the distribution, we thus obtain

−{H, f0} = v · ∂qf0 = ∂T f
0v · ∂qT =

f0
T

ε

T
v · ∂qT = I[χ].

The linearity of I[χ] in χ suggests an ansatz χ = (v ·∂qT )g(p), where g is a scalar function.

While the solution of the linear integral equation for g remains a formidable task, things get

a lot simpler if we resort to the phenomenological relaxation time approximation Eq. (10.30),

I[χ] = −f0

T

1

τ
(v · ∂qT )g(p),

where τ is the characteristic time of relaxation processes in the medium. Substitution of

this ansatz into the Boltzmann equation then readily leads to the solution

g(p) = −ε(p)τ

T
.

Substitution into the formula for the current then gives

jε = −δV −1

∫
δΓ

ddx f0
( ε

T

)2

τ(v · ∂qT )v = −τ

d

∫
ddp f0

( ε

T

)2

v2∂qT,

which leads to the result

κ =
τ

d

∫
ddp f0

( ε

T

)2

v2 ∼ l

√
T

m
,

for the thermal conductivity. Here, l = τ v̄ is the collision mean free path, and we have

made use of the fact that the mean velocity of particles scales as v̄ ∼ (T/m)1/2. (Typically,

the mean free path depends only weakly on temperature.)

Although our discussion above focused on a specific example, it reflects a number of

general principles in Boltzmann transport theory:

� In systems weakly perturbed out of equilibrium, it is convenient to use a representation

f = f0 + ∂εf
0χ for the distribution function, where f0 is a (local) Maxwell–Boltzmann

distribution.
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� Typically, the left–hand side of the Boltzmann equation contains the perturbing influ-

ences, while the right–hand side (the collision term) aims to drive the system back to

equilibrium. This suggests...

� an expansion of the left–hand side to first order in the perturbations and to zeroth order

in the distribution function. On the right–hand side we linearize the collision integral,

using the fact that I[f0] = 0.

� The expansion of the left–hand side then contains the perturbation in a form whose

symmetries suggest a problem-adjusted ansatz for the correction, χ. Substitution of this

ansatz produces an effective equation for the strength of the correction which can be

solved, e.g., in a relaxation time approximation.

Programs of this type often provide an efficient route to results otherwise obtained by

microscopic linear response theory. However, problems far removed from equilibrium call

for a more tailored approach and no general schemes can be formulated.

10.4 Stochastic processes

In the previous sections we have introduced a few strategies to describe the approach to

(as well as as departures from) thermal equilibrium. En route we have met with different

realizations of stochastic dynamics, or “stochastic processes.” Stochastic processes play a

fundamental role in a whole spectrum of sciences, including the life sciences, engineering,

socio-economic sciences, and many more. Equally important (for us as physicists) the lan-

guages in which stochastic processes are commonly described – the vocabulary includes

“probability,” “rate equations,” “Markov approximations,” etc. – are spoken by a large

community of scientists, which is an ideal basis for interdisciplinary dialogue.

10.4.1 The notion of a stochastic process

A process describes the temporal evolution of a certain state. It can be described in terms of a

sequence {ai(ti)} where ti, i = 1, . . . , n are the discrete times at which the states are recorded

and ai(ti) is a (generally multi-dimensional) state variable. A stochastic process21 is one

where the evolution ai(ti) → ai+1(ti+1) involves elements of randomness. In the descrip-

tion of stochastic processes we then need to focus on the totality of all possible sequences

{ai(ti)} where each realization gets assigned a certain probability p(an, tn; . . . ; a1, t1). The

probability function p carries the full information on the process, and this is the object we

need to describe.

Before moving on, it is worthwhile to distinguish between a few general types of stochas-

tic processes. We speak of a stationary stochastic process if p does not change under

simultaneous translation ti → ti + t0, i = 1, . . . n of all time arguments, i.e. if the the-

ory is, on average, translationally invariant. Using the notion of conditional probabilities

21 For a state of the art introduction to theory and application of stochastic processes we refer to N.G. van
Kampen, Stochastic Processes in Physics and Chemistry, (Elsevier,1992).
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(cf. Eq. (10.7)), the joint probability function describing a stochastic process can be itera-

tively constructed as

p(an, tn; . . . ; a1, t1) = p(an, tn|an−1, tn−1; . . . ; a1, t1)

×p(an−1, tn−1|an−2, tn−2; . . . ; a1, t1)× · · · × p(a2, t2|a1, t1)× p(a1, t1).

The process is called purely random if the probabilities p(aj , tj |aj−1, tj−1; . . . ; a1, t1) =

p(aj , tj) are independent of the history of events. In this case,

p(an, tn; . . . ; a1, t1) =

n∏
j=1

p(aj , tj),

is the product of n random numbers lacking intrinsic correlation. Evidently, purely random

processes do not display very interesting dynamics. Next in the hierarchy of complexity are

conditional probabilities for which

p(an, tn|an−1, tn−1; . . . ; a1, t1) = p(an, tn|an−1, tn−1). (10.36)

Processes of this type are called Markov processes. Markov processes enjoy an enor-

mous spectrum of applications in statistical sciences, which is why they deserve a separate

discussion.

10.4.2 Markov processes

In a Markov process, the passage to the state (an+1, tn+1) depends

on the current state (an, tn), but not on the history that got us there,

(an−1, tn−1; . . . ). Put differently, a Markov process lacks memory.

Markov processes owe their popularity to the fact that they optimally

compromise between descriptive power and analytical tractability; if

possible, one will try to (approximately) reduce a given process to an

effective Markovian process. In doing so, it is important to keep in mind

that22 the Markovian property holds only in an approximate sense. In

modeling a process, the update times Δt = tn+1− tn have to be chosen

long enough to eradicate the short time memory of a process, yet short

enough not to loose relevant aspects of the dynamics. (For example,

in the process of Brownian motion, Δt must be chosen to be much23

larger than microscopic collision times.)

Whether or not a process assumes a Markovian form generally depends on the coordinates

used. For example, in a process where a velocity-like variable evolves in a Markovian process,

22 For a more substantial in-depth discussion, see van Kampen.21

23 To understand the meaning of “much larger,” suppose that Δt = O(collision time). If at a given instant, tn,
the real space coordinate difference |xn − xn−1| happens to be atypically large, we know that the velocity at
tn must have been high. It is then likely, that |xn+1 − xn| will also be large, i.e. the probability to reach xn+1

depends not just on the conditional probability p(xn+1, tn+1|xn, t), but also on the history of events before
(xn, t). Averaging over a large number of collisions is necessary to average out this memory effect.
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the corresponding coordinates – the integrals of velocity over time – may store long time

memory and, therefore, be non-Markovian. (To see this, imagine a process of Brownian

motion represented in coordinate space, q1 → q2 → · · · → qn−2 → qn−1 → qn, where the

coordinates are recorded at equal time steps. If the spacing |qn−1 − qn−2| was exceptionally
large, the particle will have high velocity. Chances then are that the next step qn−1 → qn will

also be large. In other words, the conditional probability p(qn|qn−1, qn−2, . . . ) �= p(qn|qn−1)

and the process is not Markovian. Exercise: consider why velocity is a variable with less

memory.) For a given process one will naturally try to identify coordinates that make it as

“Markovian” as possible.

Chapman–Kolmogorov relation and master equation

The Markovian nature of a process can be expressed in a manner alternative to Eq. (10.36).

Consider the probability to observe a at t given initial data (ai, ti) and some intermediate

event (a′, t′), p(a, t; a′, t′; ai, ti). From this object, the “transition probability” p(a, t; ai, ti)

is obtained by integration over all realizations of the intermediate event,

p(a, t; ai, ti) =

∫
da′ p(a, t; a′, t′; ai, ti) =

∫
da′ p(a, t|a′, t′; ai, ti)× p(a′, t′; ai, ti),

where we have used Eq. (10.7). For a Markovian process, p(a, t|a′, t′; ai, ti) = p(a, t|a′, t′),
this reduces to the Chapman–Kolmogorov relation

p(a, t; ai, ti) =

∫
da′ p(a, t|a′, t′)× p(a′, t′; ai, ti). (10.37)

ai

a

tt,ti

a,
The usefulness of Eq. (10.37) becomes evident if we

consider the case |t− t′| � |t− ti|. Eq. (10.37) then
factorizes the description of the process into its three

most relevant compounds, (a) our quantity of inter-

est, i.e. the probability to get to a given we started at

ai, (b) the probability to reach an intermediate stage

a′ shortly before the final time, t, and (c) the short

time transition probability a′ t−t′−→ a (see figure). This

iterative, or “transfer matrix type” description of the process stands as the basis of most

theories of Markovian dynamics.

To push this iterative approach somewhat further, consider what happens if t − t′ ≡ δt

becomes (infinitesimally) small. To a very good approximation, p(a, t|a′, t − δt) � δ(a −
a′) + O(δt) will then be stationary. The term of O(δt) comprises losses out of a′ due to

transition into some state a′′, and input due to transition from a′. Denoting the probability

of transitions a1
δt→ a2 by W (a2|a1)δt, we may thus write

p(a, t|a′, t− δt) =

(
1− δt

∫
da′′ W (a′′|a′)

)
δ(a− a′) + δtW (a|a′).
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tn tn+1

ai

ai+1

ai−1

Figure 10.6 The evolution of Markovian probability, as described by the master equation: proba-
bility gain of states ai (here considered as discrete entities, while the text uses continuum notation)
due to in-processes is counteracted by loss due to out-processes. The sum over all feeds cancels,
reflecting probability conservation.

Substituting this expression into Eq. (10.37), taking the limit δt → 0 and suppressing the

initial time argument for notational simplicity p(a, t|ai, ti) = p(a, t), we then obtain the

so-called master equation24 (see Fig. 10.6).

∂tp(a, t) =

∫
da′ [W (a|a′)p(a′, t)−W (a′|a)p(a, t)] . (10.38)

Notice that the master equation conserves the total probability, i.e. ∂t
∫
da p(a, t) = 0.

INFO In general, little can be said about the master equation. An important exception regards

the master equation for physical systems that are closed and isolated in that no matter is

exchanged with the outer world, and energy is conserved. The attribute “physical” means that

we consider systems whose microscopic dynamics is governed by some Hamiltonian. At large

time scales, the solution of the master equation will relax to a time-independent equilibrium

distribution function peq(a), typically a Maxwell–Boltzmann distribution of the “energy” corre-

sponding to the state a. We thus have, 0 =
∫
da′ [W (a|a′)peq(a′)−W (a′|a)peq(a)]. This equation

should be interpreted as an effective sum rule obeyed by the transition matrix elements W (a|a′).
Using the invariance of microscopic Hamiltonian dynamics under time-reversal, it can in fact

be shown24 that the above balance equation not only holds in an integral sense, but even for

individual pairs (a, a′), i.e. W (a|a′)peq(a′) = W (a′|a)peq(a), or

W (a|a′)
W (a′|a) =

peq(a)

peq(a′)
. (10.39)

Equation (10.39) is known as the principle of detailed balance.

24 The term “master equation” was coined in A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, On the theory
of cosmic-ray showers I: the furry model and the fluctuation problem, Physica 7, 344-60 (1940), where a rate
equation similar to Eq. (10.38) appeared as a fundamental equation of the theory.
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The principle of detailed balance constrains the equilibrium behavior of systems containing

different compounds (as represented by the state variables a). For example, it states that, in a

solution containing several chemical agents, the equilibrium reaction rates will be such that the

reaction rates A → B between any one pair of agents A and B exactly compensate for the back

reaction rates B → A.

EXERCISE Kangaroo process: Consider the master equation,

∂tp(a, t) =

∫
da′ [W (a|a′)p(a′, t)−W (a′|a)p(a, t)

]
,

with a factorizable transition matrix W (a|a′) = u(a)v(a′). What is kangaroo-like for the above

transition matrix? Solve the master equation with the help of the Laplace transform p(a, z) =∫∞
0

dt eiztp(a, t). In a first step, show that the following relation holds

p(a, z) =
p(a, t = 0) + u(a)σ(z)

−iz + v(a)/τ
,

where 1/τ =
∫
da u(a) and σ(z) =

∫
da v(a)p(a, z). Determine σ(z) by substituting the expression

for p(a, z) and solving the resulting algebraic equation.

Kubo–Anderson process: Taking v(a) ≡ v, simplify the resulting equation for p(a, z) and

compute the inverse Laplace transform to obtain the time evolution of the distribution p(a, t).

Compare with the Ornstein–Uhlenbeck process (Problem 10.9.2).

Example: Gaussian process

1− qq

P (n, t)

t

n

n

Let us illustrate the general concepts

introduced above on two impor-

tant examples. Consider a one-

dimensional random walk, i.e. a

process wherein a particle performs

random motion on a one-dimensional

lattice (see figure). Setting the lattice

spacing to unity, the state variable

a ≡ n ∈ Z takes integer values, and

our goal is to compute the probability

p(n, t|n0, t0). Defining the probability density for an individual left-turn (right-turn) as q dt

((1− q) dt), the master equation assumes the form

∂tp(n, t) = qp(n+ 1, t) + (1− q)p(n− 1, t)− p(n, t).

Anticipating smoothness of the probability distribution we may convert this equation into

a differential equation. To this end we assume (without altering the problem too much)

that the process takes place on a lattice of N points subject to periodic boundary condi-

tions. Defining the scaling variable x = n/N ∈ [0, 1] and a rescaled probability distribu-

tion p̃(x)dx = p(Nx)dn = p(Nx)(dn/dx)dx ⇒ p̃(x) = Np(Nx), and Taylor expanding,
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p̃(x± 1/N) = p̃(x)±N−1∂xp̃(x) + (1/2)N−2∂2
xp̃(x), the master equation assumes the form

of a generalized diffusion equation (for notational simplicity, we write p instead of p̃),(
∂t + γ∂x −D∂2

x

)
p(x, t) = 0, p(x, t0) = δ(x− x0),

with “drift coefficient” γ = (1 − 2q)N−1, diffusion constant D = 1/2N2, and initial point

x0 = n0/N . This equation is solved by

p(x, t) =

∫
dk

2π
e−(iγk+Dk2)teik(x−x0) =

1

2(πDt)1/2
e−

(x−x0−γt)2

4Dt ,

or, in terms of the original variables,

p(n, t) =
1

(2πt)1/2
exp

(
− (n− n0 − (1− 2q)t)2

2t

)
.

(Exercise: consider how you would solve the structurally similar Schrödinger equation of a

free particle.) General comments on Gaussian processes:

� Gaussian or “normal” distributions typically arise when large numbers of statistically-

independent events add to form a composite random variable. (In cases where the compos-

ite variable is obtained by multiplication of elementary random variables, logarithmically

normal distributions result.)

� The Gaussian form of the probability distribution is a manifestation of the central limit

theorem: we may think of n as a random variable obtained by summing t elementary

random variables ±1 drawn from a bimodal distribution with probability p(1) = 1 − q

and p(−1) = q. According to the central limit theorem, the result will be a Gaussian

distributed variable centered around the mean t× n0 + (1− 2q)t and variance ∼
√
t.

� Random processes whose distributions are Gaussian are generally called Gaussian pro-

cesses. The example illustrates that Gaussian processes are typically the results of the

addition of a large number of elementary random variables.

Example: Poisson process

n

P (n, t) t

Now consider a sequence of elemen-

tary events occurring in a manner

uncorrelated in time (e.g. apples

falling off a tree on an autumn day,

signals of a Geiger counter exposed

to weak radiation, etc.). The random

variable of interest is the number,

n, of events occurring in a certain

time t (see figure). Assuming that the

probability of an event to occur in a

short time window dt is νdt, the master equation takes the form

∂tp(n, t) = νp(n− 1, t)− νp(n, t). (10.40)
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For definiteness, we assume that this equation has to be solved with the boundary condition

p(n, t = 0) = δn,n0 .

Again, we may approximately solve this equation by assuming smoothness of the distri-

bution and Taylor expansion. However, this procedure is a little bit too coarse to resolve

the specific statistics relating to the discreteness of events. (Exercise: solve the equation by

Taylor expansion and compare with the results below.) In the following, we employ concepts

borrowed from quantum mechanics to construct a more accurate solution. Later on, we see

that specific aspects of stochastic processes – the dynamics of very rare events, to mention

one example – afford a general description in terms of “quantum” theory. (The quotes are

used here because, of course, there is no true � involved.)

We start by rewriting the equation as ∂tp(n, t) = ν(Ê−1 − 1)p(n, t), where Êm is the

translation operator in discrete n-space, i.e. Êmf(n) ≡ f(n + m). Now, the translation

operator affords a representation in terms of the “momentum” operator φ̂ conjugate to the

“number operator” n: With [φ̂, n̂] = −i, we have Êm = eimφ̂. In the “n-representation,”

the translation operator E−1 takes the form Ê−1 = exp(−∂n). Its eigenfunctions are given

by fk(n) = (2π)−1/2exp(ikn) with eigenvalue λk = exp(−ik). Finally, the initial configu-

ration of the probability distribution affords the spectral representation p(n, 0) = δn,n0 =∫ 2π

0
dk
2π e−ik(n−n0). By analogy with the solution of a quantum initial value problem, we may

thus represent p(n, t) as

p(n, t) =

∫ 2π

0

dk

2π
e−νt(e−ik−1)eik(n−n0).

Using the identity
∫ 2π

0
dk
2π eiΔnk = δΔn,0, a straightforward Taylor expansion of the exponent

obtains the result (exercise)

p(n, t) =
(νt)n−n0

(n− n0)!
e−νt. (10.41)

� The process is described by a Poisson distribution (cf. Eq. (10.4) where νt ↔ np represents

the product of “attempts” (t ↔ n) and “success probability” (ν ↔ p)), hence the name

Poisson process.

� The first and second cumulant of the Poisson distribution are given by, respectively,

μ1 = νt, μ2 = νt, i.e. centered around μ1 = νt, the width of the distribution is given by

∼ (νt)1/2.

� The variable t is a bookkeeping index, which need not necessarily be physical time. For

example, the statistics of energy levels on the energy axis of integrable quantum sys-

tems is usually described by a Poisson distribution, which reflects the lack of inter-level

correlations.

EXERCISE One-step processes: The master equation of a one-step process is given by

ṗn = rn+1pn+1 + sn−1pn−1 − (rn + sn)pn.
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To solve the master equation it is useful to make use of the generating function g(z, t) =∑∞
n=−∞ znpn(t), where g(1, t) = 1 reflects the conservation of probability. Show that for a given

g, the probability follows from the inverse Mellin transform

pn(t) =
1

2πi

∮
dz z−1−ng(z, t), (10.42)

where the integral is taken around a contour enclosing z = 0 (but no singularities of g.)

(a) Symmetric random walk: Consider the special case rn = sn = 1 with the initial condition

pn(0) = δn,0. From the master equation, derive a differential equation for g(z, t) and show

that its solution is g(z, t) = exp((1/z + z − 2)t). Solve the integral (10.42) in the saddle-point

approximation and show that the resulting behavior for large times t → ∞ is diffusive, pn(t) �
e−n2/4t/

√
4πt.

(b) Furry process: Consider the case rn = 0 and sn = γn with the initial condition pn(0) =

δn,1. Determine g(z, t). You can solve its partial differential equation with help of the method

of characteristics. Using Eq. (10.42) show that the probabilities for n > 0 are given by pn(t) =

e−γt(1− e−γt)n−1.

(c) Population growth: Consider the case rn = αn and sn = βn with the initial condition

pn(0) = δn,m. Show that the probability that the population dies out at time t is given by

p0(t) =
 α(1−�)

β−α�

!m
, where ε = e(α−β)t. Discuss the short and long time limits.

10.4.3 Fokker–Planck equation II

The master equation (10.38) is a linear integral equation for the probability density, p. It

can be formally solved in terms of a spectral decomposition of the integral kernel {W (a|a′)}
(exercise). However, in cases where W (a|a′) exhibits nontrivial dependence on the state

variables a (which may be multi-dimensional!), an explicit eigenmode decomposition of p

may be not attainable.25 However, in many cases of practical interest:

� The integral kernel W (a|a′) decays rapidly as a function of the “distance” |a − a′|, i.e.
for sufficiently short times δt, transitions between remote states are strongly suppressed.

(Here, we assume that state space {a} comes with a meaningful notion of distance, which

usually is the case.)

� We may anticipate smoothness of the distribution p(a) on the scales of variation of W .

Under these conditions, a Kramers–Moyal expansion can be applied to reduce the

integral equation to the more benign form of a quasi-local equation (i.e. a differential equa-

tion). Repeating the sequence of steps carried out in Section 10.2.3, we change notation

W (a|a′) = Wb(a
′), b ≡ a− a′, where Wb(a

′) is the transition probability for a′ → a′ + b. In

this notation,

∂tp(a) =

∫
db [(Wbp)(a− b)− (W−bp)(a)] .

25 Although a numerical diagonalization of W may still be the most efficient route to obtain the (long time) profile
of p.
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Using the relation,
∫
db (Wb(a)−W−b(a)) = 0, Taylor expansion of (Wbp)(a−b) in b around

a (the index in Wb remains passive!) obtains the series

∂tp(a, t) =
∞∑

n=1

(−)n

n!
∂n
a (αnp) (a, t), (10.43)

where the coefficients αn are the moments of the transition probabilities,

αn(a) =

∫
dbWb(a)b

n. (10.44)

The Fokker–Planck approximation

∂tp(a, t) =

(
−∂aα1(a) +

1

2
∂2
aα2(a)

)
p(a, t), (10.45)

with α1 =
∫
dbWb(a)b and α2 =

∫
dbWb(a)b

2 assumes that all terms beyond n = 2 are

negligible. As exemplified in Section 10.2.3 above:

� The first derivative, or drift term ∼ ∂aα1p is “deterministic” in that it describes the

evolution of the averaged variable 〈a〉. Indeed,

∂t〈a〉 =
∫

da a∂tp(a, t)

=

∫
da a

(
−∂aα1(a) +

1

2
∂2
aα2(a)

)
p(a, t) =

∫
daα1(a)p(a, t) = 〈α1〉,

where, to prove this identity, we have applied an integration by parts.

� The second derivative, or diffusion term describes the diffusive spread of probability

around the center of the distribution, 〈a〉.

In many cases, the Fokker–Planck approximation does an excellent job at describing the

probability distributions of stochastic processes. However, as with any other approximation

scheme, it is not perfect. Some care must be exercised, e.g. if one is asking questions about

the tails of probability distributions, “rare event” regions where p has become small.

In the next section, we discuss an example illustrating success and partial failure of the

Fokker–Planck approximation in a very simple setting.

10.4.4 Quality of the Fokker–Planck approximation: an example

The Fokker–Planck approximation is routinely applied as a tool to explore analytically the

dynamical evolution of probability distributions. It is therefore important to identify those

situations where the approximation goes qualitatively wrong.

Empirically, large deviations between the predictions of the Fokker–Planck equation and

results obtained by (numerical) iteration of the Master equation are frequently observed in

the tails of the probability distribution. Often these tails carry information about “rare”

events far from the typical behavior of the system. Such rare events can be of profound

importance. For example, in cases where the master equation describes the epidemic prolif-

eration of a virus, one will likely be interested in the probability of exceptionally persistent
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infections. Equally, in a master equation modeling a nuclear chain reaction, the eventuality

of an uncontrolled chain reaction, no matter how unlikely, will be of definite interest, etc.

In the following, we explore the shortcomings of the Fokker–Planck approximation for the

familiar example of the Poisson process. In Section 10.4.2 we introduced the master equation

of the Poisson process and obtained Eq. (10.41) for its rigorous solution. Now, let us see

what we would have got instead had we subjected the master equation to a Kramers–Moyal

expansion.

Introducing a scaled variable, x = n/N,N � 1, with associated continuum probability

distribution p̃(x, t)dx = p(n, t)dn ⇒ p̃(x, t) = p(xN, t)N , we may subject the equation to

a second order Kramers–Moyal expansion. For later reference, we note that this expansion

amounts to second order expansion of the translation operator Ê−1 − 1 = e−∂x/N − 1 �
− 1

N ∂x − 1
2N2 ∂

2
x. As a result, we obtain the Fokker–Planck equation(

∂t +
ν

N
∂x − ν

2N2
∂2
x

)
p̃(x, t) = 0,

with p(x, 0) = δ(x). This equation is solved by p̃(x, t) = N( 1
2πνt )

1/2exp(− 1
2tν (Nx − tν)2)

or, upon translating back to the original variable n,

p(n, t) =

(
1

2πνt

)1/2

exp

[
− 1

2tν
(n− tν)2

]
. (10.46)
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This “Gaussian approximation” displays

the two principal characteristics of the Pois-

son distribution, mean value νt and width

∼ (νt)1/2. However, in the tails of the dis-

tribution, the approximation is poor. This

is illustrated in (the logarithmic representa-

tion of) the figure: At values of n about four

times bigger than the mean value, in the far

tails of the distribution, the Fokker–Planck

prediction is by many orders of magnitude

off the true result.

The origins of the this error can be traced to the second order expansion of the operator

Ê1 = e−∂x/N . Doing so, and replacing this operator by an effective long-range approximation

wherein the “momentum operator” −i∂x is considered small, we forget about the integer

nature of the variable n. (Exercise: why?) To obtain a better result in the far tail regions, we

ought to keep the integrity of this operator intact. This makes the theory more complicated.

However, pushing the quantum analogy further, and thinking of p(n, t) = p(n, t|0, 0) as

a “transition amplitude” we may turn the smallness of p to an advantage: using a path

integral oriented language, and writing p ∼
∫
exp(−S) as the integral over an exponentiated

“action”, we know that S � 1 in the far tails. This suggests that semiclassical approximation

schemes might be applicable. In the following, we formulate a semiclassical approach to the

Poisson process, and demonstrate that it does an excellent job of describing the tail regions.
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Defining the “Hamiltonian operator”, Ĥ ≡ −ν
(
e−ip̂ − 1

)
, the master equation assumes

the form of a Schrödinger equation for an imaginary time evolution operator,

(∂t + Ĥ)p(n, t) = 0, p(n, 0) = δn,0.

Here, we are working in the system of original variables n, instead of the rescaled coordinate

x. This equation has the formal solution

p(n, t) = 〈n|e−tĤ |0〉 =
∫ q(t)=n

q(0)=0

D(q, p) e
∫ t
0
dt (ipq̇−H(p,q)),

where 〈n|n′〉 = δn,n′ is the scalar product in n-space, and in the second equality we switched

to a path integral representation. To avoid the mixed appearance of real and imaginary

terms in the exponent, we subject the integration over the momentum variable to a Wick-

rotation, p → −ip. In the new variables,

p(n, t) =

∫ q(t)=n

q(0)=0

D(q, p) e
∫ t
0
dt′ (pq̇−H(q,p)), H(q, p) = −ν

(
e−p − 1

)
.

We evaluate this path integral in the crudest form of a stationary phase approximation,

p(n, t) � e−S[q,p], S[q, p] = −
∫ t

0

dt′ (pq̇ −H(q, p)),

q

p

n

where (q, p)(t′) are solutions of the extremal

equations with the configuration space bound-

ary conditions q(0) = 0, q(t) = n. Varying the

action we obtain the equations of motion,

dt′q = ∂pH = νe−p,

dt′p = −∂qH = 0.

The solution of these equations reads

p(t′) = − ln(n/νt),

q(t′) = n(t′/t).

The conserved energy is given by H = −n/t+ ν. It is instructive to take a brief look at the

“phase portrait” of these solutions shown in the figure above. Conservation of momentum

means that the flow is parallel to the q-axis with velocity νe−p. At p = 0, q(t′) = νt′,
which reflects the temporal evolution of the mean value 〈n(t′)〉 of the Poisson process.

The action corresponding to this mean trajectory vanishes, S(q, p = 0) = 0. Within the

Hamiltonian approach it is possible to reach final configurations q(t) = n(t) very different

from tν. However, this comes at the price of a large action: the action of the solutions above

is readily obtained as

S[q, p] = n ln(n/νt)− n+ νt.
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(Notice that this action assumes its minimum value S = 0 at n = νt.) The stationary phase

approximation to the probability distribution thus reads

p(n, t) � e−(n ln(n)−n)+n ln(νt)−νt = e−(ln(n)−n)(νt)ne−νt � (νt)n

n!
e−νt,

where the last approximate equality is based on an “exponential” approximation to the

Stirling formula, n! � 1
2 ln(2πn)e

n lnn−n ∼ en lnn−n. The semiclassical approximation is

shown in the figure on p.641, dashed. In the center of the distribution, where S = 0 and

semiclassical approximations are problematic, the Fokker–Planck equation does a better

job at approximating the Poisson distribution. However, in the tail regions, where S � 1,

semiclassics works well! The quality of the result may be improved by including quadratic

fluctuations around the mean field trajectory, which then leads to an improved variant of

Stirling’s approximation. However, to “exponential accuracy,” the present approximation is

sufficient.

The take home message of this exercise is that variational methods can be a powerful tool

in the study of “rare events” in a stochastic process. Significant deviations from the Fokker–

Planck approach are to be expected if the Hamiltonian of the process is not harmonic in

momenta (which means that the corresponding “Schrödinger equation” differs from the sec-

ond order Fokker–Planck equation) due to, e.g., discreteness of the agents participating in

the process. However, even if the Fokker–Planck equation is valid, the semiclassical anal-

ysis can be a useful aid. The point is that the Fokker–Planck equation – mathematically

similar to an imaginary time Schrödinger equation – usually defies rigorous analytical solu-

tion. Much as WKB-type semiclassics is useful in quantum mechanics, the “semiclassical”

approximation to a Fokker–Planck equation can be an economic route to obtain information

on large-action/rare-event statistics.

10.5 Field theory I: zero dimensional theories

In the previous sections, we have introduced basic elements of classical nonequilibrium

theory. We have seen that nonequilibrium systems can be described (see Fig. 10.7) on:

� a microscopic level, i.e. in terms of microscopic Hamiltonians and their interactions,

� a mesoscopic level, where the microscopic transition rates are lumped into either a

stochastic differential equation of Langevin type, or a master equation,

� a continuum level. In our discussion so far, the continuum description was formulated

in terms of the Fokker–Planck equation, a second order partial differential equation in

the state variables, and first order in time.

Both, from a formal and a conceptual point of view, the description of nonequilibrium phe-

nomena in terms of differential (Langevin, Fokker–Planck) or integral (master) equations

bears similarities to the Schrödinger approach to quantum mechanics. It requires compar-

atively little theoretical machinery, affords a lean and reasonably intuitive description of

many physical phenomena, but also suffers from limitations. We had a first glimpse of the

deficiencies of the Fokker–Planck approach when we explored the tail regions of the Poisson
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Figure 10.7 Showing the three levels of description of nonequilibrium systems.

process: To stay with the analogy above, the tails turned out to be described better in terms

of a “path integral approach.”

Generally speaking, much of what has been said in the introductory chapters of this

text by way of motivation of path integral and field theory oriented approaches to genuine

quantum systems carries over to the present context. Specifically:

� In the description of rare events and large fluctuations, variational approaches and

the analysis of extremal action configurations may be a powerful alternative to the solution

of the Fokker–Planck equation.

� So far, our discussion has been limited to statistical problems described in terms of only

a few random variables – the analog of “zero dimensional” quantum problems. However,

many applications of interest are described in terms of many spatially resolved random

variables – think of a field {n(r, t)} describing the local population size in a problem of

evolutionary ecology. Much as in quantum field theory, field integration techniques are

the method of choice to explore the ensuing phenomena of collective dynamics, criticality,

etc.

� The Langevin equations explored above have been linear equations, on account of the oscil-

lator dynamics of the underlying non-dissipative dynamics. Extremal principles derived

from effective path integral descriptions are an efficient method to explore the more inter-

esting behavior shown by nonlinear stochastic differential equations.

In this section we introduce a number of field theoretical tools that have been designed

to study the behavior of classical nonequilibrium systems. For the sake of clarity, (a) this

section is devoted exclusively to the discussion of formalism. Applications are addressed

in the follow-up section. Furthermore, (b) we introduce the field theory approaches in the

simple setting of zero-dimensional problems, i.e. as (0 + 1) dimensional path integrals. The

extension to (d+ 1)-dimensional field theories is discussed in Section 10.6.
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10.5.1 Martin–Siggia–Rose–Janssen–de Dominicis approach

Let us begin our discussion by constructing a path integral reformulation of stochastic

differential equations. A (first order) stochastic differential equation is an equation of

the structure

∂tn+ f(n) = ξ, (10.47)

where n = n(t) is a time-dependent random variable, f = f(n(t)) a function, and ξ = ξ(t)

a noise term. In some applications, ξ = ξ(n, t) depends on n. However, here we restrict

ourselves to the case of linear noise, where ξ does not depend on n.26 For simplicity, we

assume that the noise is Gaussian with correlator,

〈ξ(t)〉ξ = 0, 〈ξ(t)ξ(t′)〉ξ = Aδ(t− t′). (10.48)

As a first step towards the construction of a path integral representation, we discretize time,

n(t) → ni, i = 1, . . . , N , according to

ni − ni−1 +Δt [f(ni−1)− ξi−1] = 0, (10.49)

where Δt is the temporal discretization interval. Denoting a solution of the differential

equation by n[ξ], expectation values of observables 〈O[n]〉ξ may then be formally represented

as

〈O[n]〉ξ =

∫
DnO[n] 〈δ(n− n[ξ])〉ξ =

∫
DnO[n]

@∣∣∣∣δXδn
∣∣∣∣ δ(X)

A
ξ

,

whereDn =
∏

i dni is the functional measure and δ(n−n[ξ]) =
∏

i δ(ni−n[ξ]i). In the second

equality, we have introduced a vector X = {Xi}, where Xi ≡ ni−ni−1+Δt [f(ni−1)− ξi−1]

and |δX/δn| is the (modulus) of the determinant of {∂Xi

∂nj
}. The advantage of the discretiza-

tion chosen above is that δX/δn is a triangular matrix with unit diagonal, i.e. the functional

determinant equals unity. Thus, substituting the definition of X,

〈O[n]〉ξ =

∫
DnO[n] 〈δ(∂tn+ f(n)− ξ)〉ξ, (10.50)

where ∂tn = {ni − ni−1} is shorthand for the lattice time derivative.

INFO The discretization leading to a unit functional determinant goes under the name Ito

discretization. More general discretization schemes call for a treatment of the corresponding

functional determinants. It is customary to represent these determinants in terms of Grassmann

integrals. The resulting integrals jointly involve real integration variables (the functional rep-

resentation of the δ-function), and Grassmann variables. Interestingly, these integrations are

coupled by a symmetry principle known as BRS-symmetry. For further discussion of BRS sym-

metries in the context of stochastic differential equations, we refer to J. Zinn-Justin, Quantum

Field Theory and Critical Phenomena, (Oxford University Press, 1993).

26 For an application with nonlinear noise term, see Section 10.7.2 below.
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Representing the δ-function in terms of a Fourier integral, and switching back to a continuum

notation, we arrive at the functional integral representation

〈O[n]〉ξ =

∫
D(n, ñ)O[n]

>
ei

∫
dt ñ(∂tn+f(n)−ξ)

?
ξ
,

where the structure of the “action” suggests that the two fields n and ñ are “canonically

conjugate” to each other. We finally average over the noise to arrive at the celebrated

Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) functional integral

〈O[n]〉ξ =

∫
D(n, ñ)O[n] exp

(∫
dt

[
iñ(∂tn+ f(n))− A

2
ñ2

])
. (10.51)

Equivalently, we may use the path integral representation to compute the conditional

probability p(n, t|n0, 0) (just set O[n] = δ(n − n(t))) in terms of a path integral with

“configuration space boundary conditions”

p(n, t|n0, 0) =

n(t)=n∫
n(0)=n0

D(n, ñ) exp

(∫
dt

[
iñ(∂tn+ f(n))− A

2
ñ2

])
. (10.52)

Before proceeding, let us make a few remarks on the structure of the path integrals (10.51)

and (10.52):

� Introducing a new set of variables (q, p) through (n, ñ) ≡ (q,−ip), Eq. (10.51) assumes

the form of an imaginary time phase space path integral,

p(n, t|n0, 0) =

q(t)=n∫
q(0)=n0

D(q, p) e
∫
dt [pq̇−H(q,p)], H(q, p) = −pf(q)− A

2
p2. (10.53)

It is important to keep in mind that the integration over p extends over the imaginary

axis.

� The action of the path integral vanishes on the line p = 0. That line generally hosts

a solution of the classical equations of motion. Varying the action we indeed find that

(q(t), p = 0), where q̇ = −f(q) is a solution. Comparison with the Langevin equation

shows that the dynamics describes the noise-averaged Langevin variable, q(t) ↔ 〈n(t)〉,
if fluctuations are weak: ∂t〈n〉 = −〈f(n)〉 � −f(〈n〉).

� Although the Hamiltonian does not assume the “standard form” H = T (p) + V (q), it is

quadratic in momenta. We may thus integrate over p to obtain

p(n, t|n0, 0) =

q(t)=n∫
q(0)=n0

D(q) e−
1

2A

∫
dt [∂tq+f(q)]2 . (10.54)
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Multiplying out the square in the exponent, we arrive at a Lagrangian variant of the

theory, the Onsager–Machlup functional27

p(n, t|n0, 0) =

q(t)=n∫
q(0)=n0

D(q) e−
∫
dt L(q,q̇), L(q, q̇) =

1

2A
q̇2 + q̇

f(q)

A
+

f(q)2

2A
. (10.55)

This is the Lagrangian of a one-dimensional point particle with “mass” m = 1/A which

is coupled to a velocity-dependent one-dimensional “vector potential” of strength A(q) =

f(q)/A, and a potential V (q) = f(q)2/2A.

We may interpret the Onsager–Machlup representation of the probability distribution

as the formal analog of a Lagrangian path integral for a quantum time evolution operator.

On general grounds, the “Schrödinger equation” corresponding to this formulation

reads (
∂t −

1

2m
(∂q +A(q))2 + V (q)

)
φ(q, t) =

(
∂t −

A

2
∂2
q − ∂qf(q)

)
φ(q, t) = 0,

where φ is the analog of a wave function. Specifically, the “time evolution operator”

p(n, t|n0, 0) is a solution of the initial value problem(
∂t −

A

2
∂2
q − ∂qf(q)

)
p(q, t)

∣∣∣∣
q=n

= 0, p(n, 0) = δ(n− n0),

which is nothing but the Fokker–Planck description of the Langevin dynamics. We thus

arrive at the important conclusion that

the Fokker–Planck equation is the “Schrödinger equation” of

the MSRJD path integral.

The discussion above is overly-concise in that (a) we are not explicit regarding sign factors

and imaginary is. For instance, the “momentum” operator in our Schrödinger equation

reads ∂q instead of the conventional −i∂q, because the equation is derived from a theory

with real exponent −S[q], instead of iS[q]. More importantly, (b) we do not keep track of

the order of derivatives (why ∂qf(q), instead of f(q)∂q?). To monitor the correct ordering,

one needs to keep track of the properly Ito-discretized sequential ordering of operators in

the action (an instructive if somewhat technical exercise).

INFO It may be instructive to observe the functioning of the concepts above on a miniature

application. Consider a particle at rest in the bottom of a metastable potential configuration (see

inset of Fig. 10.8). Thermal activation may help the particle in surmounting the potential barrier

to settle in an overall more favourable true energy minimum. We know that the corresponding

thermal escape rates are controlled by Arrhenius factors. The detailed computation of such

rates is of importance in, say, the chemistry of thermally activated reactions. For a given potential

landscape, the functional integrals above can be a powerful aid in analyzing the corresponding

27 L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505-12 (1953).
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Figure 10.8 Inset: particle in a metastable potential well. Main figure: phase space portrait of the
corresponding MSRJD functional. For a discussion, see main text.

escape kinematics. By way of example, here we discuss the emergence of Arrhenius activation

factors from the functional integral formalism.

Assuming overdamped dynamics, the equation of motion of a point particle in the well is given

by

γq̇ + ∂qV (q) = ξ′(t),

where, by the fluctuation-dissipation theorem, 〈ξ′(t)ξ′(t′)〉 = 2γTδ(t − t′). Dividing by γ, we

obtain a stochastic differential equation of the type Eq. (10.47), with the identification q ↔ n,

f = ∂qV and noise strength A = 2Tγ−1. Let us assume that thermal escape will be an unlikely

event in the sense that V/T � 1, where ΔV is the difference between the local maximum of the

metastable well and its minimum. We thus expect a small escape probability p ∼ exp(−V/T ).

The largeness of the exponent − ln p ∼ V/T � 1 then suggests an evaluation of the path

integral (10.53) by semiclassical methods. In its crudest form, semiclassics means that we evaluate

the Hamiltonian path integral at its stationary points and neglect all fluctuation effects.

With H(q, p) = − p
γ
(∂qV (q) + Tp), the Hamiltonian equations of motion of the action (10.53)

read

q̇ = ∂pH(q, p) = − 1

γ
∂qV (q)− 2T

γ
p, ṗ = −∂qH(q, p) =

1

γ
p∂2

qV (q).

For the purposes of the present discussion, we do not need to solve these equations; it is sufficient

to inspect the phase portrait of the Hamiltonian.

As we shall see, the topology of Hamiltonian flow in phase space is essentially determined

by the zero energy contours H(q, p) = 0. The structure of the Hamiltonian implies that one of

these curves is specified by (q, p = 0). On the line p = 0, the equations of motion reduce to

γq̇ = −∂qV (q). This is drift motion down the potential gradient towards the local minimum. We
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note that the point of the local potential maximum q ≡ q∗ defines an unstable point on that

line, while q = 0 is stable. This observation entails two important consequences: (a) we expect

that the equilibrium coordinates on the p = 0 line, 0 and q∗, must define points of origin of

motion qualitatively different from downward drift q∗ → 0. Specifically, we expect the option of

noise-activated reverse motion 0 → q∗. If so, the equilibrium points must be the terminal points

of another E = 0 trajectory. Indeed, the equation H(q, p) = 0 possesses a second solution, p =

−T−1∂qV . At the potential extrema ∂qV = 0, or q = 0, q∗, this curve intersects the p = 0 line,

which means that (q∗, 0) and (0, 0) are terminal points of phase space separatrices. (Recall that

the principle of non-crossing phase space curves requires that the motion along the separatrices

takes infinite time. For example, you may convince yourself that in a strict mathematical sense,

the downward drift trajectory q∗ → 0 has infinite passage time.) (b) The conservation of phase

volume (Liouville’s theorem) implies that the two phase space fixed points (0, 0) and (q∗, 0)
are hyperbolic. This means that the point (0, 0) (stable in coordinate direction) is unstable in

momentum direction, while (q∗, 0) (unstable in coordinate direction) is stable in momentum

direction. Notice that the discussion above did not rest upon many specific characteristics of

the escape problem. Indeed, the existence of E = 0 separatrices terminating in hyperbolic fixed

points on the p = 0 line is a principle that carries over to many other “noise” phase portraits.

The separatrices largely determine the topology of phase flow, as exemplified in Fig. 10.8.

Specifically, the separatrix 0 → q∗ accounts for the possibility of noise-assisted motion against

the potential gradient. Within our semiclassical framework, the probability for this happening

p ∼ exp(−S) is proportional to the action accumulated along this trajectory. The latter is

calculated as

S = −
∫

dt (p(q)q̇ −H(q, p)) =
1

T

∫ q∗

0

dq ∂qV (q) =
1

T
(V (q∗)− V (0)) =

ΔV

T
,

where we have used H(q, p) = 0, and the defining equation of the separatrix. As expected, we

obtain the Arrhenius weight as the dominant factor controlling the escape probability. Of course,

much less heavy artillery is needed to arrive at just this result. However, as usual with functional

approaches, the advantage of the above formalism is its extensibility to more complex problems.

10.5.2 Field integral representation of the master equation I

In order to avoid potential confusion with the “momentum’ variable below, the notation for

probability are capitalized in this section, p → P .

By generalization of the ideas exemplified in Section 10.4.4 on the Poisson process, we

can derive a path integral representation for the master equations describing Markovian

stochastic processes. Unsurprisingly, this path integral turns out to be a close ally of the

MSRJD functional integral above.

For simplicity, we consider a one step master equation, i.e. an equation where a

discrete state variable n changes by no more than one unit ±1 in each time step.28 The

28 The straightforward generalization to finite range equations leads to path integrals with more complicated
actions. However, in many cases, the long time dynamics deriving from these integrals is qualitatively similar
to the one of the single step process.
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general form of a one step master equation reads

∂tP (n, t) =
[
(Ê1 − 1)f−(n) + (Ê−1 − 1)f+(n)

]
P (n, t), (10.56)

where E±1f(n) ≡ f(n ± 1) acts by unit translation. As in our example application in

Section 10.4.4, it is useful to think of the probability distribution as the analog of a quantum

time evolution operator P̂ with “matrix elements” P (n, t;n0, t0) ≡ P (n, t|n0, 0) ≡ P (n, t).

Equation (10.56) then becomes an (imaginary time) evolution equation,(
∂t + Ĥ(q̂, p̂)

)
P̂ (t) = 0, P̂ (0) = 1, (10.57)

with the ”Hamiltonian operator”

Ĥ(q̂, p̂) = −
(
e+ip̂ − 1

)
f−(q̂)−

(
e−ip̂ − 1

)
f+(q̂). (10.58)

Here, it is understood that the eigenvalue spectrum of the “position operator,” q̂, will

eventually be evaluated at discrete values n,29 and p̂ is canonically conjugate to q̂. In the q

representation, p̂ = −i∂q.

We proceed by representing the formal solution of Eq. (10.57) in terms of an imaginary

time phase space path integral

P (n, t;n0, t0) = 〈n|e−tĤ |n0〉 =
q(t)=n∫

q(0)=n0

D(q, p) e
∫
dt (ipq̇−H′(p,q)),

where H ′(q, p) is the classical Hamiltonian corresponding to the operator Eq. (10.58). If it

were not for the imaginary unit multiplying the pq̇-term, the action of the path integral

would be structurally identical to a Hamiltonian action. We may remove that discrepancy

by introducing a new momentum variable p → −ip, whereupon the path integral assumes

the form

P (n, t;n0, t0) =

q(t)=n∫
q(0)=n0

D(q, p) e
∫
dt (pq̇−H(p,q)),

H(q, p) = −
(
e+p − 1

)
f−(q)−

(
e−p − 1

)
f+(q). (10.59)

Here, H(p, q) ≡ H ′(q,−ip) is the Hamiltonian evaluated at the “Wick rotated” momentum.

At this stage it is instructive to make a few remarks on the structure of the path integral:

� It is important to remember that the integration over p extends over the imaginary axis.

� As with the path integral representation of Langevin dynamics Eq. (10.53), the action

vanishes on the axis p = 0. Again, the line p = 0 accommodates a solution of the vari-

ational equations, (q(t), p = 0), where q̇ = f+(q) − f−(q). Comparison with dt〈n〉 =

29 One may worry that the initial condition of the operator P (q = n, t;n0, 0) = δ(n − n0) conflicts with the
discrete condition P (n, t|n0, 0) = δn,n0 . Should this ever become an issue, one may switch to the framework of
quantum mechanics of operators with discrete eigenvalue spectra. However, the continuous variables used here
are better suited to the formulation of path integral methods below.
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〈f+(n)〉 − 〈f−(n)〉 → f+(〈n〉)− f−(〈n〉) shows that this equation describes the dynamics

of the fluctuationless theory, again in analogy with the Langevin theory.

� The Fokker–Planck approximation to the master equation is obtained by quadratic expan-

sion of the Hamilton operator,

Ĥ � ip̂(f+(q̂)− f−(q̂)) +
p̂2

2
(f−(q̂) + f+(q̂)).

Substituting into Eq. (10.57), we obtain(
∂t + ∂q(f+ − f−)(q)−

1

2
∂2
q (f− + f+)(q)

)
P (q, t) = 0.

The functional integral Eq. (10.59) is strikingly similar to the MSRJD functional

Eq. (10.53). The analogy becomes almost perfect if we replace the Hamiltonian of the

former by the quadratic approximation above. Indeed, we may think of the discreteness

of the state variables entering the master equation as a source of “noise.” If we are only

interested in structures Δq much larger than the “lattice spacing” Δn = 1, the expansion

of the Hamiltonian operator may be restricted to the first two non-vanishing terms. If we

keep only the first term ∼ ∂q, we obtain deterministic drift, q̇ = (f+ − f−)(q) (as can be

seen by integrating over p in Eq. (10.59)). The second term describes noise due to residual

discreteness effects. This noise affects the time evolution of the probability distribution

much like Langevin noise.

10.5.3 Doi–Peliti operator technique

Equation (10.59) is not the only field theory representation of the master equation. There

exists another approach, the Doi–Peliti operator technique30 which extensively draws upon

the Fock space structures and coherent state field integration introduced in previous chap-

ters. Although this technique can be introduced in rather general terms, it is tailored to

situations where the weight functions f− in Eq. (10.56) are low order polynomials in n.31 By

way of example, let us consider the case f+ = 0, f− = λn. The resulting master equation,

∂tP (n, t) = λ(Ê1 − 1)nP (n, t),

describes extinction of a population whose individuals A
λ→ 0 perish at a constant rate λ.

To set the stage, let us identify an integer valued32 configuration {n} with a bosonic Fock

space state |n〉 of occupation number, n. Next, let us introduce an algebra of Fock space

operators through

a|n〉 = |n− 1〉, ā|n〉 = (n+ 1)|n+ 1〉. (10.60)

30 M. Doi, Second quantization representation for classical many-particle system, J. Phys. A 9, 1465-77 (1976);
M. Doi, Stochastic theory of diffusion-controlled reaction, J. Phys. A 9, 1479-95 (1976); L. Peliti, Path integral
approach to birth-death processes on a lattice, J. Physique 46, 1469-83 (1985).

31 As with the formalism introduced in the previous section, the Doi–Peliti operator technique affords straight-
forward generalization to transitions further than n ± 1, as well as to multi-component/multi-dimensional
situations.

32 The generalization to other discretization intervals as well as to multi-valued configurations should be obvious.
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It is straightforward to verify that these operators obey canonical commutation relations,

[a, ā] = 1, i.e. they are related to the standard operator algebra33 used in second quantization

by canonical transformation. The operators a and ā can be used to represent the action of

the linear operator on the right–hand side of Eq. (10.56) in terms of the second quantized

Hamiltonian (exercise),

Ĥ = −λ(ā− āa). (10.61)

With this definition, it is straightforward to verify that

P (n, t) ≡ 〈n|e−tĤ |n0〉, (10.62)

is a Fock space representation of the distribution function.

We next apply the techniques introduced in Chapter 4 to represent the matrix element

above in terms of a coherent state field integral. Proceeding in the usual manner, we

decompose the time interval into N � 1 steps, e−tĤ = (e−δĤ)N , δ = t/N , note that the

Hamiltonian Eq. (10.61) is properly normal ordered, and insert coherent state resolutions

of the identity, id. =
∫
d(ψ̄, ψ) e−ψ̄ψ|ψ〉〈ψ|, where the coherent states |ψ〉 obey the relations

a|ψ〉 = ψ|ψ〉, ā|ψ〉 = ∂ψ|ψ〉, 〈ψ|ā = 〈ψ|ψ̄, 〈ψ|a = ∂ψ̄〈ψ|. This leads to the representation

P (n, t) =

∫
D(ψ̄, ψ)e−δ

∑N−1
n=0 [δ

−1(ψ̄n−ψ̄n+1)ψn+H(ψ̄n+1,ψn)]+n lnψN+n0 ln ψ̄0−lnn!.

Here, H(ψ̄, ψ) = −λψ̄(1 − ψ) is the coherent state representation of the (normal ordered)

Hamiltonian and the last two terms in the action represent the boundary matrix elements

〈n|ψN 〉 = ψn
N = en lnψN ,

〈ψ0|n0〉 =
1

n!
ψ̄n0
0 = en0 ln ψ̄0−lnn0!. (10.63)

Switching to a continuum notation, we arrive at the Doi–Peliti functional integral

P (n, t) =

∫
D(ψ̄, ψ)e−

∫ t
0
dt′[−∂t′ ψ̄ψ+H(ψ̄,ψ)]+n lnψ(t)+n0 ln ψ̄(0)−lnn0!. (10.64)

The coherent state field integral Eq. (10.64) defines a representation of the probability

distribution which is an alternative to the phase space path integral Eq. (10.59). But how

do these two representations relate to each other? The answer can be found by comparing

the respective Hamiltonians. For f+ = 0 and f− = λn, the Hamiltonian Eq. (10.58) reduces

to Ĥ = −λ(ep̂ − 1)q̂, where we used the Wick rotated form of the momentum operator,

p̂ → −ip̂. Comparison with Eq. (10.61) suggests the identification

ā = ep̂q̂, a = e−p̂, (10.65)

33 The latter is defined by

a|n〉 = n
1/2|n − 1〉, a

†|n〉 = (n + 1)
1/2|n + 1〉.
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Figure 10.9 Summary of different field theory approaches to Langevin dynamics and stochastic
processes.

which, up to a constant, leads to an identification of the two Hamiltonians. Eq. (10.65) is

known as a Cole–Hopf transformation. It is straightforward to verify, that the Cole–

Hopf transformation is canonical, i.e. the relation [p̂, q̂] = 1 is compatible with [a, ā] = 1.

Substitution of the (coherent state version of the) transformation into the functional integral

Eq. (10.64) transforms the “bulk contribution” to the action,
∫
dt′(−(∂t′ ψ̄)ψ + H(ψ̄, ψ))

into that of Eq. (10.59). A careful treatment of the boundary term generates the effective

boundary condition
∫ q(t)=n

q(0)=n0
.

EXERCISE Explicitly represent the coherent states above as exponentials of the operators a, ā

and verify the relations (10.63). Apply the Cole–Hopf transformation to the time-discretized

representation of the functional integral to prove the above boundary identity in the large n-

limit. Carefully avoid usage of the hermitian adjoint operation – the operator ā is different from

a†!

Summarizing, we have constructed two representations of P (n, t) which are related by a

Cole–Hopf transformation. Historically, the coherent state representation Eq. (10.64) was

introduced prior to the path integral Eq. (10.59). (This is surprising inasmuch as Eq. (10.59)

relies on a less formal construction.) It is probably not possible to decide categorically which

of the two representations is the “better.” At least for certain types of stochastic processes,

the Doi–Peliti functional is controlled by a comparatively simple, if non-hermitian Hamil-

tonian operator. The price to be paid for this simplicity is that the integration variables ψ

and ψ̄ do not have a direct physical interpretation.

The network of different theories constructed in the previous sections is summarized in

Fig. 10.9. So far, we have been focusing on the case of low-dimensional problems, where the

state variable is a scalar or vectorial variable. In the next section, we upgrade the formalism

to a genuine field theory describing multi-dimensional problems.
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10.6 Field theory II: higher dimensions

Our aim in this section is to construct an effective field theory approach to higher dimen-

sional systems showing dynamical or steady state nonequilibrium phenomena. To give the

discussion some perspective, let us list a few categories of system we have in mind:

� Interacting lattice particle systems, i.e. systems of particles whose dynamics is gov-

erned by an interplay of single particle hopping and interactions. Important examples

include exclusion processes, i.e. systems wherein a hardcore repulsion excludes mul-

tiple occupancy of lattice sites, and driven diffusive lattice gases, systems where a

uniformly applied force stabilizes a steady state nonequilibrium configuration.

� Reaction–diffusion systems, i.e. lattice systems populated by particle species A,B, . . .

which may undergo reactions. Setups of this type are common in the modeling of chemical

reaction kinetics, the description of evolutionary or ecological dynamics, traffic simulation

and many more. Thinking, for example, about a “fast” chemical reaction A + B → C

in solution, the factor limiting the total reaction throughput may be the speed at which

the chemicals diffuse through the reaction vessel. In this case, a combination of diffusion

(conveniently modeled on a lattice) and local (on-site) reaction will be the minimal frame-

work to describe the process. Important examples of particle reaction processes include

birth ∅ → A, death A → ∅, transmutation A → B, death at contact, A+B → A, etc.

Notice an important difference between the two categories above: while the particle number

in interacting lattice systems is conserved, reaction–diffusion systems contain non-conserved

particle species.

10.6.1 Basic notions of dynamical critical phenomena

What would be a good strategy to describe systems such as those listed above? On a

fully microscopic level, the dynamics is governed by incredibly high dimensional equations

of motion whose solution is out of the question. In practice we will, rather, turn to a

description in terms of effective or coarse-grained variables. For example, in a system which

may undergo a phase transition the order parameter field, m(x), of the transition would be

an obvious choice of an effective variable; in a reaction diffusion system one might think of

the coarse-grained concentration variables nA(x), nB(x), . . . of the particle species, etc. For

definiteness we will denote our effective variables by φa, a = 1, . . . , n throughout.

As in our “zero-dimensional” discussion in Section 10.2, the presence of microscopic “hid-

den degrees of freedom” affects the dynamics of the effective variables in two different

ways: (i) a conspiracy of dissipative and macroscopic forces drives the effective variables

towards local stationary configurations. However, (ii) we have observed that the presence of

dissipative relaxation mechanisms is generally accompanied by microscopic stochastic fluc-

tuations. Finally, (iii) for conserved effective variables, time-dependent changes, ∂tφ must

be consistent with a continuity relation ∂tφ+∇ · j = 0, where j is some current field.

Before turning to the discussion of effective theories consistent with the principles (i)-(iii)

above, it is worthwhile to formulate a set of good questions (observables) to ask. We are
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interested in out of equilibrium systems wherein particle correlations generate collective or

even critical phenomena. As usual in many particle physics, we aim to identify fixed points

separating phases with distinct universal properties. One may then proceed to an analysis

of power law correlations emerging in the vicinity of critical points. In the next section, we

set the stage for these types of discussion by introducing a few elements of the theory of

dynamical critical phenomena. This material follows closely a seminal review article34 by

Hohenberg and Halperin.

Consider a system with some second order (continuous) phase transition. We measure the

distance to the transition point in terms of some relevant scaling field τ (e.g. τ = (T−Tc)/Tc,

where T is temperature, and Tc the critical temperature.). We denote the order parameter

of the transition by φ. We assume that the order parameter is conjugate to a field h, in

the sense that 〈φa〉 = −∂hF [h], where F [h] is a suitably chosen functional (in thermal

equilibrium, the free energy of the system).

In the vicinity of a critical point, the system builds up long range correlation. For example,

the instantaneous or static correlation function C(x) ≡ 〈φ(x)φ(0)〉 is expected to show

power law behavior

C(x) = |x|−(d−2+η)Y (|x|/ξ), (10.66)

where ξ ∼ |τ |−ν is the correlation length and Y a dimensionless scaling function. The corre-

lation length is a measure for the characteristic length scales of order parameter fluctuations.

Turning to dynamics, we anticipate that the corresponding order parameter time scales

will increase as

t(τ) ∼ ξ(τ)z ∼ |τ |−νz, (10.67)

where the dynamical exponent z depends on how the order parameter relaxes in large

correlation volumes. The growth of the relevant time scales is a phenomenon known as

critical slowing down. Equation (10.67) can be converted to a statement on the disper-

sion of order parameter fluctuations. The characteristic frequencies corresponding to

Eq. (10.67), ω(τ) ∼ t(τ)−1 ∼ τνz, relate to the momenta |q| ∼ ξ−1 ∼ |τ |ν

ω ∼ |q|zf(|q|ξ),

where f is a dimensionless function.

Turning to the temporal fluctuation behavior of the order parameter, imagine a situation

where φ has been prepared in some initial state and is subsequently allowed to relax. It is

reasonable to describe the relaxation profile by the scaling ansatz

φ(t, τ) = |τ |βg(t/t(τ)),

where β is the order parameter exponent and g a dimensionless scaling function with asymp-

totics g(x → ∞) → const. (relaxation towards the static value (−τ)β below the transition

point τ < 0, and zero above). For short times, t → 0, the relaxation process cannot be

34 P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435-79 (1977).



656 Nonequilibrium (classical)

susceptible to the full extension of the correlation volume, and φ(t, τ) must be independent

of τ . This leads to the condition g(t/t(τ))
t→0∼ |τ |−β , or

φ(t) ∼ t−α, α = β/νz.

We next define two important correlation functions characterising the fluctuation/correlation

behavior of the order parameter: The dynamic susceptibility, χ, is defined through the

linear response relation

〈φ(q)〉 h→0
= χ(q)h(q), (10.68)

where q = (q, ω). Causality (i.e. the fact that φ(t) can depend only on h(t′ < t)) means

that χ(ω) is an analytic function in the upper complex ω-plane. (Why was that?) The

spatio-temporal fluctuation behavior of the order parameter is described by the dynamical

correlation function,

C(x) ≡ 〈φ(x)φ(0)〉 − 〈φ(0)〉2, (10.69)

where x = (x, t). As we review in Section 10.6.4 below, the classical fluctuation–

dissipation theorem now states that, in thermal equilibrium,

C(q, ω) =
2T

ω
χ(q, ω). (10.70)

Violations of this relation will be an important tool to diagnose nonequilibrium conditions.

10.6.2 Field theories of finite dimensional Langevin systems

Armed with the definitions above, we are now in a position to formulate an effective field

theory approach to dynamical phenomena. We imagine that the energy stored in a particular

order parameter configuration is described by some energy functional H[φ]. The question

now is how to model the dynamics of the order parameter field. Following Hohenberg and

Halperin (HH),34 we argue that:

� In a model for a system with non-conserved order parameter (model A, according

to the conventions of HH), the order parameter will relax to the minima of the energy

functional, i.e. the equations of motion will contain a contribution

∂tφ(x, t) = −D
δH[φ]

δφ(x, t)
+ . . . ,

where D is a characteristic relaxation constant.

� In contrast, in a system with conserved order parameter (HH’s model B), the continuity

equation ∂tφ+∇ · j has to be obeyed. We assume that the current acts to evade regions

of increased energy, j(x, t) = −D∇ δH[φ]
δφ(x,t) + . . . , where the ellipses represent fluctuating
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contributions to the current to be discussed in a moment. (Exercise: consider the meaning

of this definition.)35 The continuity relation then assumes the form

∂tφ(x, t) = DΔ
δH[φ]

δφ(x, t)
+ . . . .

The two evolution equations above can be subsumed as ∂tφ(x, t) = DΔn δH[φ]
δφ(x,t) + . . . , where

n = 0, 1 for models A and B, respectively. According to principle (ii) above, the relaxational

character of the dynamics implies the presence of fluctuations. The full evolution equation,

a generalized Langevin equation, thus reads as

∂tφ(x, t) = −D(−Δ)n
δH[φ]

δφ(x, t)
+ ξ(x, t), (10.71)

where the noise is correlated as

〈ξ(x, t)ξ(x′, t′)〉 = 2δ(t− t′)K(x− x′) ≡ 2K(x− x′). (10.72)

This correlator presumes that, on suitably chosen time scales, the noise can be modeled

as Markovian. However, at this stage, not much can be said about the spatial correlation

kernel K.

We finally note that correlation functions can be generated by addition of a “conjugate

field” contribution to the Hamiltonian,

H[φ] → H[φ]−
∫

ddxφ(x, t)h(x, t).

Functional averages 〈O[φ]〉ξ may now be computed by straightforward generalization of the

(0 + 1)-dimensional functional (10.50):

〈O[φ]〉ξ =

∫
DφO[φ]

B∏
x

δ

(
∂tφ(x) +D(−Δ)n

δH[φ]

δφ(x)
− ξ(x)

)C
ξ

.

In practice, F [φ](x, t) = F (φ(x, t), ∂xφ(x, t), . . . ) will be a local function of the field and

its spatial derivatives. Representing the δ-constraint in terms of a Fourier integral over a

“momentum field” ψ and integrating over the noise field we arrive at

〈O[φ]〉ξ =

∫
D(φ, ψ)O[φ] ei

∫
dxψ(x)(∂tφ(x)+D(−Δ)n

δH[φ]
δφ(x) )−

∫
dxdx′ ψ(x)K(x−x′)ψ(x′),

35 Typically, the dominant contribution (in the sense of dimensional relevancy) to the Hamiltonian will be a

quadratic form in the order parameter H[φ] = r
2

∫
ddxφ2(x, t) + . . . In this case, the current reduces to

j = −Dr∇φ + . . . , which is a generalization of Fick’s law.
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where
∫
dx ≡

∫
ddxdt. A “Wick rotation” ψ → −iψ finally brings us to the finite dimensional

generalization of the MSRJD–functional

〈O[φ]〉ξ =

∫
D(φ, ψ)O[φ] e

∫
dxψ(x)(∂tφ(x)+D(−Δ)n

δH[φ]
δφ(x) )+

∫
dxdx′ ψ(x)K(x−x′)ψ(x′).

(10.73)

As in the zero–dimensional cases above, we may integrate over the momentum field ψ to

obtain the generalized Onsager–Machlup functional

〈O[φ]〉ξ =

∫
DφO[φ] e

− 1
4

∫
dx (∂tφ(x)+D(−Δ)n

δH[φ]
δφ(x) )K

−1(x−x′)
(
∂tφ(x

′)+D(−Δ)n
δH[φ]

δφ(x′)
)
,

(10.74)

where K−1 is the inverse of the noise kernel.

INFO It is an instructive exercise to derive from Eq. (10.74) a functional variant of the

Fokker–Planck equation – “functional” because the distribution function we are after, Pt[φ], is

a functional of φ, and the partial derivatives ∂niP (n, t) appearing in the standard Fokker–Planck

operator (cf. Eq. (10.22)) become functional derivatives. (To avoid the simultaneous appearance

of rectangular and conventional brackets, we denote the time argument in pt[φ] by an index.)

Our starting point is the Onsager–Machlup functional for the probability functional,

pt[φ] ≡
〈∏

x

δ(φ(x)− φ(x, t))

〉

=

∫
φ(x)=φ(x,t)

Dφ e−
1
4

∫
dxdx′ (∂tφ(x)−F [φ](x))K−1(x−x′)(∂tφ(x

′)−F [φ](x′)),

where we have introduced the abbreviation F [φ](x) ≡ −D(−Δ)n δH[φ]
δφ(x)

, and φ = {φ(x)} is the

argument of pt[φ] while φ(x, t) is the (d+ 1)-dimensional integration variable.

As a first step towards the derivation of a Fokker–Planck equation, we switch back to a time

discretized representation, pt → pl, where l = t/δ is an integer counting variable and δ a small

time increment. The Ito-time discretized Onsager–Machlup functional then reads as

pl[φ] =

∫
φ(x)=φl(x)

Dφ e−
δ
4

∑l−1
k=0

O[φk+1,φk], (10.75)

where O[φ, φ′] is shorthand for

O[φ, φ′] ≡
∫

ddxddx′
(
1

δ
(φ− φ′)− F [φ′]

)
(x)K−1(x− x′)

(
1

δ
(φ− φ′)− F [φ′]

)
(x′).

We next have to realize that the integral over the first l−1 fields φk above defines the probability

distribution pl−1:

pl[φ] =

∫
Dφl−1 e

− δ
4
O[φ,φl−1] pl−1[φl−1] =

∫
Dμe−

δ
4
O[φ,φ−μ] pl−1[φ− μ],

where in the second equality we have renamed integration variables. Introducing the shorthand

notation 〈f |K|g〉 ≡
∫
ddxddx′ f(x)K(x−x′)g(x′), we next represent the operator O[φ, φ−μ] as

O[φ, φ− μ] =
4μ

δ
− F [φ− μ]

∣∣∣K ∣∣∣μ
δ
− F [φ− μ]

5
.
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Using the abbreviation 〈. . . 〉 ≡
∫
Dμe−

1
4δ

�μ|K|μ〉 (. . . ), an expansion to leading order in δ – the

structure of the Gaussian weight entails that each power of μ scales as δ1/2 – then obtains

pl[φ] =
4(

1 +
1

2
〈μ|K|F [φ]〉 − 1

2

4
μ|K|δF [φ]

δφ
μ
5
+

1

8
(〈μ|K|F [φ]〉)2 − δ

4
〈F [φ]|K|F [φ]〉

)

×
(
pl−1[φ]−

〈
δpl−1[φ]

δφ

∣∣∣μ〉+
1

2

〈
μ

∣∣∣∣δ2pl−1[φ]

δφδφ

∣∣∣∣μ
〉)5

= pl−1[φ]− δ

〈
δpl−1[φ]

δφ

∣∣∣F [φ]

〉
− δ

〈
1
∣∣∣δF [φ]

δφ

〉
pl−1[φ]−

δ

4
〈F [φ]|K|F [φ]〉pl−1[φ]

+
δ

4
〈F [φ]|K|F [φ]〉pl−1[φ] + δtr

(
K

δ2pl−1[φ]

δφδφ

)
.

Here, δp[φ]
δφδφ

≡
;

δp[φ]
δφ(x)δφ(x′)

<
. Dividing by δ, taking the limit δ → 0, and switching back to a

continuous time notation we obtain

∂tpt[φ] +

〈
δpt[φ]

δφ

∣∣∣F [φ]

〉
+

〈
1
∣∣∣δF [φ]

δφ

〉
pt[φ]− tr

(
K

δ2pt[φ]

δφδφ

)
= 0,

or, in a coordinate resolved notation,

∂tpt[φ]−D

∫
ddx

δ

δφ(x)

(
(−Δ)n

δH[φ]

δφ(x)
pt[φ]

)
−

∫
ddxddx′ K(x− x′)

δ2pt[φ]

δφ(x)δφ(x′)
= 0.

(10.76)

Equation (10.76) is a functional generalization of the Fokker–Planck equation. Roughly

speaking, (−Δ)nδH/δφ replaces the “friction coefficient” of the finite dimensional equation, i.e.

the instance that drives the distribution towards a relaxation equilibrium. The “diffusion term”

is controlled by the correlation matrix of the noise.

So far, we have not specified the noise kernel, K. However, we expect that in equilibrium it

relates in a definite way to the drift term – the fluctuation dissipation theorem. By “equilibrium”

we mean a time-independent distribution of generalized Maxwell–Boltzmann type,

peq[φ] ≡ N e−
1
T

H[φ], (10.77)

where N effects normalization. We now show that the condition that peq is a solution imposes a

condition on the form of K. Substitution of Eq. (10.77) into (10.76) indeed obtains

−D

∫
ddx

(
δ

δφ(x)
(−Δ)n

δH[φ]

δφ(x)

)
+

D

T

∫
ddx(−Δ)n

δH[φ]

δφ(x)

δH[φ]

δφ(x)

+
1

T

∫
ddxddx′K(x− x′)

[(
δ

δφ(x)

δH[φ]

δφ(x′)

)
− 1

T

δH[φ]

δφ(x)

δH[φ]

δφ(x′)

]
= 0.

This equation is solved provided that we declare that

K(x− x′) = DT (−Δ)nδ(x− x′). (10.78)

Notice that for a Hamiltonian functional that is local in φ (think of H[φ] = 1
2

∫
ddx((∂φ)2 +

rφ2 + . . . )) the functional derivatives appearing in the Fokker–Planck equation are singular (for

example, δ2

δφ(x)δφ(x)
H[φ] = −(∂2+r)δ(0), etc.) and need regularization. However, for the purposes

of our present discussion, a symbolic understanding of the derivatives is sufficient.

To conclude, let us summarize several “take home messages” implied by the construction

above:
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� The concept of a Fokker–Planck equation affords a generalization to finite dimensional prob-

lems.

� However, such an equation involves an infinite dimensional partial integro-differential equation

which does not look very inviting.

� We do not have to solve the equation explicitly to verify that the underlying generalized

Langevin equation relaxes to a Maxwell–Boltzmann (or Gibbs) equilibrium configuration,

provided that

� the noise correlator is chosen appropriately.

Finally, it is worth noting that the strategy pursued above, i.e. the construction of an inte-

gral recursion equation in discrete time space (Eq. (10.75)), followed by a Taylor expansion in

the incremental variables, reflects a general scheme for the derivation of transfer matrix type

equations.

10.6.3 Field theory of finite dimensional stochastic processes

Problems in reaction kinetics or population dynamics are often encoded in terms of master

equations defined on a finite dimensional lattice,

∂tpt[n] =
∑
n′

(W [n, n′]pt[n′]−W [n′, n]pt[n]) . (10.79)

The notation Pt[n] indicates that the distribution depends on the “function” {ni} where i is

a lattice point and ni a container variable comprising all relevant local information (the local

concentrations Ai, Bi, . . . of chemicals, etc.). The transition rates,W [n, n′] depend, likewise,
on lattice functions. In many applications, transition rates W describe a competition of

diffusive spreading (a random walk on a lattice) and particle reactions. Systems of this

kind are termed reaction–diffusion systems. Field theories for reaction–diffusion systems

can be obtained by straightforward generalization of the (0 + 1)-dimensional techniques

introduced in Sections 10.5.1 and Eq. (10.61).

By way of example, consider a pure extinction process, A
λ→ ∅ wherein a certain agent

A perishes at a constant rate. Defining ni ≡ (# of As at lattice site i), we may then ask

how the probability pt[n] evolves under the joint influence of annihilation and diffusive

spreading. A field theory representation of this process can be obtained by generalization

of the Doi–Peliti operator algebra,

ai| . . . , ni, . . . 〉 = | . . . , ni − 1, . . . 〉,
āi| . . . , ni, . . . 〉 = (ni + 1)| . . . , ni + 1, . . . 〉, (10.80)

where we represent the population {ni} in terms of a Fock space state. Again, the operator

algebra obeys canonical commutation relations, [ai, āj ] = δij . A straightforward extension

of our discussion of Section 10.5.3 shows that the Hamiltonian generating the stochastic

process above is given by

Ĥ = −D
∑
ij

āiΔijaj − λ
∑
i

āi(1− ai), (10.81)
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where Δij is the lattice Laplacian and D a diffusion constant. The corresponding coherent

state field integral action then reads

S[ψ̄, ψ] =

∫
ddxdt

[
ψ̄(∂t −DΔ)ψ − λψ̄(1− ψ)

]
, (10.82)

where we have switched to a continuum notation.

EXERCISE We may also derive a field theory by generalization of the techniques introduced

in Section 10.5.2. Derive the corresponding action and show that it relates to Eq. (10.82) by a

Cole–Hopf transformation.

10.6.4 Fluctuation–dissipation theorem (revisited)

The field theories above represent our most general descriptions of non-equilibrium many

particle systems. A question that frequently arises in applications is whether or not a given

system is in thermal equilbrium. A straightforward answer to this question may be given

as follows: compute the long time stationary probability distribution and check whether it

is of Maxwell–Boltzmann form. This procedure is generally valid but can be unnecessarily

cumbersome in practice. (You have to compute the stationary distribution first, and this can

be hard.) Often, it is more efficient to check whether the fluctuation–dissipation theorem

– a hallmark of equilibrium systems – is fulfilled. Now, we have encountered the FDT in

many different forms and contexts. Given its practical importance, it is worthwhile to briefly

summarize some of the more important incarnations. The last of these, a formulation of the

FDT for a linear variant of MSRJD field theory, plays an important role in the applications

below.

FDT I: Equilibrium linear response

In Chapter 7 we discussed the apparatus of linear response for equilibrium systems. We

considered the expectation value of certain observables X̂(x)36 (with x = (x, t) as usual).

Assuming that X̂ is conjugate to a generalized “force,” F , and that X(x) ≡ 〈X̂(x)〉 = 0 in

an unbiased situation, we considered the linear relation

X(ω) = χ(ω)F (ω) +O(F 2), (10.83)

where χ(ω) defines a generalized susceptibility. Equation (10.83) establishes a con-

nection between a macroscopic force (F ) and a macroscopic observable (X) in a “bath”

containing a large number of microscopic degrees of freedom. In this sense, χ is a quantity

probing “dissipative” physical processes. In Section 7.3 we showed that

χ(ω) = C+(ω) = −iΘ(t)〈[X̂(t), X̂(0)]〉,

where C+ was the retarded response function. We then established a connection between

C+ and another correlation function, the time ordered correlation function,

CT (t) ≡ −i〈TtX̂(t)X̂(0)〉,

36 Chapter 7 was formulated for quantum theories, but that aspect will not be of relevance throughout.
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which describes “fluctuations” of the observable X. Specifically, we found that (cf.

Eq. (7.21))

ImCT (ω) = ImC+(ω) coth(βω/2). (10.84)

This is the quantum fluctuation dissipation theorem. We next wish to explore what

happens to this relation in the classical limit.

In the classical limit, X̂ → X(x) becomes a function in phase space (formally, the

Wigner transform of the operator X̂. For more information on the Wigner transform, see

Section 11.5.1), the time dependence, X̂(t) → X(x(t)) resides in the classical time evolution

of the argument, and the time ordering of operators involved in the definition of CT becomes

inessential. This means that the classical limit of the time ordered correlation function is

given by

CT
cl (t) = 〈X(t)X(0)〉,

where

〈X(t)X(0)〉 ≡
∫
Γ

ddx ρ(x)X((x(t))X(x).

It is not difficult to verify that the Fourier transform Ccl(ω) = ImCcl(ω) is purely imaginary.

Likewise, it can be shown that the retarded response function approaches the form C+ =

�C+
cl – note the extra “�” – with

C+
cl (t) = χcl(t) = Θ(t)〈{X(t), X(0)}〉,

where the Poisson bracket replaces (−(i/�) times) the quantum commutator. (However,

this expression is not too useful in applications. In practice, one will often try to obtain the

linear response susceptibility by different means.)

EXERCISE The expressions above, Poisson brackets replacing commutators, etc., contain the

“natural” classical counterparts of the quantum formulae. To actually verify their validity, employ

the Wigner representation of the operator X̂ (cf. Section 11.5.1) and then take the classical limit

by leading order expansion in �.

Finally, the Fourier argument ω in Eq. (10.84) has the dimension of a frequency. This means,

that the bosonic distribution function must be understood as coth(β�ω/2) =
��T/ω−→ 2T

�ω .

Combining everything, we obtain the classical fluctuation dissipation theorem

C(ω) =
2T

ω
Imχ(ω), (10.85)

where we removed the subscript “cl.” In the theory of steady state phenomena, it is often

useful to consider a static variant of the FDT. To this end, let us define the equal time

correlation function as

C ≡
∫

dω

2π
C(ω) = 〈X(0)X(0)〉.
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The analytic properties of C(ω) and χ(ω) (explore this point) then imply the static version

of the FDT,

C = Tχ(0). (10.86)

FDT II: linear Langevin equations

In Section 10.2.1 we discussed the FDT within the framework of linear Langevin theory.

(Here “linear” means Langevin equations that are linear in the dynamical variable.) We

saw that consistency with the equipartition law of equilibrium thermodynamics implies the

presence of fluctuations in any dissipative medium. But how does this observation correlate

with the linear response picture above?

To understand this connection, let us look at the Langevin oscillator equation

q̈ + ω2
0q + γq̇ = ξ,

where ω0 is the oscillator frequency and mass has been set to unity. The FDT as discussed

in Section 10.2.1 requires that 〈ξ(t)ξ(t′)〉 = 2γTδ(t − t′). In Fourier space, this may be

solved as

q(ω) = χ(ω)ξ(ω), χ(ω) = − 1

ω2 − ω2
0 + iγω

. (10.87)

The notation indicates, that the kernel χ can be interpreted as the dynamical suscep-

tibility describing the response of the coordinate q to the “driving force” ξ. The point to

appreciate here is that the dynamical susceptibility of a system describes both its response

to fluctuations (as in Langevin theory) and the response to external driving (as in linear

response theory).

The Fourier transform of the dynamical correlation function C(t) = 〈q(t)q(0)〉 reads as

C(ω) =
2γT

(ω2 − ω2
0)

2 + (ωγ)2
=

2T

ω
Imχ(ω), (10.88)

where we have used the relation 〈ξ(ω)ξ(ω′)〉 = 2γTδ(ω + ω′). Comparing Eq. (10.88) and

Eq. (10.87) we see that the general fluctuation dissipation theorem Eq. (10.85) and the two

approaches “FDT from equipartition” and “FDT from linear response” describe different

sides of the same coin.

FDT III: MSRJD field theory

In later sections, we explore the collective behavior of many particle systems by field theo-

retical methods. The FDT will turn out to be an important diagnostic tool to test whether

a system is in equilibrium or not. Let us, then, explore how the FDT can be probed within

the framework of field theory. To this end we consider the MSRJD functional Eq. (10.73)

with noise correlator (10.78). While the FDT Eq. (10.85) is of general validity, we begin by

considering linear (free) field theories. Assuming that the relaxation of φ is controlled by

the quadratic Hamiltonian

H[φ] =

∫
ddx

(
1

2
(∂φ)2 +

r

2
φ2 − hφ

)
,
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where the field h will be used to probe the linear response of the system, the corresponding

MSRJD functional takes the form

Z ≡
∫

D(φ, ψ) e
∫
dx [ψ(∂tφ+D(−Δ)n(−Δφ+rφ−h))+DTψ(−Δ)nψ].

Switching to momentum space and introducing a matrix notation,

Z ≡
∫

D(φ, ψ) exp

(
−S0[φ, ψ]−D

∫
dq ψqq

2nh−q

)
,

S0[φ, ψ] = −1

2

∫
dq (φ, ψ)−q

(
0 (g−)−1

(g+)−1 2DTq2n

)
q

(
φ

ψ

)
q

,

where
∫
dq ≡

∫
ddkdω
(2π)d+1 , g

±
q ≡

(
∓iω +Dk2n(k2 + r)

)−1
, and we are using an index notation

gq, instead of g(q) for improved notational clarity.37 Now, let us employ this functional to

compute the dynamic susceptibility. Due to the evenness of S0 in the fields, 〈φ〉0 = 0, where

〈. . . 〉0 ≡
∫
D(φ, ψ) exp (−S0[φ, ψ]). To leading order in the driving field, we thus obtain

〈φq〉 � D

∫
dq′ 〈φq q

′2n ψ−q′〉hq′ = Dg+q q
2nhq ≡ χqhq.

This leads to the identification χ(q) = Dq2ng+q . On the other hand, the fluctuation correla-

tion function is given by

C(q) =

∫
dq′〈φqφq′〉0 = 2DTq2ng+q g

−
q =

2T

ω
Imχq,

consistent with the FDT. This consideration shows that the free equilibrium field theory

conforms with the FDT. However, it is much more challenging to show that this compati-

bility pertains to the interacting case. In practical applications, one will want to verify (for

example by perturbative methods, or by renormalized perturbation theory) that (a) the

equilibrium theory does obey the FDT. One may then proceed to (b) detect deviations from

equilibrium by violations of the FDT.

INFO In the theory of continuum systems, the correlation function C(q) ≡ C(q, ω) ≡ S(q, ω) is

often referred to as the dynamic structure factor. This notation alludes to the fact that the

function C(q, ω) describes spatio-temporal fluctuations in the system at the characteristic length

scale |q|−1 and time scale ω−1. The FDT establishes a connection between the dynamic structure

factor and the dynamic susceptibility. Likewise, the static version of the FDT Eq. (10.86) relates

the static structure factor C(q) ≡ S(q) to the static susceptibility.

Finally, note that we may be confronted with a system that is kept at some predetermined

noise level (possibly determined by the action of an underlying microscopic agent, or due

to coupling to an external environment). One may then argue that an effective equilibrium

emerges wherein the noise strength determines the effective temperature by way of the FDT

condition.

37 If you find the sign-difference between the retarded and the advanced Green function unfamiliar, keep in mind
that we are considering irreversible dynamics. Compute the time representation of g± for the case n = 0, r = 0,
to show that the sign properly distinguishes between retarded and advanced propagation.
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10.7 Field theory III: applications

Having invested considerable effort into deriving various field theories of nonequilibrium

systems, it is now time to apply the formalism. However, before doing so, let us identify a

number of questions we may want to address:

� In Section 10.5.2 we assumed knowledge of a certain “Hamiltonian” H[φ] that drives the

order parameter field φ to an equilibrium configuration. But how can such a Hamiltonian

be motivated and constructed for concrete physical systems?

� What can field theory say about the different phases realized in and out of equilibrium?

� And what can be said about the transitions between these phases? The theories con-

structed above bear structural similarity to different equilibrium theories discussed earlier

in the text. To what extent can concepts developed earlier for equilibrium systems (the

notion of upper and lower critical dimension, mean field theory, renormalized theory of

fluctuations, etc.) be generalized to the present context?

� How do critical correlations reflect in the dynamical behavior of a system?

These are but a few questions that can be asked. Rather than attempting to find general

answers, we shall address some of these questions on two specific examples. Even so, our

discussion will be rather superficial and can provide little more than a glimpse of the theory

of nonequilibrium critical phenomena. (Some guides to further reading are given below.)

10.7.1 Driven diffusive lattice gases

Imagine yourself confronted with the following exercise: engineer a genuine many particle

system (a system containing particle dynamics and interaction) that is (a) simple, (b)

couples to an efficient mechanism driving an out-of-equilibrium situation, and (c) reduces

to one of the “large” universality classes of physics in the equilibrium limit. It is actually

not so easy to come up with a good answer.

One system that meets these criteria reasonably well is the driven diffusive lattice gas

(see Fig. 10.10). As is indicated by the name, it involves a system of particles hopping on a

lattice. The particles may hop from one site to the next at some rate t, and are subject to

nearest neighbour repulsion as described by the Hamiltonian

H[n] ≡ J
∑
〈ij〉

ninj . (10.89)

Here ni,j ∈ {0, 1} reflecting that each site can be occupied by one particle at most. For

simplicity we imagine periodic boundary conditions in all directions, i.e. the system lives

on a d-dimensional torus.

We next allow the particles to hop between nearest neighbour lattice sites (subject to

the condition of no more than single occupancy). This will render the system dynamical

and allow it to settle in a configuration compromising between single particle dynamics and

interactions. To see this more clearly, imagine the dynamics described in terms of a master

equation. Interactions will influence transition rates in this equation, but not change the

configurations by themselves. Above we have seen that the changes in the configurations
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Figure 10.10 The driven diffusive lattice gas. A system of nearest neighbour interacting particles
hopping on a lattice and subject to periodic boundary conditions. The system is driven by a
constant force.

(presently caused by hopping) afford an interpretation in terms of Langevin dynamics.38

This means, that we may think of the capacity to hop in terms of some effective thermal

activation, or noise acting on the system. This noise will enable the gas to settle in an

effective equilibrium configuration favoured by the interaction, at an effective temperature

set by the hopping rates.

To drive the system out of equilibrium, we introduce a force acting uniformly along one

of the directions of the torus. Moving against its action once around the torus (a closed

loop) costs energy, i.e. the force is not conservative, and there is no corresponding potential.

Rather, we may think about the force as an “electromotive” force due to piercing the torus

by a time dependent magnetic field. The coupling to this “work reservoir” gives rise to a

nonequilibrium situation. Lack of a conservative potential invalidates descriptions of the

system in terms of a Hamiltonian; this is the ultimate motivation to describe it in terms of

master equations and effective Langevin equations. In this language, the effect of the force

will be a bias in the hopping rates along one of the toroidal directions.

An important preliminary conclusion to be drawn from this consideration is that the

equilibrium physics of our system will fall into the Ising universality class. Indeed, we

may introduce spin variables Si = 2ni − 1 ∈ {−1, 1}. Expressed in terms of the Sis the

interaction Hamiltonian H[S] assumes the form of an Ising Hamiltonian, where the sign of

J determines whether the coupling is ferromagnetic or antiferromagnetic. In equilibrium,

38 A quadratic approximation of the transition generators, the momenta conjugate to the occupation number
variables, led to a quadratic contribution to the Hamiltonian action formally equivalent to the averaged noise
term in the MSRJD functional.
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the system will be described by a Gibbs distribution, ∼ exp(−H[S]/T ), at a temperature

set by the hopping rates. Introduction of a finite bias is expected to cause departures from

the Ising/φ4-universality class.

Summarizing, the driven diffusive lattice gas conforms with the three principles above:

it is relatively simple, contains nonequilibrium driving, and relates to the big Ising uni-

versality class. Sadly, there do not seem to be any direct experimental realizations of this

system, although it may be argued that aspects of its behavior reflect in the physics of ionic

conductors, microemulsions of charged particles, and DNA gel electrophoresis.39

Our theoretical approach to the system below is organized in a number of steps. After

reviewing elements of its microscopic physics, we introduce a mesoscopic theory describing

the approach to equilibrium in the unbiased case, as much as the principal effects of the

driving mechanism. We expect the consequences of driving to be particularly strong if the

system is tuned to its equilibrium transition point. Less evidently, however, it turns out

that driving also causes remarkable phenomenological consequences above criticality (the

“disordered” phase). In our analysis below, we first address the latter regime, and then turn

towards the more ambitious study of criticality. It should be emphasized that, to date, many

aspects of driven diffusive systems remain poorly understood, and there is lack of direct

experimental data. In our discussion of the system, we thus have to draw more liberally than

usual from a mix of field theoretical evidence, simulation data, and common sense reasoning.

The material assembled below is a fragmentary excerpt from the text by Schmittmann and

Zia.39

Microscopic formulation

Consider the master equation Eq. (10.79) for the evolution of the lattice gas population. In

the absence of an external field, we have a Hamiltonian H[n] assigning to each configuration

n an energy. In equilibrium, the system will settle into a configuration described by the

distribution,

peq[n]
E=0
= N exp(−H[n]/T ). (10.90)

We do not have to specify the transition rates W [n, n′] explicitly to say that compatibility

with Eq. (10.90) implies the detailed balance relation

W [n, n′]
W [n′, n]

=
peq[n]

peq[n′]
= e−β(H[n]−H[n′]). (10.91)

This relation is satisfied, e.g., by the choice W [n, n′] = const. × exp(−β(H[n] −H[n′])/2).
More generally, any W [n, n′] ≡ f(β(H[n] − H[n′])) with f(x)/f(−x) = exp(−x) will also

do the job. In the presence of a driving field, we do not have a globally defined Hamiltonian

any more. Locally, however, we may assign to a configuration n an “energy” that increases

if we move against the field. Modeling the dynamics in terms of transitions n → n′ that
involve only local changes in the configuration, we may generalize according to

W [n, n′] → f(β(H[n]−H[n′] + kaE)),

39 B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems, (Academic Press,1995).
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Figure 10.11 Three phases of the driven diffusive lattice gas. Left: disordered (unmagnetized) phase
at high temperatures. Center: ordered (magnetized) islands at low temperatures and zero field.
Right: ordered (magnetized) stripes at low temperatures in the presence of a driving field.

where a is the lattice spacing and k the number of steps particles have to climb against the

direction of the field E to get from configuration n′ to n.

Suppose we have modelled the system in terms of transition rules satisfying the above

constraints. The corresponding master equation is the starting point for computer simula-

tions. Given the lack of experimental data, and the relative unfamiliarity of the system, such

simulations40 have played an important role in guiding analytical work: not surprisingly, it

has been confirmed that the field-free system falls into the Ising universality class. However,

contrary to the standard Ising model, the total magnetization 〈M〉 ≡
∑

i Si ≡ 2
∑

i ni −N

(N is the total number of lattice sites) is conserved in our system. This means that, above

a critical temperature Tc, the system will be in a “disordered” phase, i.e. particles spread

randomly across the lattice (see Fig. 10.11 left). Below Tc, we enter an ordered phase char-

acterized by the presence of magnetized domains (particle clusters). The total area of spin

up and spin down domains is determined by the concentration of particles in the system

(Fig. 10.11 middle). A cursory inspection of numerical data may lead to the impression that

above Tc, the application of a field has not much of an effect. We will see, however, that

this is not the case. Finally, it has been found numerically that below Tc and for E �= 0, the

magnetized areas arrange in stripes parallel to the field direction (see Fig. 10.11 right).

40 S. Katz, J. L. Lebowitz, and H. Spohn, Nonequilibrium steady states of stochastic lattice gas models of fast
ionic conductors, J. Stat. Phys. 34, 497-537 (1984).
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Below we try to explain aspects of these observations analytically. In principle, master

equations based on the transition rates W [n, n′] may serve as a starting point towards the

construction of an analytical theory, along the lines of our discussion in Section 10.6.3.

However, the reduction of the resulting “microscopic field theory” to an effective long range

theory will arguably be laborious. Instead, we will build our construction on a “mesoscopic

formulation” wherein the dynamics of the site occupancy is described in coarse-grained

terms.

Mesoscopic formulation

To provide coarse-grained description of the system, we describe its state in terms of its

continuous magnetization φ(x, t) ≡ 〈2n(x, t)〉 − 1〉, where 〈. . . 〉 is symbolic for an average

over many lattice sites. Let us consider the field free case first. We then know from our

discussion in section 5.1, that the effective Hamiltonian governing the static profile of the

magnetization variable in the absence of driving is the φ4-functional,

H[φ] =
1

2

∫
ddx

(
(∂φ)2 + rφ2 +

u

12
φ4

)
. (10.92)

This Hamiltonian will determine the form of the Langevin equation. Second, we know that

magnetization is a “conserved quantity,”
∫
ddxφ = const, by virtue of particle number

conservation. Thus, our model belongs to class B in the classification of Section 10.6.2, and

we may write down an effective Langevin equation of motion,

∂tφ = DΔ
δH[φ]

δφ
+ ∂ · ξ = DΔ

(
rφ− ∂2φ+

u

6
φ3

)
+ ∂ · ξ. (10.93)

Here we have absorbed the derivatives appearing in the model B noise correlator Eq. (10.78)

into the definition of a vectorial noise field 〈ξi(x)ξi′(x′)〉 = 2Aδii′δ(x−x′), and the constant

A determines the effective equilibrium temperature as A = DT .

Let us now explore what happens once driving is switched on. As discussed above, the

Hamiltonian cannot accommodate the non-conservative driving field. However, we may

argue that the right–hand side of the Langevin equation represents the divergence of a

current. An external field will cause a current that (i) is proportional to the field E in

direction and strength, and (ii) vanishes if neither particles nor holes are present. This

motivates the ansatz,

j = 4n(1− n)E = (1− φ2)E, (10.94)

where a constant of proportionality has been absorbed in a redefined E. The addition of

the divergence of this current to the right–hand side of Eq. (10.93) will generate the bare

version of a generalized Langevin equation. However, we must keep in mind that the strong

anisotropy introduced by the field will, by way of renormalization, render the effective

parameters of the Langevin anisotropic as well. This motivates the more general anisotropic

representation

∂tφ = D

[(
r∂2 − α∂4 + r̂∂̂2 − α̂∂̂4 − β∂2∂̂2

)
φ+ E∂φ2 +

1

3!

(
u∂2 + û∂̂2

)
φ3

]
− ∂ξ − ∂̂ · ξ̂,

(10.95)
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where quantities carrying a caret refer to the d−1 directions transverse to the field, and the

various coefficients account for the possibility of anisotropic renormalization. Accordingly,

the effective noise correlator takes the form

〈ξ(x)ξ(x′)〉 = 2Aδ(x− x′),

〈ξ̂i(x)ξ̂i′(x′)〉 = 2Âδii′δ(x− x′). (10.96)

The MSRJD functional of this equation (cf. Eq. (10.53)) is given by Z =
∫
D(φ, ψ) e−S[φ,ψ],

where

S[φ, ψ] =

∫
dx

(
ψ
(
∂tφ−D

[ (
r∂2 − α∂4 + r̂∂̂2 − α̂∂̂4 − β∂2∂̂2

)
φ

+ E∂φ2 +
1

3!

(
u∂2 + û∂̂2

)
φ3

])
+A(∂ψ)2 + Â(∂̂ψ)2

)
. (10.97)

In the following sections we aim to extract some physical information from this seemingly

formidable expression.

Above criticality: consequences of FDT violation

Let us consider the system at temperatures T > Tc far above its ordering transition. Drawing

upon our experience with equilibrium physics, we expect the system to be in a disordered

state, void of any long range (power law) correlations. Remarkably, however, the physics of

the driven system turns out to be different. We will see that the external field leads to long

range correlations and critical phenomena even in the high temperature regime.

Following the standard logic in the theory of continuous phase transitions we assume that,

for T > Tc, the intrinsic nonlinear terms (such as ∼ ψφ3) provide subleading contributions

to the dynamics. Alluding to their low operator relevance, we will also neglect all terms

containing more than two gradient operators. We thus consider the bare action

S[φ, ψ] =

∫
dx

(
ψ
(
∂tφ−D

[
rΔφ+ E∂φ2

])
−AψΔψ

)
,

where we have anticipated that the bare theory is isotropic, A = Â and r = r̂ and the

driving term provides the only non-Gaussian contribution to the action. The importance of

the driving term can be assessed by computing its engineering dimension. To this end, let

us consider the effect of a rescaling q → q′ ≡ qb−1. Requiring that all Gaussian terms in

the action remain scale invariant, we obtain the relations

q′ = b−1q, t′ → b−2t,

φ′ = b
d
2 φ, ψ′ = b

d
2ψ.

Substituting the rescaled quantities into the action, we are led to the renormalization E′ =
b−

d
2+1E. Thus, the upper critical dimension of our nonlinearity is dc = 2. Below d = 2, the

driving term is relevant, at d = 2 it is marginal, and above irrelevant.

However, it would be premature to conclude that in dimensions d > 2, driving has no

physical effects! To appreciate this point, imagine that on the short distance scales |q| ∼ l

where the renormalization process is started, our action is isotropic in that r(l) = r̂(l) and
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A(l) = Â(l). In the course of renormalization, the effective strength of E will diminish

(exponentially, if d > 2). However, the residual E(L) will also renormalize the coupling

constants of the Gaussian model, and it will do so in an anisotropic manner.

EXERCISE Identify the interaction processes that cause the renormalization of the coupling

constants. You may want to formulate the RG equations?

At large length scales, we thus have an effective Gaussian model, E = 0, which, however, is

anisotropic. In other words, we have a family of Gaussian fixed points, each described

by a free action

S[φ, ψ] =

∫
dx

(
ψ
(
∂tφ−D

(
r∂2 + r̂∂̂2

)
φ
)
+A(∂ψ)2 + Â(∂̂ψ)2

)
=

1

2

∫
dq (φ, ψ)−q

(
(g−)−1

(g+)−1 2(Ak2 + Âk̂2)

)
q

(
φ

ψ

)
q

,

where g±q = (∓iω +D(rk2 + r̂k̂2))−1, and q = (k, ω) with k = (k, k̂)T . As we are going to

show next, each of these actions exhibits “critical behavior” in that it generates anisotropic

power law correlations in the system. Indeed, consider the dynamic structure factor

S(k, ω) =

∫
dq′ 〈φqφq′〉 = 2(Ak2 + Âk̂2)g+q g

−
q = 2

Ak2 + Âk̂2

ω2 +D2(rk2 + r̂k̂2)2
. (10.98)

Integration over ω generates the static structure factor

S(k) =

∫
dω

2π
S(k, ω) =

1

D

Ak2 + Âk̂2

rk2 + r̂k̂2
. (10.99)
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In equilibrium, the FDT enforces the fraction on

the right hand side of this equation to equal unity.

To appreciate this point, remember our discussion

at the end of Section 10.6.2. We had seen that a

(model B) system may relax to equilibrium if the

noise correlator is weighted by a Laplace operator

(cf. Eq. (10.78)) which compensates for the Laplace

operator in Eq. (10.71). In the present context, both

operators get renormalized to anisotropic second

order differential operators. Specifically, the noise-

or “fluctuation” Laplace operator gets renormalized according to Δf → k2 + Â
A k̂2, while

the “dissipation” operator becomes Δd → k2 + r̂
r k̂

2. An equilibrium configuration at some

effective temperature Teff can be approached (cf. the construction above Eq. (10.78)), if

and only if Δf ∝ Δd. While this does not necessarily imply isotropy in space, a minimal

requirement reads

w ≡ Ar̂

Âr
= 1.
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This condition entails S(k) = const.. Equivalently, violation of the FDT condition w = 1

implies singular (albeit finite) behavior of the structure factor. The singularity can, e.g., be

characterized by the ratio

R ≡ S(0, k̂ → 0)

S(k → 0, 0)
.

The anisotropy singularity of the structure factor implies power law correlations in coor-

dinate space. To see this, let us consider the case d = 3 for concreteness and compute the

Fourier transform

S(x) ≡
∫

d3k

(2π)3
eik·xS(k) ∝

∫
d3k ei(xk+x̂·k̂)

A
Â
k2 + k̂2

r
r̂k

2 + k̂2
∝

∫
d3k ei(x̃k+x̂·k̂)wk

2 + k̂2

|k|2

= −(w∂2
x̃ + ∂2

x̂)

∫
d3k ei(x̃k+x̂·k̂) 1

|k|2 ∝ (w∂2
x̃ + ∂2

x̂)
1

(x̃2 + x̂2)1/2

= (w − 1)∂2
x̃

1

(x̃2 + x̂2)1/2
= (w − 1)

2x̃2 − x̂2

(x̃2 + x̂2)5/2
,

where x̃ = (r̂/r)x is a rescaled coordinate and in the third line we discarded a contribution

(∂2
x̃ + ∂2

x̂)
1

(x̃2+x̂2)1/2
∝ δ(|x|), because our effective theory holds only for large |x| anyway.

We thus come to the surprising conclusion that

the high temperature (“disordered”) phase of the system sup-

ports power law correlations in coordinate space.

These correlations reflect the presence of a line of inequivalent Gaussian fixed point theories.

INFO Can these power law correlations above criticality actually be observed in real sys-

tems? Anisotropies in the structure factor such as those shown in the figure above have actually

been measured in uniaxial ferromagnets with dipolar interactions41 However, these systems sup-

port long range correlations on the bare level, and it is not really clear whether they share a

universality class with our short range Ising type benchmark model. However, singular behavior

in correlation functions is definitely observable in Monte Carlo simulations40 of the system.

It is also worth noting that the mechanisms whereby long range correlations were generated

in our discussion above appear to be of rather general nature: to appreciate this point, consider

the temporal decay of correlations in a diffusive environment C(0, t) ∼ t−d/2. The dynamical

exponent of diffusive dynamics is given by z = 2. Power counting arguments would then suggest

that C(x, t) ∼ |x|−d at fixed t. However, in equilibrium statistical mechanics, we are more

accustomed to exponentially decaying correlations (power law correlations indicating criticality

being an exception).

Our discussion above signals, that the paradigm “no long range correlations away from crit-

icality” may not have quite as generic a validity as is suggested by the theory of equilibrium.

Rather, we saw that violations of the FDT may generate power law correlations far away from

critical points.

41 J. Skalyo, B.C. Frazer, and G. Shirane, Ferroelectric-mode motion in KD2PO4, Phys. Rev. B 1, 278-86 (1970).



10.7 Field theory III: applications 673

EXERCISE Retrace the discussion above for an isotropic system with conserved diffusive

dynamics. Convince yourself that the FDT enforces vanishing of power law correlations in the

correlation function.

Inasmuch as equilibrium (obedience to FDT) is an exception rather than the rule, we may expect

that long range correlations in nature are of more frequent occurrence than what is implied by

equilibrium statistical mechanics.

The system at criticality

At some critical Tc the system undergoes a transition into its ordered phase. Numerical

analysis has shown that, in the presence of strong driving, this ordered phase contains

stripes of uniform magnetization. The formation of stripes may be diagnosed by monitoring

the behavior of the static structure factor upon changing the temperature. Specifically,

we expect that: (i) the proximity to the phase transition point is characterized by some

correlation length, ξ. (ii) At length scales larger than ξ, the structure factor will exhibit the

∼ |x|−d scaling discussed in the previous section. (iii) At length scales smaller than ξ we

expect anisotropic scaling; correlations in the direction parallel to E will be qualitatively

different from those in the transverse direction. In the following, we tune the system right

into the critical point and explore its correlation behavior.

However, before doing so, we first have to identify the transition point. In equilibrium

φ4-theory, the transition occurs when the (renormalized) coefficient, of the quadratic term

in the action ∼ φ2 vanishes. Presently, however, we have two such terms, with coefficients

r and r̂, respectively. This raises the question whether the ordering transition occurs at (i)

r = 0, r̂ �= 0, or (ii) r �= 0, r̂ = 0, or (iii) r = r̂ = 0. In the following, we go through a

construction that self-consistently shows (ii) to be the correct variant.42

Let us assume that r �= 0, r̂ = 0 characterizes the system at criticality. We begin by

determining the engineering scaling dimensions of the various contributions to the action.

Specifcially, we should like to identify the upper critical dimension, i.e. the dimension below

which nonlinear terms become qualitatively important. To this end, let us use the freedom

to independently scale q, q̂, t, φ, ψ in a manner to leave the dominant quadratic contributions

to the action invariant. Defining the scale transformation

q̂ → b q̂, q → bσq, t → b−zt,

φ → bdφφ, ψ → bdψψ, (10.100)

42 At first sight this claim may seem surprising. Since we expect ordering in the field direction, would not one
expect the coefficient corresponding to that direction to vanish?
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let us consider the scaling behavior of different contributions to the action Eq. (10.97),

∫
dx

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D ψ∂tφ

D ψ∂̂4φ

Dr ψ∂2φ

Â ψ∂̂2ψ

A ψ∂2ψ

DE ψ∂φ2

Du ψ∂2φ3

Dû ψ∂̂2φ3

→ bσ+(d−1)+z

∫
dx

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b−(dφ+dψ)−z D ψ∂tφ

b−(dφ+dψ)−4 D ψ∂̂4φ

b−(dφ+dψ)−2σ Dr ψ∂2φ

b−2dψ−2 Â ψ∂̂2ψ

b−2dψ−2σ A ψ∂2ψ

b−(2dφ+dψ)−σ DE ψ∂φ2

b−(3dφ+dψ)−2σ Du ψ∂2φ3

b−(3dφ+dψ)−2 Dû ψ∂̂2φ3

. (10.101)

We now choose the scaling dimensions dφ, dψ, z, and σ so as to make the first four contri-

butions to the list above scale invariant. This generates the conditions

z = 4, σ = 2, dψ =
d+ 3

2
, dφ =

d− 1

2
. (10.102)

With these values, we can estimate the engineering dimensions of the remaining terms.

Specifically, we find that (a) the noise term ∝ A is strongly irrelevant in all dimensions,

(b) the interaction term ∝ u is less relevant (by two dimensions) than the interaction term

∝ û, (c) the driving term ∝ E carries dimension (5 − d)/2, and (d) the interaction term

∝ û carries dimension 3 − d. Specifically, point (c) implies that the model has upper

critical dimension dc = 5. Notice that the high value of the upper critical dimension

reflects the strongly intrusive role of the driving – below d = 5, the physics of the model

becomes fluctuation dominated, earlier than in the equilibrium model with its dc = 4. In

addition, the driving term is more relevant than the interaction term ∝ û, which becomes

relevant only below d = 3.

The estimate above suggests that we should drop the terms proportional to A, u, û. We

will thus model the critical system by the reduced effective action

S[φ, ψ] =

∫
dxD

(
ψ
(
D−1∂t − r∂2 + ∂̂4

)
φ+ E∂φ2 + (∂̂ψ)2

)
=

1

2

∫
dx

[
(φ, ψ)

(
(g−)−1

(g+)−1 −2∂̂2

)(
φ

ψ

)
+DEψ∂φ2

]
, (10.103)

where g± = (±∂t − Dr∂2 + D∂̂4)−1, and we have absorbed the noise coefficient Â in a

rescaled field amplitude.

In the following, we aim to understand the build–up of anisotropies in the critical system

at d = 5 − ε dimensions. To understand the ramifications of scaling anisotropies, let us

begin by computing the Fourier transform of the static structure factor – the spatial

correlation function of the system – in a tree approximation. Comparing with Eq. (10.98)

and (10.99), we obtain

S(k) =

∫
dω S(k, ω) =

∫
dω

2π

2k̂2

ω2 +D2(r̂k̂2 + k̂4)2
=

k̂2

D(rk2 + k̂4)
,
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and

S(x) =

∫
ddk

(2π)d
ei(kx+x̂·k̂)S(k) =

∫
ddk

(2π)d
ei(kx+x̂·k̂) k̂2

D(rk2 + k̂4)

∼
∫

dd−1k̂

(2π)d−1
e−k̂2|x|r−1/2+ix̂·k̂ ∼ |x|−

d−1
2 e−

x̂2r1/2

4|x| .

This expression provides an a–posteriori justification of our choice of “mass parameters”

r and r̂ at criticality. We have obtained a correlation function that decays as a power law

in the longitudinal direction and exponentially in the transverse direction. This behavior

conforms with the build–up of critical fluctuations in the longitudinal direction, while the

transverse direction remains in a disordered state.

Perturbative RG

φ

〈φφ〉 ≡ G11

〈φψ〉 ≡ G12

∂ψ φ2

ψ

How will critical fluctuations effect this pic-

ture? In the following, we perform a rudimentary

RG analysis to show that below the upper crit-

ical dimension dc = 5, fluctuations conspire to

strengthen the anisotropic character of the system.

(For a full exposition of an RG analysis of this

system, we refer to Schmittmann and Zia.39) As

in Section 8.3, we aim to explore what happens as

fast fluctuations successively get integrated out. To

this end, we first introduce a graphical language

representing the building blocks relevant to the

perturbative RG (see the figure.)

EXERCISE Refamiliarize yourself with the plan of the perturbative RG discussed in Section 8.3.

Decompose the fields as φ = φs + φf into fast and slow sectors. To one loop order in the

fast fields, explore the different diagrams contributing to the perturbative RG step. Specifically,

convince yourself that no vertices other than those contained in the action Eq. (10.103) will

be generated. Use power counting arguments to show that the one fast momentum integration

becoming dangerous below d = 5 will act to renormalize the ∂2φψ vertex.

The one diagram driving the renormalization of the theory is shown

in the figure to the right. To explore the effect of this contribution,

we divide the fields into fast and slow contributions. In view of the

anisotropies inherent to the model, it is actually not so obvious how

the space of coordinates (q, q̂, ω) is to be divided into a fast and a slow

sector. On the other hand, the RG procedure should be insensitive to

the detailed choice of an (infinitesimally thin) layer of fast modes. (As an exercise, check it

by inventing schemes different from the one below.) We thus meet the technically convenient

choice, fast: Λ/b < |q̂| < Λ, (q, ω) arbitrary, slow: |q̂| < Λ/b, (q, ω) arbitrary. Denoting the
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integration over the fast modes by
∫
f
dq, the diagram above renormalizes the coefficient r

according to

r → r + const.×DE2

∫
f

dq G21(q)G22(q) = r + const.×DE2

∫
f

dq g+q q̂
2(g+g−)q

= r + const.×DE2

∫
f

dd−1q̂

∫
dqdω

q̂2

(−iω +Drq2 +Dq̂4)2(iω +Drq2 +Dq̂4)

= r + const.× E2

D

∫
f

dd−1q̂

∫
dq

q̂2

(rq2 + q̂4)2
� r +

cE2

Dr1/2
ln b+O(ε2),

where c = O(1) is a numerical constant. At the one-loop level, the vertex ∝ E does not

renormalize; its renormalization stems from the the rescaling of momenta following the RG

step, E → b(5−d)/2E = eln bε/2E. This latter rescaling does not change the r-term, as the

field dimensions have been deliberately chosen so as to make this term (engineering) scale

invariant. We thus obtain the two RG equations

dE

d ln b
=

ε

2
E,

dr

d ln b
=

cE2

Dr1/2
. (10.104)

Substituting the solution of the first equation, E = bε/2E0 into the second, and solving

the remaining ordinary differential equation, we obtain r ∼ b
2�
3 . This fluctuation induced

scaling needs to be taken into account in an updated variant of the determination of scaling

dimensions. Accounting for the scaling of r in Eq. (10.101), we find that the anisotropy

exponent changes according to

σ = 2 +
ε

3
. (10.105)

This result adds to our overall observation that driving massively interferes with the

physics of the system. By way of summary, we have seen that:

� In the disordered regime above criticality, external driving leads to the formation of new

macroscopic structures which manifest themselves in new types of power law correlation.

� The strongly invasive character of driving is also reflected in the increased value of the

upper critical dimension, 4 → 5 (as compared to the equilibrium system).

� At criticality, driving causes fluctuations which superimpose to strengthen the anisotropy

of the system, Eq. (10.105). Qualitatively, the fluctuations generate patterns that appear

to be strongly aligned in the field direction.

For a deeper analysis of the system, and a discussion of its physics below criticality, we refer

to a more comprehensive study of its scaling and renormalization behavior.39.

10.7.2 Directed percolation

Amongst the different universality classes of equilibrium statistical mechanics, the φ4- or

Ising-class is the simplest. It owes its frequent occurrence in nature to the fact that its free

energy function, a quartic polynomial of a real scalar variable, is the most basic one that

leads to nontrivial critical behavior. In nonequilibrium statistical mechanics, the directed
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Figure 10.12 Cartoon of a directed percolation network with a given realization of open bonds, cf.
ordinary, or isotropic percolation, where the network bonds are directionless.

percolation class plays a similarly paramount role. In this section, we try to understand the

importance of this universality class to nonequilibrium statistical mechanics, and explore a

few of its critical properties. However, before doing so, it is useful to briefly review directed

percolation perse. (The material presented below is inspired by an excellent review by

H. Hinrichsen.43)

Directed Percolation: Phenomenology

The term “directed percolation” (DP) refers to a class of models that describe the spatially

directed spreading of a substance through a medium – think, for example, of a liquid dis-

persing through porous rock under the influence of a gravitational force. Alternately, one

may identify the driving direction with time, in which case directed percolation mimics, for

example, the spreading of an epidemic, or related dynamical phenomena.

The directed percolation model (see Fig. 10.12) is defined on a d-dimensional hypercubic

lattice. A certain “main diagonal” of the lattice is introduced as the identifier of a sense of

direction. The links of the lattice are then chosen to be open or closed with probability p

and 1− p, respectively. Like its cousin, the undirected, or isotropic percolation model, this

system exhibits a phase transition at a critical value of the connectivity probability, p = pc,

the directed percolation phase transition (see Fig. 10.13). The order parameter of this

transition is the probability P∞ that a randomly chosen site of the lattice is at the origin

of an infinitely large connected cluster. At p < pc, and using a language alluding to the

liquid/porous rock application, the system is in a “dry phase.” At p > pc, it has become

“wet.”

Despite the simplicity of the model, the critical properties of the DP-transition are not

fully understood. What can be said without any further calculation is that the critical value

pc = pc(d) will depend on dimensionality. (In one dimension, any broken bond will truncate

the cluster, i.e. pc(1) = 1; in infinite dimensions, the unlimited number of options to go

43 H. Hinrichsen, Nonequilibrium critical phenomena and phase-transitions into absorbing states, Adv. Phys. 49,
815-958 (2000).
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Figure 10.13 The two phases of a directed percolation network. Left, dry phase, wherein individ-
ual sites generate finite size clusters; right, wet phase with infinite size cluster generation.

from any lattice site implies pc(d → ∞) - 0.) Both, numerical analysis and field theory

suggest that the corresponding critical exponents are complicated, and likely irrational.

What gives the understanding of the DP transition increased relevance is that many

reaction–diffusion processes appear to fall into the DP universality class. To heuristically

understand this connection, simply note that, upon interpreting the sense of direction as

the flow of time, the elementary compounds of a cluster afford a natural interpretation

in terms of “reactions,” or diffusion (cf. Fig. 10.14). The generation update on the DP

network need not be modeled simply by drawing bond connectivities according to some

fixed probabilities; more sophisticated update rules can be invented to describe a large

set of dynamical setups. Algorithms implementing such update rules are called cellular

automata. Many such automata exhibit a phase transition between two “absorbing states”

of the lattice, the empty state (above termed “dry”) and the totally occupied state (“wet”).

One of the theoretical challenges in this field is to understand the universal properties of

such transitions, and specifically their connection to the basic DP universality class.

Below, we explore some of the universal properties of the DP transition by field theoretical

methods. We also aim to understand the origins of the ubiquity of the DP class in reaction–

diffusion kinetics.

Elements of scaling theory

Many physical properties of the DP transition can be conveniently described in terms of

scaling laws. Introducing τ = p − pc as a scaling field measuring the distance from the

transition point, the correlation behavior of the system is characterized by a correlation

length ξ ∼ τ−ν in its “spatial directions,” and a correlation “time” t ∼ ξz ∼ τ−νz in the

orienting direction. The transition as such can be probed in terms of two candidate order
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Figure 10.14 Dynamical interpretation of a DP network. Each row of sites represents a generation
of particles. The generation dynamical update then involves diffusion, birth and death, coagulation
and offspring creation.

parameters. The first is the average number of active, or wet sites,

ρ(t) ≡ N−1

B∑
i

si(t)

C
,

where N is the total number of sites within one time layer, and si = 1 if site i is active, and

zero otherwise. In the vicinity of the transition, ρ is expected to exhibit power law scaling,

ρ(t → ∞) ≡ ρ ∼ τ δ, τ < 0. More generally, the critical time dependence of order parameter

fluctuations is described by the ansatz

ρ(t) ∼ |τ |βg(t/t(τ)),

with the short time asymptotics (cf. the discussion of Section 10.6.1),

ρ(t) ∼ t−α, α = β/νz.

Another possible order parameter is the infinite cluster size probability P∞ introduced

above. We can generalize to a time-dependent quantity by declaring P (t) to be the average

probability that a cluster started at t = 0 is still active at time t. Since the “spatial” size

of the cluster grows indefinitely with time, P∞ = P (t → ∞). The scaling behavior of P is

described by P∞ = τβ
′
, τ < 0, and

P (t) ∼ |τ |β′
g′(t/t(τ)),

with short time limit P (t) ∼ t−α′
, α′ = β′/νz. The four exponents ν, z, β, β′ describe the

basic scaling behavior of the system. (For the elementary DP class, infinite cluster size

probability and overall wetness are equivalent characteristics, β = β′. For general phase

transitions between absorbing states, however, these quantities can be different.)

An important derived quantity, similar in nature to the pair correlation functions of many

particle theories, is the pair connectedness function C(x, t). This function is defined as



680 Nonequilibrium (classical)

the probability that an active site at (0, 0) is connected to the site at (x, t) by an open path.

The scaling hypothesis implies that

C(x, t) = tθ−d/zF (|x|/t1/z, τ t1/νz). (10.106)

The dimension θ can be fixed by running a few consistency checks: the probability that

(x � 0, t) is connected to (0, 0) is proportional to both the probability of finding a cluster

of temporal extension P (t), and the density of active sites, ρ(t). Here, the notation x � 0

means that the final point x should lie inside the “conical” cluster spreading out from

0, i.e. C(0, t)
t→∞∼ τβ+β′

. On the other hand, the expected stationarity of C(0, t → ∞)

requires that F (0, τ t1/νz)
!∼ t−(θ−d/z), i.e. F (0, τ t1/νz) ∼ τ−νz(θ−d/z). Comparing these two

conditions, we obtain the identification τ−νz(θ−d/z) !∼ τβ+β′
, or

θ =
1

z

(
−β + β′

ν
+ d

)
. (10.107)

Equations (10.106) and (10.107) describe much of the correlation behavior of the cluster.

Notice, however, that the argument leading to Eq. (10.107) relied on the cluster spreading

“underneath” the initial point. However, in high dimensions, this condition may be violated,

on account of the cluster spreading out in directions “orthogonal” to |x−0|. Closer analysis
shows that the validity of Eq. (10.107) is limited to dimensions below the upper critical

dimension of the process.

For the discussion of scaling functions higher in the hierarchy, and describing features

such as the average extension of clusters, their volume, etc., we refer to Hinrichsen.43 In

the next section, we discuss how field theoretical methods can be applied to describe the

fluctuation behavior of the system and its critical exponents.

Field theory

Before analysing low energy field theories of the DP transition, we first have to construct

one. On the face of it, it is not so obvious how to do this: we have not described DP in

the language of master equations, nor by Langevin type evolution, so our standard recipes

do not apply. Instead, we aim to construct a “dynamical mean field equation” of DP on

phenomenological grounds. We then use this equation as input for the construction of a

field theory, along the lines of Section 10.6.3.

The mean field equation we are going to construct operates on the mean density of active

sites, ρ(t). Adopting the dynamical interpretation of DP, ρ(t) increases at a rate that is

proportional to the probability of open bonds, p, the density ρ(t) of active sites at time

step n− 1 that may act as germs of newly generated active sites, and the density of empty

sites at time step n that may be converted to active sites. The density decreases at a rate

proportional to the density of active sites at the previous time step, and the probability

of closed bonds, 1 − p. Combining all these considerations, we are led to the equation

∂tρ = c1pρ(1 − ρ) − c2(1 − p)ρ, where c1,2 are nonuniversal constants depending on the

dimensionality of the system, and on the unit at which time is measured. We may always

rescale density and time such that the equation assumes the form,

∂tρ = (λ− 1)ρ− λρ2. (10.108)
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The defining feature of this equation is that it possesses (a) a stationary configuration ρ = 0,

and (b) a non-empty stationary state ρ = λ−1
λ , provided λ > 1. The critical value λc = 1 at

which the non-empty “mean field” begins to emerge marks the position of the continuous

DP transition. Notice the simplicity of the DP mean field equation. It explains the ubiquity

of the DP class: alluding to the principle of universality, one may suspect that processes

described by a rate equation free of constant terms generically exhibit a DP transition,

provided that the first two terms ∼ ρ and ∼ ρ2 admit a non-zero solution.

Equation (10.108) fixes the mean field critical exponents of the system. Using the

notation τ = λ−λc = λ−1 for the difference to the mean field critical point, near criticality

ρ � τ , i.e. βmf = 1. In the dry phase, τ < 1, the asymptotic temporal decay of the density is

given by ρ ∼ exp(−|τ |t), which means that −νz = 1. However, lacking any spatial structure,

mean field theory cannot say anything about ν (nor z) individually.

The mean field equation (10.108) can be upgraded to a spatially resolved rate equation

by upgrading ρ(t) → ρ(x, t) ≡ ρ(x) to a local density profile and adding a diffusion term:

∂tρ = D∂2ρ+ τρ− λρ2. (10.109)

Dimensional analysis shows that νmf = 1/2. In combination with the results above (which

survive generalization to a local equation – exercise) we then have the mean field, or tree

level prediction,

βmf = 1, νmf = 1/2, zmf = 2. (10.110)

A field theory can now be constructed by interpreting Eq. (10.110) as a model A rate equa-

tion along the lines of our discussion of Section 10.6.2. To this end, we upgrade Eq. (10.109)

to a noisy equation,

∂tρ = D∂2ρ+ τρ− λρ2 + ξ,

where the noise is correlated as

〈ξ(x)〉 = 0, 〈ξ(x)ξ(x′)〉 = 2Aρ(x)δ(x− x′). (10.111)

The crucial feature here is the scaling ξ ∼ √
ρ. It reflects the assumption that the system

self-generates noise through its active sites. This type of noise must vanish in the empty

state, ρ = 0. Further, we are to interpret ξ as a coarse-grained variable sampling fluctuations

in a large number of active sites. According to the central limit theorem, these fluctuations

scale as
√
ρ, which explains the above correlation law. Generally, noise that scales with some

power of the Langevin variable is termed multiplicative noise.

We next subject Eq. (10.110) to our standard treatment of Langevin equations, thus gen-

erating the field theory representation of DP partition function, Z =
∫
D(φ, ψ) e−S[φ,ψ]

where44

S[φ, ψ] =

∫
dx

[
ψ(∂t −D∂2 − τ)φ+ κψφ(φ− ψ)

]
, (10.112)

44 Curiously, the field theory Eq. (10.112) has a background in particle physics, where it is known as Reggeon
field theory, see M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37, 255-345 (1978) for
a review.
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ψ

φ

τ > 0 τ = 0 τ < 0

Figure 10.15 Three distinct phase portraits of directed percolation. Left: phase supporting a finite
concentration of active sites, center: phase transition, right: empty state.

and κ ≡ (Aλ)1/2.(In deriving Eq. (10.112), we made use of the freedom to rescale fields so

as to make the coefficients of the two nonlinear terms ∼ φψ2 and ∼ φ2ψ equal.) We next

explore (cf. Eqs. (10.100) and (10.101)) the behavior of the different terms in the action

under the rescaling transformation

x → x/b, t → t/bz,

φ → bdφφ, ψ → bdψψ. (10.113)

Referring to the action (10.97), we have

∫
dx

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ∂tφ

D ψ∂2φ

τ ψφ

λ ψφ2

A ψ2φ

→ bd+z

∫
dx

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b−(dφ+dψ)−z ψ∂tφ

b−(dφ+dψ)−2 D ψ∂2φ

b−(dφ+dψ) τ ψφ

b−(2dφ+dψ) λ ψφ2

b−(dφ+2dψ) A ψ2φ

. (10.114)

Choosing z = 2 and dφ = dψ = d/2, the first two contributions to the action become (tree

level) scale invariant. The operator ∼ τψφ measuring the distance off criticality is strongly

relevant with dimension 2. Finally, the nonlinear operators ∼ λψφ2 and ∼ Aψ2φ carry

dimension 4− d. This identifies the upper critical dimension of directed percolation as

d = 4.

Before turning to the discussion of the role of fluctuations below d = 4, let us briefly

recapitulate the mean field picture in the language of the effective field theory Eq. (10.112).

As with the zero-dimensional problems discussed in Section 10.4, the phase structure of the

system is essentially determined by the pattern of intersecting zero energy lines of the mean

field Hamiltonian, H = ψφ(φ − ψ − τ). Depending on the sign of τ , three distinct phases

need to be distinguished (see Fig. 10.15). At τ > 0, the system is in its active phase:

on the fluctuationless manifold ψ = 0, the concentration variable φ is driven towards the

stable configuration φ = τ . (Notice that only positive values of φ are physically meaningful.)

At τ < 0, the empty state φ = 0 is stable, the inactive phase. The mean field phase

transition between both phases happens at τ = 0. The phase space picture of directed
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percolation was introduced in Kamenev 45 as the basis for a far-reaching classification of

phase transitions in reaction–diffusion systems. For further aspects of the utility of the

Hamiltonian approach in this field, we refer to the original reference.

Perturbative RG

How will fluctuations alter this picture? Close to the upper critical dimension, in d = 4−ε,

renormalization group techniques can be applied to answer this question. Carrying out an

RG analysis similar to that detailed in Section 10.7.1 (cf. Problem 10.9.4), one finds that

the two coupling constants τ and κ flow according to the equations

dτ

d ln b
= −DCκ2 + τ

(
2− 3

4
Cκ2

)
,

dκ

d ln b
= κ

(
ε

2
− 3

2
Cκ2

)
, (10.115)

where the constant C = S4

(2π)4D2 and S4 is the area of the four dimensional unit-sphere.

Within the above RG scheme, the diffusion constant, D, and the pre-factor of the fre-

quency term ω are kept fixed. The dynamical exponent and the “field renormalization”

φ → φb−
4−�
2 +χ are given by, respectively,

z = 2− Cκ2

4
, χ =

Cκ2

4
.

These equations possess a non-trivial fixed point at τ∗ = Dε
6 +O(ε2), κ∗ =

(
ε
3C

)1/2
which

means that fluctuations shift the position of the DP transition to a non-vanishing value of

τ . At the fixed point, z = 2− ε/12 and χ = ε/12. Linearization of the RG equations around

the fixed point leads to

dτ̃

d ln b
=

(
2− ε

4

)
τ̃ − κ̃CDκ∗

(
2 +

ε

4

)
,

dκ̃

d ln b
= −εκ̃,

where τ = τ∗ + τ̃ and κ = κ∗ + κ̃. The linearized equations imply that the coupling

constant τ̃ is a relevant scaling field with τ̃ ∼ b2−
�
4 . This result can in turn be used to

determine the 1-loop critical exponents: the scaling b−1 ∼ ξ ∼ τ̃−ν ∼ b−ν(2− �
4 ) leads

to the identification ν = 1
2 + ε

16 + O(ε2). The critical exponent β follows from the scaling

relation τβ
!∼ 〈φ〉 = b−

4−�
2 +χφ(τb2−

�
4 ). Setting b ∼ τ

− 1
2− �

4 , we obtain the identification

β = 1− ε
6 +O(ε2). Summarizing, the 1-loop RG analysis generates the list of exponents

z = 2− ε

12
+O(ε2), ν =

1

2
+

ε

16
+O(ε2), β = 1− ε

6
+O(ε2).

How do these values compare with reality? Numerical simulations for (3 + 1)-dimensional

clusters46 obtain (z, ν, β) = (1.90(1), 0.581(5), 0.81(1)) which compares reasonably well with

45 A. Kamenev, Classification of phase transitions in reaction–diffusion models, Phys. Rev. E 74, 41101-17 (2006).
46 I. Jensen, Critical behavior of the three-dimensional contact process, Phys. Rev. E 45, R563-6 (1992).
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the ε = 1 extrapolation of the exponents above, (z, ν, β) = (1.92, 0.56, 0.83). A two-loop

extension of the RG47 leads to excellent agreement. However, in lower dimensions, the situ-

ation is decidedly worse. For example, in the extreme case of (1+1)-dimensional percolation

clusters, the RG exponents are off the results of simulations by ca. 40%. Even so, the field

theory analysis sheds light on the physical mechanisms generating critical behavior, and

this is information that cannot be obtained from direct simulations.

10.8 Summary and Outlook

In this chapter, we have discussed foundations of nonequilibrium statistical mechanics, with

emphasis put on later extensibility to quantum nonequilibrium theory. We have introduced

the two major pathways to the description of nonequilibrium systems, Langevin dynam-

ics and probabilistic formulations in terms of master equations. We saw that these two

approaches afford a unified description in terms of functional integrals, the MSRJD formal-

ism. Interpreting the latter as a Hamiltonian functional integral, we looked at its Lagrangian

partner – the Onsager–Machlup functional – and recovered the Fokker–Planck equation as

its dynamical equation (similarly to the Schrödinger equation being the dynamical equation

of the quantum mechanical path integral). The arch stretching from the Langevin/master

equations over the MSRJD–/Onsager–Machlup functional to the Fokker–Planck equation

provides a powerful framework wherein many nonequilibrium phenomena can be studied

in a unified setting. Specifically, the functional integral description suggested a variational

approach (similar in nature to the WKB approach of quantum mechanics) to the description

of large fluctuations: fluctuations in higher dimensional environments could be analyzed

by concepts borrowed from the theory of critical phenomena, etc. In the next chapter, the

focus is on another important aspect of the formalism, the interpretation of the MSRJD

functional as the classical limit of a generalized quantum theory.

10.9 Problems

10.9.1 Wigner surmise

The problem of eigenvalue correlations of Hermitian matrices drawn from random distributions is a

subject with a long history dating back to studies of resonances in atomic nuclei. The following problem

concerns the distribution of level spacings in a canonical 2× 2 random Hamiltonian. The result, known

as the Wigner surmise, captures much of the behavior of the general expression for random matrices of

arbitrary rank.

Consider a Hamiltonian H of the form of a 2× 2 matrix parameterized as

Ĥ =

(
H1 Δ

Δ H2

)
.

47 J. B. Bronzan and J. W. Dash, Higher order epsilon terms in the renormalization group approach to Reggeon
field theory, Phys. Lett. B 51, 496498 (1974).
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Suppose that the three real numbers H1, H2, and Δ are drawn from a Gaussian distribution

P (H1, H2,Δ) ∝ e−
1
2 tr Ĥ

2

. Derive the joint distribution P (E1, E2) of the two energy levels

Ei, i = 1, 2, of the Hamiltonian Ĥ. Using this, derive the Wigner surmise describing the

distribution of the energy splitting s = |E1 − E2|, and show that it has the form

P (s) = c1 s e
−c2s

2

,

with some constants c1 and c2.

Answer:
The joint eigenvalue distribution is given by

P (E+, E−) ∼
∫

dH1 dH2 dΔ δ(E+ − λ+)δ(E− − λ−)e−(E2
++E2

−)/2 ,

where λ± = H1+H2

2 ± (Δ2 + (H1−H2

2 )2)1/2 denote the eigenvalues of the matrix H and we

assumed E+ > E− (in the opposite case, one has to interchange λ+ ↔ λ−). Integrating
over (H1 +H2)/2 and setting δH = H1 −H2, one obtains P (E+, E−) ∼

∫
dδH dΔ δ(E+ −

E−−2(Δ2+δH2)1/2)e−(E2
++E2

−)/2. Finally, setting r = (Δ2+δH2)1/2, and integrating over

the “angular” variable, one obtains P (E+, E−) ∼
∫∞
0

dr r δ(E+ − E− − 2r)e−(E2
++E2

−)/2 ∼
(E+ − E−)e−(E2

++E2
−)/2. From this result, we obtain the distribution

P (s) ∼
∫
E+>E−

dE+ dE− P (E+, E−)δ(E+ − E− − s) ∼ se−s2/8 .

We therefore find that c2 = 1/8, and c1 = 1/4 is obtained from the normalisation condition.

This result shows that the probability of finding a degeneracy is vanishing i.e. levels repel.

As a further exercise, show that if H is a complex Hermitian, i.e. both real and imaginary

parts of Δ are drawn from a Gaussian distribution, the probability distribution vanishes as

P (s) ∼ s2 for small s.

10.9.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process48 is the “harmonic oscillator” of nonequilibrium dynamics. It describes

stochastic evolution in cases where the averaged dynamics of a Langevin particle is described by a linear

first order differential equation. Realizations include the dynamics of a particle subject only to friction

(but no “external forces”), or the dynamics of an overdamped particle in a harmonic external potential.

Dissipative dynamics close to extremal potential points is often described by variants of this process.

(a) Consider a Brownian particle in 1d whose velocity is governed by the stochastic differ-

ential equation

v̇ + γv =
f(t)

m
, (10.116)

48 G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Phys. Rev. 36, 823-41 (1930).
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where f is a Langevin force, and 〈f(t)f(t′)〉 = Aδ(t− t′). Determine the general solution

of Eq. (10.116) for the velocity with the initial condition v(0) = v0, and calculate 〈v(t)〉
and 〈v2(t)〉. Using the long-time limit of the latter, identify the coefficient A with the

help of the equipartition theorem.

(b) Consider the time-dependent velocity distribution p(v, t). It is governed by the Fokker–

Planck equation [
∂

∂t
+

∂

∂v
a1(v)−

1

2

∂2

∂v2
a2(v)

]
p(v, t) = 0. (10.117)

With the help of Eq. (10.117), derive equations for ∂t〈v〉 and ∂t〈v2〉 and identify the

coefficients a1 and a2, e.g., by using the results of part (a). Show that the corresponding

Fokker–Planck equation for the generating function g(k, t) =
∫
dve−ikvp(v, t) is given

by [
∂

∂t
+ γk

∂

∂k
+

γT

m
k2

]
g(k, t) = 0. (10.118)

(c) The first order partial differential equation Eq. (10.118) can be solved for example with

the method of characteristics. Show that a general solution is of the form

g(k, t) = e−
T
2mk2

φ(ke−γt).

Determine the function φ from the initial condition p(v, t = 0) = δ(v − v0) and derive

the distribution p(v, t). Discuss the short and long-time limits of your result.

Answer:

(a) Formally, integrating the equation, one obtains the solution,

v(t) = e−γt

[
v0 +

∫ t

0

dt′
f(t′)
m

eγt
′
]
,

where v0 ≡ v(0). Then, averaging over the distribution for the Langevin force, since

〈f〉 = 0, we have 〈v(t)〉 = v0e
−γt. Similarly, making use of the expression for the

correlator, we have

〈v2(t)〉 = e−2γt

[
v20 +

∫ t

0

dt′ dt′′
〈f(t′)f(t′′)〉

m2
eγ(t

′+t′′)
]

= e−2γt

[
v20 +

A

2γm2
(e2γt − 1)

]
.

In the long time limit, 〈v2(t)〉 = A
2γm2

FDT
= T

m , i.e. A = 2γmT . Setting δv(t) = v(t) −
〈v(t)〉, one may further show that 〈δv(t)δv(t′)〉 = T

m (e−γ|t−t′| − e−γ(t+t′)).

(b) Using the Fokker–Planck equation, we have

∂t〈v〉 = −
∫

dvv∂v(a1P ) +

∫
dv

1

2
v∂2

v(a2P ) =

∫
dva1P − 1

2

∫
dv ∂v(a2P ) = 〈a1〉.
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From this result, we obtain a1(v) = −γv. Similarly

∂t〈v2〉 = −
∫

dvv2∂v(a1P ) +

∫
dv

1

2
v2∂2

v(a2P )

=

∫
dv2va1P −

∫
dvv∂v(a2P ) = 〈2va1〉+ 〈a2〉.

From part (a), we have ∂t〈v2〉 = −2γv20e
−2γt + A

m2 e
−2γt. As a result, after a small

amount of algebra, we find that 〈a2〉 = 2γT
m .

The derivation of Eq. (10.118) amounts to a straightforward substitution of the

Fokker–Planck equation into the Fourier integral defining g(k).

(c) Using the method of characteristics, from the left-hand side of the equation in (b), we

have −γkdt + dk = 0, i.e. dk
dt = γk and k(t) = ceγt. From the variation of g along the

characteristic, dg
g = − T

mk dk, we obtain g(k, t) = const.e−kBTk2/2m, i.e.

g(k, t) = e−kBTk2/2mφ(ke−γt).

With the initial condition, g(k, 0) = e−ikv0 , we have φ(k) = e−ikv0ekBTk2/2m. As a

result, we obtain the solution

g(k, t) = exp

[
−ikv0e

−γt − T

2m
k2(1− e−2γt)

]
.

Taking the inverse transform, we thus obtain the probability distribution function,

p(v, t) =

(
2πT

m
(1− e−2γt)

)−1/2

exp

[
− (v − v0e

−γt)2

2 T
m (1− e−2γt)

]
.

In the limit t → 0, p(v, t) �
√

1
2πDtexp[−

(v−v0)
2

4Dt ], with diffusion constant D = T
mγ. In

the limit t → ∞, p(v, t) � P eq.(v) =
√

m
2πT exp[−

mv2

2T ].

10.9.3 Ornstein-Uhlenbeck process revisited

We here approach the Ornstein-Uhlenbeck process from the point of view of path integration. As with

the harmonic oscillator in quantum mechanics, the path integral approach to the problem is cumber-

some (as compared to a direct solution of the Fokker–Planck equation.) However, the path integral

of the Ornstein-Uhlenbeck process frequently appears as an approximate integral describing quadratic

fluctuations around the stationary points of more complex integrals (much like the harmonic oscillator

integral describes quadratic fluctuations in quantum mechanical path integrals). For this reason, it is

well invested time to study the integral approach to the Ornstein-Uhlenbeck process.

Once more, we write P instead of p to distinguish probability distributions from momenta p in phase

space.



688 Nonequilibrium (classical)

Consider the stochastic equation describing a particle in a harmonic potential with over-

damped dynamics, q̇ +
ω2

0

γ q = ξ with 〈ξ(t)ξ(t′)〉 = Aδ(t− t′) where A = 2T
ω2

0

γ2 . In the path

integral representation, the probability distribution reads

P (qf , t|qi, 0) =
∫
q(t)=qf ,q(0)=qi

D[q, p]e−S[q,p],

where S = −
∫ t

0
dt′ (pq̇ −H), and H = −αpq − A

2 p
2 with α =

ω2
0

γ .

(a) Solve the Hamiltonian equations of motion and determine the corresponding classical

action Scl.

(b) In order to go beyond the leading semiclassical approximation P (qf , t|qi, 0) ∼ e−S[q,p],

we need to determine the fluctuation determinant. In Section 3.2 we had seen that the

fluctuation determinant of a path integral assumes the form (cf. Eq. 3.28)

1√
2π

√
− ∂2Scl

∂qi∂qf
, (10.119)

where the replacement i → −1 of the pre-factor under the square root relates to the

fact that we are now dealing with an imaginary time integral. However, the direct sub-

stitution of expression (10.119) for the fluctuation determinant would be premature:

(10.119) applies to theories whose Hamiltonian is of “conventional” type, Ĥ = T̂ + Û ,

where T̂ and Û are kinetic and potential energy, respectively. Interpreting q and p as

operators with commutation relation [p, q] = 1, bring the Hamiltonian of the theory

into this form. Show that this substitution changes the action to Scl → Scl − α
2 t. (If

you feel uncomfortable about the interpretation of the function H in terms of oper-

ators, derive the Fokker–Planck equation of the path integral, i.e. the analog of the

Schrödinger equation. Re-arrange operators so as to make the Fokker–Planck operator

manifestly hermitean. Then construct the path integral representation of that hermitean

representation to arrive at the modified action stated above. Think why the alternative

representation corresponds to a “mid-point” discretization scheme, different from the

Itô representation used in the construction of the MSRJD functional.)

(c) Evaluate the determinant Eq. (10.119) to obtain the result

P (qf , t|qi, 0) =
(
2α

A

)1/2
e
− α

A

(qi−qf eαt)2

e2αt−1

(1− e−2αt)
1/2

.

Notice that the shift −αt/2 we obtained as a result of the change in the discretization

scheme cancels against a long-time divergent factor in the fluctuation determinant.

Answer:

(a) The classical equations of motion read

q̇ = ∂pH = −αq −Ap, ṗ = −∂qH = αp,
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with the solution p(t) = p0e
αt and q(t) = ce−αt−Ap0

2α eαt. From the boundary conditions,

one finds −Ap0

2α =
qi−qfe

αt

1−e2αt and c =
qi−qfe

−αt

1−e−2αt . Substituted into the classical action, after

some algebra, one obtains

Scl = −
∫ t

0

dt′(pq̇ + αpq +
A

2
p2) =

α

A

(qi − qfe
αt)2

e2αt − 1
,

with α/A = γ/2T . (You may check for consistency that ∂S/∂qi = pi.)

(b) The form of the Hamiltonian used in the path integral is only correct for the Itô dis-

cretization. In order to apply the familiar techniques of quantum mechanics, we have to

symmetrise the Hamiltonian by modifying the “vector potential” term,

H = −αpq − A

2
p2 → −α

pq + qp

2
− α

2
− A

2
p2,

where the symbol “→” designates a correspondence that would apply if the functions

p in the Hamiltonian were to be interpreted as an operator p = ∂q. This leads to an

additional factor in the exponential which is linear in t, Scl → Scl− α
2 t. More rigorously,

we may observe that the full information on the path integral is stored in the Fokker–

Planck equation (
∂t + α∂qq +

A

2
∂2
q

)
P = 0.

The “Fokker–Planck” operator can be rewritten as

α

2
(∂qp+ p∂q) +

A

2
∂2
q +

α

2
=

A

2

(
∂q +

α

A
q
)2

− α2

2A
q2 +

α

2
,

i.e. in a form resembling a harmonic oscillator Hamilton operator subject to a gauge

potential αq/A. If we now apply the standard rules of path integral construction in

quantum mechanics (a mid-point discretization to properly deal with the gauge potential

understood) to the new Fokker–Planck/Hamilton operator, we arrive at the imaginary

time integral for our Hamiltonian function H (on the level of Hamiltonian functions,

ordering is not an issue), shifted by the constant αt/2. The appearance of this constant

can be attributed to a change in the discretization scheme.

(c) A straightforward exercise in differentiation.

10.9.4 Directed percolation

This problem is of more technical nature. Within the framework provided by the field theory Eq. (10.112),

we explore the role of fluctuations in directed percolation slightly below the upper critical dimension,

d = 4− ε. This leads us to a set of RG equations, whose physical significance is discussed in the main

text.
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Phase transitions in the directed percolation

universality class are described by the field theory

Eq. (10.112). As with our previous examples, con-

tractions of the fields φ, ψ w.r.t. the free action of

the theory, κ = 0, generate a Green function,

〈φqψq′〉 = gqδq,−q′ , g−1
q = −iω +Dk2 − τ,

(10.120)

where gq relates to the advanced and retarded Green functions used in earlier sections of

the text as gq ≡ g+q = g−−q, and q ≡ (ω,k) is the four-momentum.

(a) Perturbation theory: In order to become familiar with the structure of perturbation

theory that treats the interaction κ as a small parameter, we consider the form of the

perturbative corrections to the Green function and the vertex. Show that the Green

function generalizes to g−1 → g−1 + Σ, where, to lowest order in κ, the self-energy

correction reads as

Σq = 2κ2

∫
ddk′

(2π)d
1

−iω +Dk′2 +D(k− k′)2 − 2τ
. (10.121)

Show that the lowest order correction to the coupling constant κ → κ+ δκ appears at

third order and has the form,

δκ � −2κ3

∫
ddk′

(2π)d
1

(Dk2 − τ)2
. (10.122)

Convince yourself that the diagrams contributing to the renormalization of κ and τ

correspond to the “configuration space” processes exemplified by the figure above.

(b) Renormalization group: Consider the theory regularized with a hard cutoff Λ for the

(spatial) momentum integral. We rescale (spatial) momentum by this cutoff k → k/Λ

which means that the momentum integrals now extend over the support |k| ≤ 1 and

all coupling constants are measured in units Λdx , where dx is the relevant engineering

dimension.

Integrate out perturbatively the spatial fast modes within the momentum shell (1, 1/b)

with 0 < ln b � 1. Show that in spatial dimension d = 4− ε, this modifies the coupling

constants in the following way,

ω → ω
(
1− x

2
ln b

)
, D → D

(
1− x

4
ln b

)
,

τ → τ

(
1−

(
D

τ
+ 1

)
x ln b

)
, κ → κ (1− 2x ln b) ,

where we introduced

x ≡ S4

(2π)4

( κ

D

)2

, (10.123)

and S4 is the area of the four-dimensional unit-sphere. Next, rescale coordinates and

fields as q → q/b, ω → ω/bz, φ → φb−
4−�
2 +χ. Choose the dynamical exponent z and the
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Figure 10.16 Skeleton structure of the two diagrams contributing to the renormalization of the
propagator (left) and interaction vertex (right), respectively.

field renormalization exponent χ so as to make the diffusion constant D and the coeffi-

cient of frequency invariant under renormalization. Show that this condition generates

the equations

z = 2− x

4
, χ =

x

4
.

The “mass term” τ and the interaction constant κ flow according to Eq. 10.115. The

meaning of these equations is discussed in the main text.

Answer:

(a) In Fourier basis, the interaction contribution to the action S = S0 + Sint is given by

Sint[φ, ψ] = κ

∫
dqdq′ ψqφq′(φ−q−q′ − ψ−q−q′),

where the measure dq = dωddk/(2π)d+1. Expanding the action to second order in κ,

and applying the contraction rule Eq. (10.120), we obtain the self energy

Σq = −2κ2

∫
dq′ (gq−q′gq′ + gq+q′gq′).

The frequency integration
∫
dω′ over gq+q′qq′ vanishes because the integrand falls off as

∼ 1/ω′2 and has no poles in the upper complex plane. Doing the contour integration

over the remaining contribution, we readily obtain Eq. (10.121). The diagrammatic

representation of this term is shown in Fig. 10.16, where the external field vertices (not

contributing to the self energy) have been included for the sake of notational clarity.

To obtain the renormalisation of the coupling constant of the interaction, κ it is

necessary to develop the third order of perturbation theory. The Wick contraction of

these terms (up to the “external field vertices” entering the interaction operator, ∼ ψφ2

and ∼ ψ2φ) obtains two one-loop diagrams. In one of these all Green functions have their

poles on one side of the real axis, which implies vanishing upon frequency integration.

The survivor diagram, whose graphical representation is shown in Fig. 10.16 has the

analytic representation

(−1)3

3!
〈S3

int〉 → −243

3!
κ3

∫
dqdq′dq′′ φq′ψq′′(−φq−q′−q′′ + ψq−q′−q′′)

∫
dp g2pg−p,
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where we neglected the “small” momenta q, q′, q′′ in the arguments of the “fast” Green

functions gp. The required renormalisation of δκ thus reads δκ = −(2κ)3
∫
dq g2qg−q.

Doing the integral over frequency, we obtain Eq. (10.122).

(b) Consider the contribution δΣ to Eq. (10.121) due to the integration over the fast momen-

tum layer
∫
f
ddk′ ≡

∫
1/b<|k′|≤1

ddk′. An expansion of the self energy in “small” correc-

tions to the fast momenta obtains

δΣq � −2κ2

(
I−2

2D
+

(iω + 2τ)I−4

(2D)2
+

k2

4D

(
2

d
− 1

)
I−4 + . . .

)
,

where we introduced In ≡
∫
f

ddk′
(2π)d

k′n. Likewise, the fast momentum contribution to the

coupling constant correction Eq. (10.122) reads

δκ � −2κ3

D2
I−4.

In dimensions 4 − ε, we have I−2 � I−4 = S4

(2π)4 ln b. Substituting this result into the

fast-fluctuation induced change of the Green function, g−1 → g−1 − δΣ, we obtain the

required renormalization of coupling constants.

The re-scaling of coordinates and fields modifies the renormalization of coupling con-

stants according to

ω → ω
(
1 +

(
2χ− x

2

)
ln b

)
, D → D

(
1 +

(
2χ+ z − 2− x

4

)
ln b

)
,

τ → τ

(
1 +

(
2χ+ z − Dx

τ
− x

)
ln b

)
, κ → κ

(
1 +

( ε

2
+ 3χ+ z − 2− 2x

)
ln b

)
.

Invariance of the first two terms generates the required conditions on χ and z. We

finally substitute χ and z into the remaining two equations to obtain the RG equations

(10.115).
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In the previous chapter we have seen that departures from equilibrium generate a plethora of new

phenomena in statistical physics. While our discussion so far has been limited to classical phenomena, in

this chapter we want to ask how quantum mechanics interferes with the conditions of nonequilibrium.

Experience shows that, in some cases, nonequilibrium quantum systems can be understood in terms

of reasonably straightforward quantization of their classical limits. In others, an interplay of quantum

coherence and nonequilibrium driving leads to entirely new phenomena – such as lasing, a paradigm for

a steady state nonequilibrium quantum system. At any rate, we have every reason to anticipate that

quantum nonequilibrium physics will be as diverse and colourful as its classical counterpart.

Even minor departures from equilibrium call for a theoretical description entirely different

from the ‘Matsubara formalism’ developed in earlier chapters of this book. The applicability

of the latter is rigidly tied to the existence of a quantum grand canonical density opera-

tor, the hallmark of a many particle equilibrium system. But how then, can an functional

theory of nonequilibrium quantum systems be developed? An obvious idea would be to

once more go through the different elements of classical nonequilibrium theory developed in

the previous chapter, and subject every one of them to an individual quantization scheme.

Luckily, there are more efficient ways to achieve our goal: some decades ago, a many particle

formalism suitable to describe nonequilibrium systems under the most general conditions1

was introduced by Keldysh.2 For a number of reasons, the Keldysh formalism will be the

principal tool in our approach to quantum nonequilibrium physics: (i) it is highly flexible

and can be applied to study the physics of practically any quantum system, in and out of

equilibrium. (ii) Although the Keldysh technique was introduced in a pre-path integral era,

it is tailor-made to functional integral formulations. (iii) The classical limit of that Keldysh

field integral turns out to be the MSRJD functional integral extensively discussed in the

previous chapter. In this sense, the Keldysh functional will be our ‘theory of everything’;

from it the entire body of nonequilibrium theory, both quantum and classical can be derived

by reduction.

The discussion above motivates a strategy different from that pursued in our introduc-

tory discussion of nonequilibrium physics above. In a “top-down” approach, we begin by

1 By “most general,” we mean that the Keldysh formalism enjoys applicability independent of the distribution
(operator) describing the state of the system under consideration.

2 L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20, 1018-26 (1965).

693



694 Nonequilibrium (quantum)

a formal introduction of the Keldysh formalism. We alternatively interpret the theory as

a generalization of the Matsubara formalism, and as a quantum extension of the MSRJD

field integral. After these conceptual structures have been thoroughly introduced, we will

turn to the discussion of applications.

INFO In reference to the stochastic aspects of classical nonequilibrium processes, we began

the last chapter with a short treatise on probability. Quantum mechanics, on the other hand,

is a theory that is intrinsically probabilistic; the most we can hope for is to obtain results on

the quantum probability to measure certain values of observables. The theory of quantum

nonequilibrium processes, therefore, involves two “layers” of stochasticity, quantum probability

and the extrinsic stochasticity of nonequilibrium processes. As it is important not to confuse

these two, we begin by asking what sort of probability distributions might suitably generalize

the distributions employed in the previous, classical chapter.

To start, let us consider a classically deterministic system, prepared in a definite quantum

state |Ψ〉. The (quantum) expectation value to measure a certain observable is then given by

(X̂) ≡ 〈Ψ|X̂|Ψ〉 =
∑

n Xn|Ψn|2, where Xn is the nth eigenvalue of X (the generalization to a

continuous spectrum is straightforward), Ψn ≡ 〈n|Ψ〉, and |n〉 is the nth eigenstate. We denote

the quantum expectation value by ordinary brackets to distinguish it from the average over

fluctuations below.

The equation above suggests an interpretation of PX̂(x) ≡
∑

n δ(x−Xn)|Ψn|2 as a “quantum

probability” distribution of the operator X̂. This notation is suggestive in that it allows us to

express the computation of quantum observables in formal analogy to the probabilistic formalism

used in the previous chapter. For example, (X̂n) =
∫
dxPX̂(x)xn, and PX̂(x) = (δ(x− X̂)), etc.

While the quantity PX̂ underpins the probabilistic nature of quantum mechanics, its usefulness

rapidly reaches its limits.3

For our present purposes, an alternative representation of quantum expectation values will

prove more useful: the above expression may equivalently be written as (X̂) = tr (ρ̂|Ψ〉X̂), where

ρ̂|Ψ〉 ≡ |Ψ〉〈Ψ| is a particular type of a quantum density operator, viz. a projector onto the

one-dimensional space spanned by |Ψ〉. The alternative representation can be readily generalized

to the – more realistic – situation where the state of the system is not known with certainty.

In general, ρ̂ =
∑

a pa|Ψa〉〈Ψa|, where {|Ψa〉} is a complete orthogonal set, and the positive

coefficients pa,
∑

a pa = 1, represent the probability to find the system in state |Ψa〉. In a

many particle system, the inevitable presence of fluctuations – cf. the principles discussed in the

previous chapter – may render the coefficients pa effectively random. These fluctuations may be

externally imposed, or caused by integration over microscopic degrees of freedom of the system.

Summarily denoting the average over fluctuations by 〈. . . 〉f , we then have

〈X̂〉 ≡ 〈(X̂)〉f =
4
tr (ρ̂X̂)

5
f
= tr (〈ρ̂〉fX̂) =

∑
a

〈pa〉f 〈Ψa|X̂|Ψa〉.

This representation illustrates the division of work between quantum and statistical fluctuations.

In a canonical (basis-invariant) manner, all aspects of quantum mechanics – interference, wave

coherence, etc. – are encapsulated in the mathematical properties of the density operator and

3 The function PX̂ suggests deceptively that the basic information on the state of a system is stored in the

(positive definite) probability |Ψn|2. However, we know that the essence of quantum mechanics resides in wave
function amplitudes. For example, it is not possible to unambiguously generalize the notion of P to that of a
joint probability PX̂,Ŷ (x, y) of two non-commutative operators. This means that positive definite probability

distributions such as the one above will not suffice to describe quantum processes.
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the trace operation. The statistics of fluctuations (both thermal, and externally imposed) is

contained in the average over coefficients, 〈. . . 〉f . We repeat that these latter fluctuations may

effectively be generated by a quantum average (i.e. a trace operation) over microscopic degrees

of freedom of the system.

The discussion above suggests the following transcription of the probabilistic elements of

classical nonequilibrium mechanics into quantum mechanics: Notice that if and only if ρ̂ is an

classical quantum

variable X hermitian operator X̂

values of X, x eigenvalues of X̂, x
probability distribution p density operator ρ̂

moments 〈Xn〉 =
∫
dx p(x)xn moments 〈X̂n〉 = tr(ρ̂X̂n)

operator function of X̂ (which will typically happen if X̂ ≡ Ĥ is energy), 〈X̂n〉 = tr(ρ̂X̂n) =∫
dx ρ(x)xn, where ρ(x) are the eigenvalues of ρ(X̂). In this particular case, we have a normalized

(
∫
dx ρ(x) = 1) and positive quantum probability distribution. In general, however, quantum

statistical mechanics cannot be described in terms of positive definite probability functions.

Rather, the relevant information is stored in density operators, and it is these objects we need

to understand.

11.1 Prelude: Quantum master equation

Before turning to the systematic construction of

the Keldysh formalism, let us introduce a few ele-

ments of the quantum mechanics of nonequilibrium

systems in more elementary terms. This discussion

will get us acquainted with various “quick and dirty”

routes to the description of nonequilibrium systems

but will also motivate the construction of the more

systematic theories below. (Readers wishing to pro-

ceed in a maximally streamlined manner may skip

this discussion and directly turn to section 11.2.1.)

We consider the standard setup of a “system” coupled to a “bath” (cf. the figure.) The

bath may alternatively be interpreted as a large system of external degrees of freedom

(e.g. the oscillator modes of an external electromagnetic field), or in terms of microscopic

internal degrees of freedom affecting the more macroscopic (but still quantum) dynamics of

the degrees of freedom we consider to be the “system.” By straightforward adaptation of

the principles discussed in the previous chapter, we interpret the degrees of freedom of the

bath as unobservable. Integration over these degrees of freedom produces an effective, and

foreseeably irreversible dynamics of the system. Our immediate goal is the derivation of the

equations of motion governing this effective dynamics.
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11.1.1 Derivation of the master equation

Consider the density operator ρ̂ describing the state of the total system in the product

Hilbert space H ≡ Hs ⊗Hb of system (s) and bath (b). The reduced information in which

we are interested is stored in the quantity ρ̂s ≡ trb(ρ̂) : Hs → Hs, where trb denotes the

trace (“integration”) over the Hilbert space of the bath. The reduced density matrix ρ̂s
is a linear operator acting in the system Hilbert space Hs. The dynamics of the full system

is controlled by the Hamiltonian operator Ĥ ≡ Ĥs+ Ĥb+αĤi, where the coupling between

system and bath, Ĥi, is weighted by a dimensionless coupling constant α. We assume that,

at some initial time t = 0 (a) the system and bath had been independent, and (b) that the

bath was in a state of thermal equilibrium, ρ̂(0) = ρ̂s(0)⊗ ρ̂eqb .

We now aim to formulate an equation of motion for the reduced density matrix. Reflecting

the applied relevance of this problem, plenty of different strategies to achieve this goal have

been formulated. Here, we derive the equation by a formally exact projector formalism,4

and then compare to other approaches. The dynamics of the density operator is governed

by the equation of motion

(∂t − L̂)ρ̂ = 0,

where L̂ = L̂s + L̂b + αL̂i, and L̂s,b,i ≡ −i[Ĥs,b,i, ] are “quantum Liouville operators.” We

next introduce the projector

P ≡ ρ̂eqb trb( . ),

where the trace operation acts on everything to the right, and unit normalization of ρ̂eqb is

assumed. (As an exercise, consider why this is a projector.) To simplify the derivation, we

assume that the thermal trace of the interaction operator over Hb vanishes,
5 trb(ρ̂

eq
b Ĥi) = 0.

Our projector thus obeys the equations,

PL̂b = L̂bP = 0, [L̂s,P] = 0, PL̂iP = 0, (11.1)

where the first follows from the cyclic invariance of the trace, the second should be obvious,

and the third expresses the presumed vanishing of the interaction under the bath-trace.

Introducing the complementary projector Q ≡ id − P, and the shorthand notation ρ̂P ≡
P ρ̂, ρ̂Q ≡ Qρ̂, the quantum Liouville equation may now be split into two,

∂tρ̂P = L̂sρ̂P + αPL̂iρ̂Q,

∂tρ̂Q = QL̂ρ̂Q + αQL̂iρ̂P . (11.2)

The second of these equations is solved by (exercise)

ρ̂Q(t) = α

∫ t

0

dt′ et
′QL̂QL̂iρ̂P (t− t′).

4 S. Nakajima, On quantum theory of transport phenomena: steady diffusion, Prog. Theory. Phys. 20, 948-59
(1958); R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys. 33, 1338-41 (1960).

5 Should this condition not be met by the interaction under consideration, the term trb(ρ̂
eq
b Ĥi) = 0 can be

interpreted as part of the system Hamiltonian operator.
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Substitution of this result into the first equation obtains

∂tρ̂P = L̂sρ̂P + α2

∫ t

0

dt′ PL̂ie
t′QL̂QL̂iρ̂P (t− t′), (11.3)

or, employing the projector operation P,

∂tρ̂s = L̂sρ̂s + α2

∫ t

0

dt′
>
L̂ie

t′QL̂QL̂i

?
b
ρ̂s(t− t′), (11.4)

where 〈. . . 〉b ≡ trb((. . . )ρ̂
eq
b ).

Equation (11.4) is commonly denoted a generalized master equation. But in fact, the

resemblance to a master equation is only formal. Rather, this equation (together with a

complementary equation for ρ̂Q) is an exact reformulation of the full quantum theory; the

complete information on quantum unitary time evolution resides in the time non-local mem-

ory kernel on the right hand side. In contrast, the master equation generally describes time-

local (Markovian) and irreversible processes. To obtain a “true” master equation one may

eliminate information in what effectively amounts to a Markovian approximation. Assuming

that the time scales over which ρs changes are large in comparison to the relaxation times t′

of the integral kernel, Eq. (11.4) reduces to a Markovian equation ∂tρ̂s = (L̂s + α2X̂)ρ̂s(t),

where X̂ ≡
∫∞
0

dt′ 〈L̂ie
t′QL̂QL̂i〉b.

It is also customary to assume weak coupling, or small α, so that the α-dependence of

the exponent can be neglected (a variant of a “Born approximation”). The resulting sim-

plifications are best discussed in the language of the prototypical equation (11.3): defining

L̂0 ≡ L̂s + L̂b, the integral kernel in that equation reduces to

PL̂ie
t′QL̂0QL̂i ρ̂P (t− t′) = PL̂ie

t′L̂0L̂i ρ̂P (t− t′).

EXERCISE Use Eq. (11.1) above to verify this relation.

Further, defining Ĥ0 = Ĥs + Ĥb, and Ô(t) ≡ eitĤ0Ôe−itĤ0 for the interaction picture time

representation of an operator Ô, we have

PL̂ie
t′L̂0L̂i ρ̂P (t− t′) � PL̂iL̂i(−t′) ρ̂P (t− t′).

EXERCISE For an arbitrary operator Ô, show that etL̂0Ô = Ô(t)etL̂0 . The equality above is

approximate because we neglect the action of et
′L̂0 on the (slow) operator ρ̂P .

Using this result, we find that Eq. (11.4) reduces to the (Markovian) quantum master

equation

∂tρ̂s =

(
L̂s + α2

∫ t

0

dt′
>
L̂i(0)L̂i(−t′)

?
b

)
ρ̂s. (11.5)
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11.1.2 Example: oscillator coupled to a bath

It is instructive to study the meaning of the master equation on a concrete example: consider

a harmonic oscillator – the system – coupled to an assembly of other oscillators, the bath.

We describe this setup in terms of the Hamiltonian Ĥ = Ĥs + Ĥb + αĤi, where

Ĥs = ε

(
a†a+

1

2

)
, Ĥb =

∑
k

ωk

(
a†kak +

1

2

)
, Ĥi =

∑
k

(
cka

†
ka+ h.c.

)
. (11.6)

Using the fact that a(t) = e−iεta and ak(t) = e−iωktak, it is straightforward to verify that

α2

∫ t

0

dt′
>
L̂i(0)L̂i(−t′)

?
b
ρ̂s = −α2

∑
k

|ck|2
∫ ∞

0

dt′

×
(
e−i(ωk−ε)t′ (〈n̂k〉

(
ρ̂saa

† − a†ρ̂sa
)
+ 〈n̂k + 1〉

(
a†aρ̂s − aρ̂sa

†))
e+i(ωk−ε)t′ (〈n̂k〉

(
aa†ρ̂s − a†ρ̂sa

)
+ 〈n̂k + 1〉

(
ρ̂sa

†a− aρ̂sa
†)) )

= α2π
∑
k

|ck|2δ(ε− ωk)

×
(
〈n̂k〉

(
2a†ρ̂sa− ρ̂saa

† − aa†ρ̂s
)
+ 〈n̂k + 1〉

(
2aρ̂sa

† − ρ̂sa
†a− a†aρ̂s

))
� πα2|cε|2ρ(ε)

(
〈n̂ε〉

(
2a†ρ̂sa− ρ̂saa

† − aa†ρ̂s
)
+ 〈n̂ε + 1〉

(
2aρ̂sa

† − ρ̂sa
†a− a†aρ̂s

))
.

Here, n̂k = a†kak is the number operator of the bath, and we have neglected the subscript

‘b’ in 〈. . . 〉 ≡ 〈. . . 〉b. In the fourth equality we introduced the spectral density of the bath,

ρ(ω) ≡
∑

k δ(ω − ωk), and we assumed that ck ≡ cωk
and 〈n̂k〉 ≡ 〈n̂ωk

〉 depend only on the

energy of the reference state.

EXERCISE In the second equality above we assumed that [ρ̂s, a
†a] = 0. Verify that a relaxation

of that assumption will lead to terms of the structure ∼ P
∫
dω |cω|2ρ(ω)

ω−�
〈n̂ω〉[a†a, ρ̂s], where P

∫
is the principal value integral. Interpret these expressions in terms of an energy shift of the

oscillator energy due to virtual transitions into the bath.

Assuming once more commutativity of ρ̂s with n̂ ≡ a†a, we have L̂sρ̂s = 0 and thence

∂tρs = πα2|cε|2ρ(ε)
[
〈n̂ε〉

(
2a†ρ̂sa− ρ̂saa

† − aa†ρ̂s
)

+ 〈n̂ε + 1〉
(
2aρ̂sa

† − ρ̂sa
†a− a†aρ̂s

)]
. (11.7)

But what is the meaning of this equation? In fact, it will be instructive to look at Eq. (11.7)

from a number of different perspectives: the commutativity [ρ̂s, n̂] = 0 implies that ρ̂s =

ρ̂s(n̂). Using commutator relations such as a†ρ̂s(n̂) = ρ̂s(n̂−1)a†, it is then straightforward

to bring Eq. (11.7) into the form

∂tρs(n̂) = 2πα2|cε|2ρ(ε)
[
〈n̂ε〉 (n̂ρ̂s(n̂− 1)− (n̂+ 1)ρ̂(n̂))︸ ︷︷ ︸

absorption

+ 〈n̂ε + 1〉 ((n̂+ 1)ρ̂s(n̂+ 1)− n̂ρ̂s(n̂))︸ ︷︷ ︸
emission

]
.
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The right–hand side of this equation now affords a

straightforward interpretation in terms of absorption

and emission of bath bosons (see figure). The absorption

term is proportional to the number of available bosons

(〈n̂ε〉) resonant with the oscillator frequency, the golden

rule transition rate, ∼ |cε|2ρ(ε), and to the number of

absorbing bosons (plus one). Importantly, the absorption

process contributes to the right–hand side in a manner symptomatic of a master equation.

The density operator (or better to say, the eigenvalue) ρ̂s(n) increases due to an “in”

process ∝ ρ̂s(n̂ − 1) and it diminishes due to an “out” process ∝ ρ̂s(n̂). There is also

an emission process wherein bath bosons are resonantly created from oscillator bosons.

Emission, too, enters the master equation as a sum of an in and an out process.

A few more comments can be made on the structure of the master equation:

� The concerted appearance of in- and out- terms implies the conservation of the trace of the

density operator (the quantum analogue of the conservation of probability): ∂ttr(ρ̂s) = 0

(exercise).

� Assume the bath is in equilibrium, 〈n̂ε〉 = (exp(βε) − 1)−1. It is then straightforward

to verify that the distribution ρ̂s becomes stationary (the right–hand side of the master

equation vanishes) on the equilibrium configuration

ρ̂s(n̂) = Z−1e−βεn̂,

where Z = (1− e−βε)−1 is the normalizing partition function. Interaction with the bath

“thermalizes” the system at a temperature set by the bath temperature. Notice that

equilibration relies on the interplay of emission and absorption processes.

� It is worth noting that the in-terms (out-terms) in the master equation derive from the

terms ∼ a†ρ̂sa, etc. (∼ ρ̂sa
†a, etc.) in the parent equation (11.7). To understand the

heuristics behind this observation, recall that the interaction picture time evolution of

the density operator is given by (symbolic notation throughout) ρ̂s(t) = Û(t)ρ̂s(0)Û
†(t),

where Û is the time evolution operator. We may visualize the time evolution described

by these operators by two lines in “time space,” one directed forward and one backward,

cf. Fig. 11.1.

If we now probe the incremental change of ρ̂s in time, i.e. compare ρ̂s(t + Δt) with

ρ̂s(t), we may linearly expand either Û or Û† in αĤi. This produces a factor αĤi(t)

acting either to the left or to the right of the time evolution operator, or an interaction

Hamiltonian acting at the end of the forward or the backward time contour. However, to

obtain a non-vanishing result, we need to expand to one more order. This gives a factor

∼ α
∫
dt′Ĥi(t

′) which, again, may act to the left or the right of the density operator, or on

the forward or backward contour. All in all, we obtain four contributions, as visualized in

Fig. 11.1. Now, the contributions where Ĥi acts on different time contours (a) are formally

described by a density operator sandwiched between creation and annihilation operators,

and (b) physically change the state of the system (c) alluding to diagrammatic language,

they resemble ‘vertex corrections” in a “two-particle propagator. These are the in-terms.
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Figure 11.1 Evolution of the density operator (shaded box) along the double time contour. Left:
out-processes (“self-energy corrections”), right: in-processes (“vertex corrections”). For the moti-
vation for the “left” orientation of the time arrow, see below.

Conversely, the contributions where Ĥi acts twice on the same contour, (a) are described

by pairs of operators acting on one side of the density operator, and (b) do not change the

state of the system (more precisely, it is first changed at t′ and then changed back at t.)

(c) These out–terms resemble self-energy corrections in a two-particle propagator. Indeed,

we have seen on various occasions that the (imaginary part) of a self-energy correction

represents a decay rate, i.e. the rate of an “out-process.”

It is worth pointing out that our discussion of the quantum master equation so far has

been rather superficial (for a more substantial exposition, see Weiss,6 van Kampen,7 and

Haake8). Its primary purpose was to motivate a number of concepts relevant to the physics

of quantum nonequilibrium phenomena. We next turn to the construction of a field integral

based theory which will enable us to describe nonequilibrium phenomena in a much broader

setting.

11.2 Keldysh formalism: basics

11.2.1 The idea

Before venturing into the construction of the Keldysh nonequilibrium theory, let us first try

to summarize what kind of theory we are after:

1. Previously, we have argued that the object generalizing the probability distributions

which pervade the previous chapter is the quantum density operator ρ̂. Expectation

values of observables are evaluated by taking the traces of hermitian operators against

the dynamically evolved density operator.

6 U. Weiss, Quantum Dissipative Systems, (World Scientific Publishing, 1993).
7 N.G. van Kampen, Stochastic Processes in Physics and Chemistry, (Elsevier,1992).
8 F. Haake, Quantum Signatures of Chaos (Springer-Verlag, 2001).
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2. That dynamics is described by the (adjoint action of the) quantum time evolution

operator, ρ̂ → U(t)ρ̂Û(t)†. We may interpret Û (Û†) as the descriptor of quantum

time evolution forward (backward) in time. The notion of “chronological direct-

edness” becomes manifest in the interaction-picture representation of the evolution

operator Û as a time ordered exponential Û = T exp(−i
∫ t

0
dt′Ĥint(t

′)). Conversely,
we may generate Û† by time ordering along a reversed temporal contour, Û † =

T̃ exp(−i
∫ 0

t
dt′Ĥint(t

′)), where T̃ puts operators to the left that are chronologically

earlier.

3. In many applications we may safely assume that, at some initial time (set as t =

−t0 for definiteness) the system of interest was in a known state. For example,

ρ̂(−t0) = exp(−βĤ) may have been an equilibrium distribution, or ρ̂(−t0) = ρ̂s ⊗ ρ̂b
in the case of a composite involving a system coupled to a bath. It is assumed that

the interactions/correlations/nonequilibrium conditions rendering the situation non-

trivial are slowly switched on at some later time.

4. From our experience with classical probability theory, we know that it is convenient to

work with generating functions. For instance, in equilibrium statistical mechanics,

one might wish to compute the Maxwell–Boltzmann generating functional (symbolic

notation) G(h) ≡ Z−1
∫
exp(−β(H − hX)), where Z =

∫
exp(−βH) is the partition

function,
∫

denotes an integration over all states of the system, H is the Hamilto-

nian and X an observable of interest. Differentiation with respect to the sources h

generates moments of X and we have the normalization G(0) = 1.

How can the concept of generating functions be generalized to the quantum

nonequilibrium case? Generalization to “quantum” is relatively obvious: replace

functions by operators, and integrals by traces. But what about “nonequilibrium”?

From what has been said above, it should be evident that we need to endow some

known quantum distribution ρ̂(0) with a sense of dynamics, in a manner that leads

to a properly normalized, and generally time-dependent generating functional.

Leonid. V. Keldysh 1931–
Former Director of the Lebe-
dev Physical Institute, Moscow.
Keldysh has made seminal con-
tributions to solid state theory
from the physics of electron–hole
excitations in semiconductors to
the development of techniques to
explore quantum systems driven from equilibrium.
Recipient of the Lenin Prize, Lomonosov Prize, and
the Hewlett-Packard Prize.

In the mid–1960s, Keldysh formu-

lated a theory2 that solved the prob-

lems alluded to above in one stroke.9

At first sight, Keldysh’s concep-

tual ansatz may look strange, if not

downright silly: suppose we are given

an initial density operator ρ̂ which

described our system at some time

t ≡ −t0 → −∞ in the distant past

when the world was nice and easy

– no interactions, stochastic fluctua-

9 For earlier work in the same spirit, see J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys.
2, 407-32 (1961), L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962),
R. P. Feynman and F. L. Vernon, The theory of a general quantum system interacting with a linear dissipative
system, Ann. Phys. 24, 118-73 1963.
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Ĥ(t)

−Ĥ(t)t0 −t0

s

S/2

−Ĥ

Ĥ0

Ĥ

t

Figure 11.2 Top: parameter dependence of the system Hamiltonian along an “abstract” Keldysh
contour. Bottom: embedding of the contour in the complex time plane.

tions, or similar complications. Our goal is to endow the density operator with a sense of

dynamics. To this end, consider an abstract parameter interval, [0, S]. On this interval,

we define an operator valued function Ĥ(s) according to the following rules: (i) Ĥ(0) =

−Ĥ(S) = Ĥ0, where Ĥ0 is the “trivial” Hamiltonian operator governing the system at time

−t0. (ii) As s increases, the non-trivial elements of the dynamics are gradually (adiabati-

cally) switched on (cf. Fig. 11.2) until the Hamiltonian has reached its full form Ĥ(s) = Ĥ.

(iii) Upon approaching the center of the parameter interval, we let the Hamiltonian diminish

down to Ĥ(S/2) = 0. (iv) Beyond s = S/2, the profile of Ĥ is anti-symetrically continued,

i.e. Ĥ(s) = −Ĥ(S − s) for s ∈ [S/2, S].

Now consider the unitary operator Û ≡ Tsexp(−i
∫ S

0
dsĤ(s)), where Ts orders along the

s-contour. This operator is but a complicated representation of unity, Û = 1. Heuristically,

the triviality of Û follows from the fact that the dynamic “phases” ∼
∫
dsĤ(s) accumulated

along the forward branch of the contour cancel against those from the backward branch.

More formally, one may consider the generalization Û(s2, s1) ≡ Tsexp(−i
∫ s2
s1

dsĤ(s)) to

arbitrary segments on the contour. These operators satisfy the composition law (proof

is analogous to the one for conventional time ordered operators) Û(s1, s2)Û(s2, s3) =

Û(s1, s3), where s1 > s2 > s3. Thus, Û ≡ Û(S, 0) = Û(S, S/2)Û(S/2, 0). But Û(S/2, 0) =

Û(S, S/2)−1, by construction of the Hamiltonian. The equality Û = 1 trivially implies

Z ≡ tr(Û ρ̂) = 1, (11.8)

on account of the normalization of ρ̂. We therefore have an object that is obtained by

dynamical evolution (1) of a known initial density operator (3), is time ordered (2), and

manifestly normalized (4). What is not clear, however, is what the “partition function” Z
might be good for!
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At the same time, the operator Û ρ̂ is not too different from the objects studied in the

previous section. There, we had considered dynamically evolved density operators Û ρ̂Û†,
Û ≡ Û(t0,−t0). The trace over these operators, tr(Û ρ̂Û†) = tr(Û †Û ρ̂) = Z can be inter-

preted as a variant of the above partition function, where the curve [0, S] is parameterized

in terms of a time argument running from −t0 to t0 and back. Pictorially, (cf. Fig. 11.1),

the trace operation can be visualized by a closure of the lines emanating from the initial

density operator at a large time t0.

To get a first hint at the usefulness of the closed contour construction, let us add a

perturbation to Ĥ(s) that breaks the symmetry between the contours: we generalize Ĥ(s) →
Ĥ(s)+aδ(s−s0)X̂, where s0 ∈ [0, S/2] is in the first half of the contour, a is a number, and X̂

is some operator. Let Ûint be the time evolution operator in the “interaction representation”

with respect to this perturbation. This representation is defined in perfect analogy to the

interaction representation of conventional time-dependent quantum mechanics, only that

the “time integrals” extend over the contour [0, S], instead of over an interval on the real

time axis. Specifically, Û(a) = Û0Ûint(a) = Ûint(a), where Û0 = 1 is the unperturbed

evolution operator, and Ûint(a) = 1+ ia
∫ S

0
dsδ(s−s0)X̂(s)+O(a2) = 1+ iaX̂(s0)+O(a2),

where X̂(s0) = Û †
0 (s0, 0)X̂U0(s0, 0). Insertion of this result into the trace leads to the result

−i∂a

∣∣∣
a=0

tr(Û(a)ρ̂) = tr(Û†
0 (s0, 0)X̂Û(s0, 0)ρ̂) = tr(X̂ρ̂(s0)),

where ρ̂(s0) = Û(s0, 0)ρ̂Û
†(s0, 0) is the density operator evolved to s0 and we omitted

the subscript 0. Thus, differentiation of the density operator with respect to the source

generates expectation values of operators in the dynamically evolved state of the system.

Put differently, Z(a) ≡ tr(ρ̂Û(a)) is a normalized (Z(0) = 1) generating function for

quantum expectation values of the operator X̂ in the dynamical state of the system –

which need not be in equilibrium. It thus appears that the closed time formalism efficiently

addresses the points (1)-(4) listed above. This is the basic idea behind Keldysh’s formalism.

11.2.2 Case study

As a first step towards the construction of a functional integral implementation of the

Keldysh partition function, we consider a miniature quantum system containing only a single

bosonic state of energy ω. In a rather natural way, the construction of the corresponding

functional integral will introduce most concepts central to the Keldysh formalism, while the

notation remains refreshingly simple.

Consider, then, the partition function

Z ≡ tr
(
Tγe

−i
∫
γ
dt Ĥ(t)ρ̂0

)
, (11.9)

where, setting Z0 = (1− e−β(ω−μ))−1,

ρ̂0 = Z−1
0 e−β(Ĥ−μN̂), (11.10)

is the equilibrium density operator, Ĥ = ωa†a the Hamiltonian operator and N̂ = a†a, as
usual. The operator Tγ orders along the contour γ : (t = 0) → (t = T ) → (t = 0), and
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we denote the initial (final) time of the theory by t = 0 (t = T ) instead of the t = −t0
(t = t0) used in the previous section. Finally, the time-dependent Hamiltonian operator

reads Ĥ(t) = Ĥ sgn(T − t), where we ignore the stages of adiabatic switching on and off

alluded to in the previous section. (The straightforward generalization to a smoothly varying

Ĥ(t) will render the notation slightly more complicated but is otherwise inconsequential.)

EXERCISE Show that

〈ψ̄|eca
†a|ψ〉 = ee

cψ̄ψ, (11.11)

where 〈ψ̄| and |ψ〉 are boson coherent states. Hint: differentiate by c to derive a first order

differential equation and use the uniqueness of its solution.

Let us now construct a coherent state field integral by the usual recipe – insertion of a large

number 2N of coherent state resolutions of unity into a time-slice dissection of Z. This

leads to expressions of the form,

〈ψ−
N |Û−ε|ψ−

N−1〉〈ψ
−
N−1|Û−ε . . . |ψ−

1 〉〈ψ−
1 |1|ψ+

N 〉〈ψ+
N |Ûε|ψ+

N−1〉〈ψ
+
N−1|Ûε . . . |ψ+

1 〉〈ψ+
1 |ρ̂0|ψ−

N 〉,

where ε = T/N and Ûε = e−iεĤ . The functional integral representation then becomes

Z = Z−1
0

∫
D(ψ̄, ψ) e

∑N
j=2(ψ̄

+
j [ψ

+
j−1−ψ+

j −iεωψ+
j−1]+ψ̄−

j [ψ
−
j−1−ψ−

j +iεωψ−
j−1])

× e−ψ̄+
1 ψ+

1 −ψ̄−
1 ψ−

1 +κψ̄+
1 ψ−

N+ψ̄−
1 ψ+

N , (11.12)

where κ ≡ exp(−β(ω − μ)). At this stage, we would normally take a continuum limit,

N → ∞ at fixed T . In the present context, however, it is rewarding to stay for a while

with the discrete representation, and interpret the exponent of the functional integral as a

bilinear form iψ̄G−1ψ, with the (2N)× (2N) dimensional matrix kernel

G−1 = i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −κ

−a+ 1
. . .

. . .

−a+ 1

−1 1

−a−
. . .

. . . 1

−a− 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (11.13)

where a± ≡ 1∓iεω. Let us explore a few properties of this matrix. First, it is straightforward

to verify that

det(−iG−1) = 1− κ(a+a−)N .

EXERCISE Verify this result. Hint: use the identity det = exp tr ln. Expand the logarithm

in powers of the difference from the unit matrix, (−iG−1 − 1) (essentially the side-diagonal

containing the coefficients a±, plus the corner element κ). Take the trace and re-sum the series

into another logarithm. Exponentiation leads to the result.
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Taking the limit N → ∞, we obtain

det(−iG−1) = 1−κ(1+(εω)2)N = 1−κ

(
1 +

(
(Tω)2

N2

))N
N→∞−→ 1−κ = 1−e−β(ε−μ) = Z−1

0 .

Since Z = Z−1
0 det(−iG−1)−1, this result proves the unit normalization of the functional

Keldysh partition function.

In later applications we will need to

compute expectation values 〈ψ̄iψj . . . ψk〉
by Wick’s theorem. For this purpose, we

need to know the elementary contractions

GCC′
ii′ = −i〈ψC

i ψ̄
C′
i′ 〉,

where C,C ′ = ±. To this end, let us

introduce the block decomposition G−1 =(
M++ M+−

M−+ M−−

)
. It is a straightforward (and

worthwhile) exercise to show that

[
MCC

]−1

ij
= −iΘ(i− j)ai−j

± ,

where Θ(n) = 1 if n ≥ 0 and zero otherwise. We may now use the general formulae for

the inversion of 2 × 2 block matrices to obtain G++ = (M++ − Ξ++)
−1

, where Ξ++ =

M+−(M−−)−1M−+. Substitution of Ξ++
ij = iδi1δjNaN−1

− κ into this formula followed by a

straightforward series expansion in Ξ leads to the result

G++
ij = −iai−j

+

(
Θ(i− j) +

κ(a+a−)N−1

1− κ(a+a−)N−1

)
. (11.14)

INFO This formula affords an intuitive interpretation (cf. the figure above). The matrix

G++ is the amplitude for propagation between two discrete points j and i on the +-part of our

closed time contour. To get from j to i we may either go directly, which is possible if i > j (the

time ordering). In this case, we pick up i− j hopping amplitudes a+. This is the first term in the

equation. Alternatively, we may go via round-trips through the −-part of the contour. In this

case, and no matter what the chronological ordering between i and j, we first go from j to N

((N − j) amplitudes a+), then proceed from 1 to N on the bottom part ((N −1) amplitudes a−)
go back to the upper part (a factor κ), and finally make it from 1 to i ((i− 1) amplitudes a+).

This interprets the first order in κ contribution to the second term. Now, the going round can

be repeated infinitely. Each additional round trip gives a factor κaN−1
− aN−1

+ . Summation over

all these processes generates the denominator of the equation.

The other three propagator amplitudes can be computed in the same manner. Alternatively,

one may just derive them by summing over all paths orbiting the closed contour. As a result
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we obtain

G−−
ij = −iai−j

−

(
Θ(i− j) +

κ(a−a+)N−1

1− κ(a−a+)N−1

)
,

G+−
ij = −i

κaN−j
− ai−1

+

1− κ(a−a+)N−1
,

G−+
ij = −i

aN−j
+ ai−1

−
1− κ(a+a−)N−1

.

Now, let us take the continuum limit. To this end, we assign to lattice points on the

upper/lower contour a time variable (cf. Fig. 11.2)

+ : t = iε,

− : t = (N − i)ε. (11.15)

Remembering that, in the large N limit, (a+a−)N → 1, and noting that

ai+ → e−iωt, ai− → eiω(T−t),

we obtain the propagators in a continuous time representation

G++
tt′ = −ie−iω(t−t′)(Θ(t− t′) + n(ω)),

G−−
tt′ = −ie−iω(t−t′)(Θ(t′ − t) + n(ω)),

G+−
tt′ = −ie−iω(t−t′)n(ω),

G−+
tt′ = −ie−iω(t−t′)(1 + n(ω)), (11.16)

where n(ω) = κ/(1− κ) = (eβ(ω−μ) − 1) is the Bose distribution function.

INFO In the literature, it is customary to denote the Green functions by the alternative notation

G++ ≡ GT , G−− ≡ GT̃ , G+− ≡ G<, G−+ ≡ G>. As, however, this notation is not particularly

easy to memorize, and the Green functions above will soon be replaced by different functions,

we here stick to the contour index notation.

11.2.3 Continuum field theory

Having derived the continuum propagators, let us now cast the action in Eq. (11.12) in a

continuum form. Using Eq. (11.15), we obtain

Z = Z−1
0

∫
D(ψ̄, ψ) ei

∫ T
0

dt ψ̄σ3(i∂t−ω)ψ, (11.17)

where ψ ≡ (ψ+, ψ−)T is a two component field in contour space and σi are Pauli matrices

in that space. Equation (11.17) is our first prototype of a Keldysh functional integral.

Notice that the continuum representation of the action ignores the boundary terms in

Eq. (11.12) and specifically the information stored in the initial density operator. The proper

way to interpret the sloppiness of the compact (and customary) notation of Eq. (11.17) is
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as follows: the field theory is defined by its correlation functions, or propagators. The latter

must be computed with proper boundary conditions, that is, with reference to the boundary

data stored in the density operator ρ0, and the gluing procedure at temporal “infinity”

t = T . Although we might encapsulate this information in a boundary contribution to the

continuum action, the operationally safest way is by resorting to the discrete formulation

above. Regardless, the result of such a calculation will be the set of Green functions (11.16).

In other words, as long as we interpret these Green functions as the propagators of the action

(11.17), the boundary conditions have been taken care of. (And of course, the propagators

demonstrate that the upper and lower contour are not independent.)

One more thing to notice is that the Green function G contains a certain degree of

redundancy. Inspection of Eq. (11.16) shows, for example, that G+++G−− = G+−+G−+.

Defining the linear transformation

U ≡ 1√
2

(
1 1

1 −1

)
, (11.18)

we obtain the alternative representation of the block Green function

Gtt′ →G′
tt′ ≡ UGtt′U

† =
1

2

(
1 1

1 −1

)(
G++ G+−

G−+ G−−

)
tt′

(
1 1

1 −1

)
= −ie−iω(t−t′)

(
1 + 2n(ω) Θ(t− t′)
−Θ(t′ − t) 0

)
≡

(
GK G+

G− 0

)
tt′

, (11.19)

where the three block Green functions are defined by10

G+
tt′ ≡ −iΘ(t− t′)e−iω(t−t′),

G−
tt′ ≡ +iΘ(t′ − t)e−iω(t−t′),

GK
tt′ ≡ −i(1 + 2n(ω))e−iω(t−t′). (11.20)

The denotation G± indicates that we have met with the retarded and advanced Green

function of quantum mechanics, i.e.

G+
t−t′ = −iΘ(t− t′)〈[a(t), a†(t′)]〉,

G−
t−t′ = +iΘ(t′ − t)〈[a(t), a†(t′)]〉,

where a(t) = eiĤtae−iĤt = e−iωta are the Heisenberg evolved boson operators of our theory.

The Keldysh Green function, GK , is a new acquaintance. Notice that GK , and only GK ,

does the book–keeping of the initial distribution. We obtain a better understanding of the

meaning of GK as we proceed.

The correspondence GCC′
tt′ = −i〈ψC

t ψ̄
C′
t′ 〉 implies that G′CC′

tt′ ≡ (UGU †)CC′
tt′ =

−i〈(Uψ)Ct (ψ̄U
†)C

′
t′ 〉 ≡ −i〈ψ′C

t ψ̄′C′
t′ 〉. It is customary to denote the transformed fields as

ψ′ = Uψ =
1√
2

(
ψ+ + ψ−
ψ+ − ψ−

)
≡

(
ψc

ψq,

)
, (11.21)

10 Or, expressed in terms of the block Green functions, G± = G++ − G±∓ and GK = G++ + G−−.
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where ψc and ψq denote the classical and quantum field, respectively. To understand the

origin of this notation, notice that the difference between classical and quantum dynamics

is that the latter is governed by the product of two independent quantum amplitudes.

It is differences between these amplitudes which makes quantum dynamics distinct from

classical. This motivates calling (ψ+−ψ−)/
√
2 a quantum field and (ψ++ψ−)/

√
2 a classical

field.

With ψ = U†ψ′ and ψ̄ = ψ̄′U , and noting that Uσ3U
† = σ1, the theory assumes the form

Z = Z−1
0

∫
D(ψ̄′, ψ′) eiS[ψ̄′,ψ′] where

S[ψ̄′, ψ′] ≡
∫

dt (ψ̄c, ψ̄q)

(
i∂t − ω

i∂t − ω

)(
ψc

ψq

)
. (11.22)

This representation has two undesirable and, in fact, interrelated aspects to it: (i) given

that the action is purely imaginary, one may wonder whether the functional integral is

properly convergent, and (ii) the action still does not contain explicit information on the

initial distribution. These two deficiencies can be repaired in one sweep. We first notice

that the temporal exponents in Eq. (11.19) must be understood as infinitesimally damped,

exp(−itω) → exp(−itω − δ|t|), δ > 0. Fourier transformation of the Green functions then

leads to

G±,K(ε) =

∫ ∞

−∞
dt eiεtG±,K

t,0 , (11.23)

with

G± (ε) =
1

ε± − ω
,

GK(ε) = −2πiF (ε)δ(ε− ω) = F (ε)
[
G+(ε)−G−(ε)

]
.

Here we have defined the function

F (ε) ≡ 1 + 2n(ε) = coth

(
ε− μ

2T

)
. (11.24)

Notice that the temporal integration has been extended to infinity, in spite of the fact that

we are living on a contour [0, T ] of finite duration. The rationale behind this extension is

that the upper limit T must be chosen large enough that the finiteness of correlation times

∼ δ−1 leads to finite decay before the end of the contour is reached, T/δ � 1.

INFO Equation (11.23) suggests two different representations of the Keldysh Green

function, both of which prove useful below. Noting that δ(ε − ω) ≡ ρ(ε) is the single particle

density of states of our one-level system, we may write

GK(ε) ≡ −2πiF (ε)ρ(ε). (11.25)

Alternatively, we may notice that GK is an anti-hermitian operator. (Exercise: trace back the

origin of GK to the basic propagators on the Keldysh contour to convince yourself that anti-

hermiticity of GK is a general feature, not dependent on the simplistic nature of our model.)

Equation (11.23) then suggests the ansatz

ĜK ≡ Ĝ+F̂ − F̂ Ĝ−, (11.26)
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where Ĝ± are the resolvent operators of the theory and F̂ is an hermitian operator. In the present

context, insertion of the matrix elements G±
tt′ = G±

t−t′ ↔ G±(ε) and Ft−t′ ↔ F (ε) leads back to

Eq. (11.23). In general, we have the block structure

Ĝ =

(
ĜK Ĝ+

Ĝ− 0

)
=

(
Ĝ+F̂ − F̂ Ĝ− Ĝ+

Ĝ− 0

)
. (11.27)

Inserting these Fourier transforms, we obtain the energy representation of the action,

S[ψc, ψq] =

∫
dε

2π
(ψ̄c, ψ̄q)ε

(
(Ĝ−)−1

(Ĝ+)−1
[
(Ĝ+)−1F̂ − F̂ (Ĝ−1)−1

])(
ψc

ψq

)
ε

, (11.28)

where the matrix kernel defines the inverse of the Green function (11.27). In the specific

context of our toy model where F̂ commutes with Ĝ±,

S[ψc, ψq] =

∫
dε

2π
(ψ̄c, ψ̄q)ε

(
ε− − ω

ε+ − ω
[
2iδ coth

(
ε−μ
2T

)])(
ψc

ψq

)
ε

. (11.29)

This formula makes the full significance of the δ-broadening manifest:

� The action now contains explicit reference to the distribution function, and we have

arrived at a self–contained representation.

� The functional integral is convergent. (Show that the imaginary part of the action is

positive.)

� At first sight, keeping track of the infinitesimal δ may seem to be a book–keeping trick

to get the distribution function into our description. Remember, however, that in physi-

cal systems, initially small convergence generating factors mostly get upgraded to finite

“self energies.” Similarly here. We will see that interactions will act to make the lower

diagonal part of the inverse Green function finite. The upper diagonal part, however, will

categorically remain zero.

� Mindful of the discussion in the previous chapter, one may feel reminded of the structure

of the MSRJD action. This coincidence is, of course, not accidental. In a sense discussed

below, Eq. (11.29) defines an elementary quantum generalization of an MSRJD functional

theory.

11.2.4 Generalization

Before carrying on, it is useful to upgrade Eq. (11.29) to a functional field theory of generic

interacting Bose systems. Nowhere in the derivation have we, in fact, made exclusive refer-
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ence to the simplistic nature of the model system. This means that our prototypical field

theory Eq. (11.17) affords the generalization, Z = Z−1
0

∫
D(ψ̄, ψ) eiS0[ψ̄,ψ]+iSint[ψ̄,ψ], where

S0[ψ̄, ψ] ≡
∫

dtddr
∑
C

ψ̄CsC(i∂t − Ĥ)ψC ,

Sint[ψ̄, ψ] ≡ −1

2

∫
dtddrddr′

∑
C

sC (ψ̄CψC)(r, t)V (r− r′) (ψ̄CψC)(r
′, t), (11.30)

and sC is a sign factor assuming the values +1/−1 on the upper/lower contour, respectively,

ψ = {ψC(r, t)}, Ĥ is the single particle contribution and V (r− r′) represents a two-particle

interaction.

We may now introduce classical and quantum fields through the transformation

(11.21). Substitution of the transformed fields into the action leads to the representation

S0[ψ̄, ψ] ≡
∫

dtddr (ψ̄c, ψ̄q)

(
0 (Ĝ−)−1

(Ĝ+)−1 (Ĝ−1)K

)(
ψc

ψq

)
,

Sint[ψ̄, ψ] ≡ −g

∫
dtddr

(
ψ̄cψ̄q(ψ

2
c + ψ2

q ) + c.c.
)
, (11.31)

where, for notational simplicity, we assumed the interaction to be contact, V (r) = 2gδ(r),

Ĝ± = (i∂t ± iδ − Ĥ)−1 are the retarded and the advanced Green functions, and

(Ĝ−1)K ≡ (Ĝ+)−1F̂ − F̂ (Ĝ−)−1, (11.32)

is the Keldysh sector of the inverse of the Green function. Generalizing the discussion of

the previous section, let us now interpret the meaning of the different constituents of this

action.

Retarded and advanced Green function

The infinitesimal increments in Eq. (11.31) signify that the retarded and advanced Green

functions obey the causality constraint G±(t, t′) ∝ Θ(±(t − t′)).11 For a time-independent

Hamiltonian,

G±(t, t′) = G±(t− t′) = ∓iΘ(±(t− t′))e−iĤ(t−t′),

G±(ω) =
1

ω ± iδ − Ĥ
. (11.33)

If Ĥ contains explicit time-dependence, we need to include a time ordering procedure,

G±(t, t′) = ∓iΘ(±(t− t′))T±e−i
∫ t′
t

dt̃ Ĥ(t̃),

where T± time orders in chronological/anti-chronological direction. Finally, the Green func-

tions obey the composition law G±(t, t′) = G±(t, t′′)G±(t′′, t′) and the limit behavior

G+(t, t) +G−(0, 0) = 0.

11 In the discrete representation used in the previous chapter, causality emerged as a consequence of (G+)−1 being

a matrix containing one side diagonal below the main diagonal. This meant that G+ was a lower triangular
matrix. Within the continuum formalism, we use imaginary increments to keep track of causality.
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Keldysh Green function

First notice a subtlety in the notation: (Ĝ−1)K is the Keldysh block of the inverse of the

Green function, but not the inverse of the Keldysh Green function, (ĜK)−1. As discussed

in the previous section, the anti-hermiticity of ĜK motivates the ansatz (11.32), with an

apriori undetermined hermitian matrix F . This object plays a crucial role in the theory; it

is responsible for the book–keeping on the state, or “distribution” of our system.

The task of determining F̂ gets drastically simplified by the ansatz

F̂ = {F (t, t′)},

depending on time arguments, but independent of the Hilbert space indices of the problem

(r in our current continuum field theory).

INFO To motivate this ansatz for F̂ , we recall its origins in the non-interacting sector of the

theory (cf. Eq. (11.25)) and interpret F̂ as a generalized (quasi-)particle distribution function. As

long as interactions and external time dependencies do not play a role, it is natural to assume that

F̂ (ε) = F̂ (ε, Ĥ) depends on the Hamiltonian of the system. The straightforward generalization of

Eq. (11.25) to a higher dimensional Hilbert space ĜK(ε) = −2πiF̂ (Ĥ, ε)δ(ε− Ĥ) then suggests

the eigenfunction representation ĜK(ε, ωa) = −2πiF̂ (ε, ωa)δ(ε− ωa). The important point here

is that the spectral δ-function locks the eigenenergies ωa to the energy argument. Since F̂ always

appears in combination with the spectral function, dropping its Hilbert space index, F̂ (ε, ωa) =

F̂ (ε) does not imply a loss of information.

In a time-independent context, F (t, t′) = F (t− t′) and the Fourier transform F (ε) signifies

the occupation of quasi-particles at energy ε. (For instance, F (ε) = coth(εT/2) = 1 +

2n(ε) under equilibrium conditions, where n(ε) is the Bose distribution function.) In a time

dependent environment, it is usually a good idea to represent F by its Wigner transform,

F (ε, t) ≡
∫

dt′ eiεt
′
F (t+ t′/2, t− t′/2). (11.34)

The function F ( . , t) then represents the instantaneous particle distribution function at time

t (as an exercise, think why!).

We finally note that retarded, advanced, and Keldysh Green function are obtained by

computing the correlator

−i〈ψα(r, t)ψ̄α′(r′, t′)〉 =
(
GK G+

G− 0

)
αα′
(r, t; r′, t′). (11.35)

Interaction

There is not much we can say about the interaction vertex at this stage in generality.

Notice, however, that the interaction vanishes for ψq = 0, which is a manifestation of the

vanishing of the action of purely classical fields.12 In later perturbative applications, it will

12 The particular two body interaction considered here also vanishes on a pure quantum configuration. However,
this vanishing does not reflect a general structure.
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ψc

ψqψ̄q

ψ̄c

G+ = −i〈ψcψ̄q〉

GK = −i〈ψcψ̄c〉

G− = −i〈ψqψ̄c〉

Figure 11.3 Building blocks of bosonic Keldysh diagrammatic perturbation theory. Top: field ver-
tices, middle: propagators, bottom: interaction vertices.

be convenient to represent the interaction by a graphical code (see Fig. 11.3). Below we

apply this language to explore the influence of interactions on the non-interacting sector of

the theory.

11.2.5 Fluctuation dissipation theorem

In the case of thermal equilibrium, the Keldysh Green function is fully determined by the

retarded and advanced Green functions, ĜK = Ĝ+F̂ − F̂ Ĝ−1. In thermal equilibrium, the

commutativity of F̂ = 1 + 2n = coth(ε/2T ) with Ĝ± implies

ĜK(ε) = coth
( ε

2T

)
(Ĝ+(ε)− Ĝ−(ε)). (11.36)

The form of this dependence is reminiscent of the quantum fluctuation dissipation

theorem reviewed in the previous chapter.

To make the connection to the FDT explicit, let us proceed as in Section 10.6.4 and discuss

the correlation functions ĜK and Ĝ± in terms of their formal Lehmann representation.

Beginning with the Keldysh Green function, we turn back to a representation in terms of

contour fields and have

GK(t, 0) = −i〈ψc(t)ψ̄c(0)〉 =
1

2
〈(ψ+(t) + ψ−(t))(ψ̄+(0) + ψ̄−(0))〉,

where we have omitted the Hilbert space indices of the fields for notational clarity. Now,

interpret a correlation function

〈ψC(t)ψ̄C′(0)〉 ↔ 〈TγaC(t)a
†
C′(0)〉,
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as the coherent state functional integral representation of a contour ordered operator expec-

tation value. In the latter expression, the angular brackets represent the equilibrium thermal

expectation value 〈. . . 〉 = tr((. . . )ρ̂0), and the combination (C, t) of the contour subscript

and the time argument fixes the position of the operator on the closed time contour. We

next employ the Heisenberg representation of the operators as

aC(t) = e
−i

∫ −t0
(C,t)

dt Ĥ(t)
a e−i

∫ (C,t)
−t0

dt Ĥ(t),

where the time integrals in the exponents are along the time contour, and we have dropped

the contour time ordering operator Tγe
−i

∫ (C,t)
−t0

dt Ĥ(t) = e−i
∫ (C,t)
−t0

dt Ĥ(t), on account of the

presumed time-independence of Ĥ. (Exercise: Consider why this convention conforms with

the definition of the coherent state field integral, and the contour conventions of the Keldysh

approach in general.) If (C, t) lies on a later point on the contour than (C ′, 0), this repre-

sentation yields

〈aC(t)a†C′(0)〉 =
@
e
−i

∫ −t0
(C,t)

dt Ĥ(t)
a e

−i
∫ (C,t)

(C′,0) dt Ĥ(t)
a† e−i

∫ (C′,0)
−t0

dt Ĥ(t)

A
.

We may now insert complete sets of eigenfunctions

of Ĥ, {|α〉}, to obtain the Lehmann representa-

tion of these expectation values. For example, for

C = +, C ′ = −, t < 0, we obtain (cf. the figure)

〈a†−(0)a+(t)〉 = Z−1
0 ρβ |Xαβ |2eiΞαβt,

where Xαβ ≡ 〈α|a|β〉, Ξα = Eα − μNα, Ξαβ = Ξα − Ξβ , the thermal weighting factor

ρβ = e−βΞβ , and a summation over α, β is implied. Treating all other combinations in the

same manner, we find

GK(t, 0) = −iZ−1
0 |Xαβ |2eiΞαβt(ρα + ρβ),

which Fourier transforms to

GK(ε) = −2πiZ−1
0 |Xαβ |2δ(ε+ Ξαβ)(ρα + ρβ).

Comparison with the expression above for the time ordered correlation function GT (t, 0) =

−i〈Tta(t)a
†(0)〉 leads us to the important conclusion,

GK(ε) = 2i.GT (ε). (11.37)

The Keldysh Green function is equal to twice the imaginary part of the time

ordered correlation function.

In a similar manner, the Lehmann representations of the Green functions G± can be ana-

lyzed to confirm that the latter conform with the general definition of retarded and advanced

response functions. These identifications show that Eq. (11.37) is but a manifestation of the

quantum fluctuation dissipation theorem.
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11.2.6 Classical limit I

Readers who went through the previous chapter may have noticed the striking struc-

tural similarity between the Keldysh diagram language and the graphical code used in

Section 10.5.1 to analyze the MSRJD functional integral. More generally, the block-

triangular form of the Green functions, containing retarded and advanced blocks, in con-

junction with distribution functions, is reminiscent of the structure of the MSRJD theory. In

this section, we explore the classical limit of the theory within the framework of a stationary

phase analysis. A more comprehensive discussion of the connection to MSRJD theory is

given in Section 11.3.

Prior to taking semiclassical limits, we should let � re-enter the theory. Remembering the

origin of the action as a contour integrated quantum phase, we set iS → i
�
S. In the limit

� → 0, the functional will then be governed by the stationary configurations of its action

∂S[ψc, ψq]

∂ψq
=

∂S[ψc, ψq]

∂ψc
= 0. (11.38)

These equations may have solutions for arbitrary (ψc, ψq) about which nothing much can

be said in general terms. But there is always one that reflects the classical physics of the

problem. Recalling that an expansion of the action in ψq starts at linear order (the purely

classical action S[ψc, 0] = 0), we identify this classical saddle point by the equation,

classical saddle point:
∂S[ψc, ψq]

∂ψq

∣∣∣∣
ψq=0

= 0. (11.39)

This saddle point is “classical” in that it is defined on

the contour ψq = ψ+ − ψ− = 0, i.e. in a limit where

the time evolution becomes classical. Specifically, for

the interacting Bose action (11.30), the saddle point

equation assumes the form(
i∂t − Ĥ − V |ψc|2

)
ψc = 0. (11.40)

This is the celebrated Gross–Pitaevskii equa-

tion, a non-linear Schrödinger equation describing

the classical physics of the evolution of a bosonic

order parameter amplitude ψc in self–interaction

with its own density ∼ |ψc|2.

INFO We may think of the Gross–Pitaevskii equation (GPE) as the time-dependent

Ginzburg–Landau equation of the transition into a superfluid state. Alternatively, it may be

interpreted as a nonlinear Schrödinger equation describing the wavefunction of a Bose–Einstein

condensate. Inhomogeneous solutions of this equation describe collective excitations of the con-

densate field.
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By way of example, let us consider the case of a one-dimensional spatially homogeneous system,

Ĥ → − (�∂x)2

2m
− μ, where we have added a chemical potential term to Ĥ. Passing to the “energy

representation” of the equation, i�∂t → E,(
E +

(�∂x)
2

2m
+ μ− V |ψc|2

)
ψc = 0.

The solution of lowest energy, E = 0, is the spatially homogeneous condensate amplitude (cf.

the discussion in Section 6.3)

|ψc|2 =
μ

V
.

However, the GPE also contains information on spatially inhomogeneous excitations of the con-

densate. For example, it is straightforward to verify that, for any x0, the function

ψc ≡ ψ0 tanh

(
(x− x0)

ξ

)
, (11.41)

solves the GPE (cf. the figure above.) Here, ψ0 is a complex amplitude with |ψ0|2 = μ/g, and

ξ ≡ �/
√
4mμ is the coherence length. The wave function (11.41) is called a dark soliton. The

attribute “soliton” hints at the topological nature of the solution. The sign change at its origin

x0 means that the phase of the soliton changes by π. This jump cannot be removed by continuous

deformation, and in this sense the soliton is a topological defect.

EXERCISE For a system with attractive interactions, V < 0, try to identify the bright soliton.

One may then expand around the “classical” saddle point to account for quantum and clas-

sical fluctuations. However, we find it more instructive to discuss these types of fluctuations

in a slightly different context below.

This concludes our preliminary discussion of the generalities of the (bosonic) Keldysh

formalism. Before carrying on, it may be worthwhile to recapitulate once more a few struc-

tures of the theory:

� We start at large negative times with a non-interacting system whose state is described

by some initial distribution F̂0. In this non-interacting limit, the Keldysh sector of the

inverse Green function, (Ĝ−1)K is infinitesimally small, and related to the retarded and

advanced sector by the FDT.

� As interactions are switched on, the system will aim to identify its new distribution. The

initial proportionality of (Ĝ−1)K to the initial imaginary damping terms iδ suggests that

the Keldysh sector of the inverse Green function will no longer be infinitesimally small;

the emergence of finite “self energies”, iδ → i ImΣ will render it finite. Put differently,

the self energies of the theory, and in particular the Keldysh component of the self-energy,

are expected to contain essential information on the state of the system.

In the following, we explore the interaction-mediated formation of distribution functions on

an instructive, and important example.
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11.3 Particle coupled to an environment

Let us go back to the general paradigm formulated in Section 11.1.1, a quantum system

coupled to a bath. For concreteness, we will assume the system to be a single quantum par-

ticle, while the bath is an ensemble of harmonic oscillators. In the particular case where the

dynamics of the particle is harmonic, this gets us back to the oscillator–oscillator coupling

studied in Section 11.1.2.

Keldysh theory of a quantum particle

Consider the quantum mechanics of a single point particle in one-dimensional space. In the

distant past, we prepared the particle in some state (pure or mixed, it does not matter) and

then let it evolve under the dynamics of its Hamiltonian operator Ĥ = p̂2

2m + V (q̂). This

situation can be described by an obvious modification of our Keldysh functional theory.

All we need to do is encapsulate the initial value information in a density operator ρ̂0, and

replace the coherent state field integral by a Feynman path integral. As a result, we obtain

the Keldysh partition function

Zs = Z−1
0

∫
D(q, p) ei

∑
C sC

∫
dt (pC∂tqC−H(qC ,pC))

= Z−1
0

∫
Dq ei

∑
C sC

∫
dt (m

2 (∂tqC)2−V (qC))

= Z−1
0

∫
Dq e

i
∫
dt

(
m∂tqq∂tqc−V

(
1√
2
(qc+qq)

)
)+V

(
1√
2
(qc−qq)

))
. (11.42)

To explore the classical limit of this expression, we re-introduce � as iS → i�−1S. Alluding

to the discussion of the quantum-nature of configuration differences q+ − q− ∼ qq above,

we also rescale qc → �qc. A first order expansion of the action in qc� then identifies the

�-independent (classical) sector of the action

Sc[qc, qq] ≡
∫

dt qq

[
−m∂2

t qc −
√
2V ′

(
1√
2
qc

)]
.

Integrating over the quantum component, we obtain the constraint−m∂2
t qc−

√
2 ∂qV (qc/

√
2) =

0 or, upon rescaling coordinates qc/
√
2 ≡ q, Newton’s equations of motion

m∂2
t q = −∂qV (q). (11.43)

But of course, the formalism can do much more than recover deterministic classical motion.

This is seen the moment we couple the system to its bath:

Coupling to an oscillator bath

The bath as such is described by a partition function such as Eq. (11.31). Specifically,

we assume the bath degrees of freedom to be non-interacting, V = 0, and oscillator-like,

ψ̄Ĥψ ≡
∑

k ψ̄k ωk ψk, with a wave-like dispersion ωk ≡ c|k|. Thus,

Sb[ψ̄, ψ] ≡
∫

dω

2π

∑
k

ψ̄k,ω Ĝ−1
k,ω ψk,ω, (11.44)



11.3 Particle coupled to an environment 717

with ψ = (ψc, ψq)
T , and the oscillator Green function,

Ĝ−1
k,ω =

(
0 ω − iδ − ωk

ω + iδ − ωk [2iδ coth(ω/2T )]

)
.

The coupling between system and bath is modelled by the action

Ssb[ψ̄, ψ, q] ≡
∫

dt
∑
k

∑
C

sCq(t) (γkψC,k(t) + c.c.) =

∫
dt

∑
k

q(t)Tσ1 (γψk(t) + c.c.)

=

∫
dω

2π

∑
k

(
γkq

T
ωσ1ψk,−ω + γ̄kψ̄

T
k,ωσ1q−ω

)
, (11.45)

where γ(k) is a set of complex coupling constants, and in the second line we switched to

the Keldysh representation qT = (qc, qq).

Integration over oscillator modes

At this stage, the oscillators may be integrated out. Using the fact that −i〈ψψ̄T 〉 = Ĝ (cf.

Eq. (11.35)), we obtain the effective system action, Seff = Ss+Sdiss, where the dissipative

action is given by

Sdiss[q] = −
∫

dω

2π
qTωσ1

(∑
k

|γk|2Ĝk,ω

)
σ1q−ω,

and the Green function has the form

Ĝk,ω =

(
[−2πi coth

(
ω
2T

)
δ(ω − ωk)] (ω + iδ − ωk)

−1

(ω − iδ − ωk)
−1 0

)
.

To make progress with this expression, we assume that the coupling constant exhibits power

law dependence on |k|,
|γk| = λ|k|α,

where λ > 0 is a real coefficient. Noting that the Green function enters in a frequency-

symmetrized form,
∑

ω qTω Ĝωq−ω = 1
2

∑
ω qTω (Ĝω + Ĝ−ω)q−ω, the summation over the k-

modes then produces the expression (exercise)

Sdiss[q] =

∫
dω

2π
qTω K̂ωqω, (11.46)

where the dissipation kernel K̂ is given by

K̂ω = πνλ2
(ω
c

)2α
(
0 −i

i 2i coth
(

ω
2T

)) . (11.47)

Here we have introduced the density of modes, ν ≡
∑

k δ(ω−ωk) and omitted a frequency-

independent contribution to K (which can be absorbed in the chemical potential). We may

think of K̂ω as a “self-energy” of the particle due to its coupling to the oscillator bath. The

frequency dependence of Kω signals that Sdiss is a time-nonlocal contribution to the action.
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The temporal profile of the dissipation kernel depends on the coupling γ. In the following,

we concentrate on the case of Ohmic dissipation, where α = 1/2 and

K̂ω = g

(
0 −iω

iω 2iω coth
(

ω
2T

)) , (11.48)

with g ≡ πνλ2

c .

INFO The power law α = 1/2 is not quite as arbitrary as it may seem. Specifically, the choice

γ = iλ sgn(k)
√

|k| describes the frequent situation of dissipation due to coupling to an elastic

medium. To see this, recall the representation of the coherent state amplitudes in terms of

oscillator coordinates and momenta,

ψk =
1√
2

(√
ωkqk +

i√
ωk

pk

)
.

Substitution into the coupling term generates the expression

∑
k

(γkψk + c.c.) ∼
∑
k

sgn (k)
√

|k|
(
i

(√
ωkqk +

i√
ωk

pk

)
+ c.c.

)

∼
∑
k

ikqk ∼ ∂xq(x)
∣∣
x=0

,

where, noting that functions q(x) and p(x) are real, we have made use of the identities q̄k = q−k

and p̄k = p−k. The last term describes the local coupling of the system coordinate to the stress

∂xq(x) acting on an elastic string. In many dissipative environments, macroscopic degrees of free-

dom are coupled to approximately harmonic microscopic modes in this way. Prominent examples

include the coupling of the electric field applied to a resistor to harmonic electromagnetic modes

in the medium. This coupling (cf. our discussion of Johnson noise in the previous chapter) is

responsible for the denotation “Ohmic” dissipation.

Langevin equation

We next explore the classical limit of the effective theory of the particle coupled to the bath.

To this end, we let � enter at three different places in the functional,

(i) : iS → i

�
S,

(ii) : coth(ω/2T ) → coth(ω�/2T ) → 2T

�ω
,

(iii) : ψq → �ψq. (11.49)

In the semiclassical limit, and at fixed characteristic frequency ω, the “coth” can then be

linearized as indicated in (ii). The extra power of � appearing in the denominator of this

expression compensates for the additional power in � due to two factors qq in the quantum–

quantum sector of the action. Summarizing, the effective classical action is given by

Sc[qc, qq] =

∫
dt

[
qq

(
−m∂2

t qc −
√
2V ′

(
1√
2
qc

)
− 2g∂tqc

)
+ 4iTgq2q

]
.
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This has the characteristic structure of an MSRJD action. Comparison with the discussion

of MSRJD functionals in the previous chapter shows that the (scaled) quantum field 2gqq
plays a role identical to the MSRJD “momentum.” Specifically, a “Langevin” equation13

can be derived by Hubbard–Stratonovich decoupling of the qc term:

Sc[qc, qq] → Sc[qc, qq, ξ] =

∫
dt

[
qq

(
−m∂2

t qc −
√
2V ′

(
qc√
2

)
− 2g∂tqc +

√
2ξ

)]
+

i

8gT

∫
dt ξ2.

Introducing the rescaled variable q = qc/
√
2 and integrating over qq, we obtain the Langevin

equation

m∂2
t q + V ′(q) + 2g∂tq = ξ, (11.50)

where the noise correlator

〈ξ(t)ξ(t′)〉 = 4Tgδ(t− t′), (11.51)

conforms with the FDT. To summarize, the coupling of the system to a bath renders the

classical limit noisy. The effective equation of motion assumes the form of a Langevin

equation, at a noise level that will drive the particle to an equilibrium distribution at the

effective temperature of the bath.

INFO Notice that the present theory solves a problem that plagued the purely classical

theory discussed in the previous chapter. Discussing dissipative damping of voltage fluctuations

in a resistor network, we had seen that Johnson noise is problematic inasmuch as the white noise

correlator 〈ξ(t)ξ(t′)〉 = 2RTδ(t − t′) will predict singularly strong noise levels 〈ξ(t)2〉. We had

cited the expectation that these singularities will be cut off if we take into account the fact that

the actual coupling is to a bath of quantum, rather than classical oscillators.

This expectation is confirmed by our present theory. Comparison with Eq. (11.48) and the

subsequent steps of the derivation shows that the frequency representation of the actual noise

correlator reads

〈ξωξω′〉 = g

π
δ(ω + ω′)ω coth

(
�ω

2T

)
.

In the classical limit � → 0, this reduces to the white noise limit 2Tg
π�

δ(ω + ω′), which Fourier

transforms to Eq. (11.51). However, at large frequencies �ω � T , we obtain

〈ξωξω′〉 �ω�T−→ g

π
δ(ω + ω′)|ω|.

At first sight, it seems that the situation has become worse: the increase ∼ |ω| implies ultravi-

olet behavior (short time correlations) even more malicious than in the white noise case. The

resolution to this problem lies in a more careful interpretation of what is actually meant by the

expression 〈ξtξt′〉. The decomposition ω coth
 
�ω
2T

!
∼ (1+n(ω))+n(ω) suggests that the voltage

fluctuations are due to absorption from (n) and emission into (n+1) the field of quantal resonator

13 We put quotes around “Langevin” because the stochastic differential equations derived here contain second
order time derivatives stemming from the acceleration terms in Newton’s equations. (We are not working in
the purely dissipative, overdamped limit.) The term “Langevin equation” is commonly reserved for first order
equations, but this difference is of no relevance to the present discussion.
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modes of the oscillator system. Specifically, there is response to its vacuum fluctuations (the “1”

in 1 + n). At low temperatures, T/�ω → 0, it is these fluctuations that cause our ultraviolet

problems. On the other hand, it seems implausible that vacuum fluctuations will be probed in

an actual measurement of noisy voltage fluctuations in a resistor. (The vacuum is a definite

state, while the generation of fluctuations requires real transitions in the environment.) Closer

inspection (cf. e.g., the pedagogical article G.B. Lesovik and R. Loosen, On the detection of

finite-frequency current fluctuations, JETP Lett. 65, 295-99 (1997)) shows that (i) the expression

〈ξtξt′〉 ↔ 1
2
〈(V̂tV̂t′ + V̂t′ V̂t〉 corresponds to a symmetrized correlation function of the quantum

operators representing voltage fluctuations (exercise: to make this statement plausible, interpret

〈ξtξt′〉 ∼ GK as a Keldysh correlation function and use the connection between GK and time

ordered correlation functions discussed in Section 11.2.4.) However, (ii) a concrete measurement

will not correspond to this ordering. Specifically, it will not couple to the fluctuations of the vac-

uum. Once the vacuum contribution is removed, the ultraviolet problems disappear. For further

discussion of this point, we refer to the literature.

This concludes our discussion of the backbones of Keldysh field theory. We have intro-

duced its fundamental generating functional, discussed the meaning of the propagators, and

exposed the connections to the classical theories discussed in the previous chapter. However,

to make the picture complete, we need to introduce the fermion variant of the Keldysh

functional. This will be as necessary as it is uninspiring. As one may expect, the formal

differences from the bosonic theory amount to a few sign factors here and there. For this

reason, we will try to keep the discussion as concise as possible and restrict ourselves to

listing the main differences from the bosonic theory.

11.4 Fermion Keldysh theory (a list of changes)

11.4.1 Single level

As in the bosonic case, let us begin by considering a single level Hamiltonian Ĥ = ωa†a,
where a and a† are fermion operators. The definitions of the Keldysh partition function

(11.9), and of the equilibrium density operator (11.10) remain unchanged, only that the

normalizing factor is now given by Z0 = 1+ e−β(ω−μ). Again, we will want to represent the

partition function in terms of (now fermionic) coherent states.

It is straightforward to verify that the auxiliary identity Eq. (11.11) generalizes to the

fermionic case, which means that the discrete functional Eq. (11.12) remains as it is but for

a sign change κ → −κ. As in the construction of equilibrium (Matsubara) functionals, this

change represents the sign we pick up when we sweep one of the 2N coherent state amplitude

through all others, as we do in the construction of the functional integral. Consequently, the

inverse of the discrete fermionic Green function is given by Eq. (11.13), again up to a sign

change κ → −κ. Up to this sign factor, all remaining formulae of the discrete discussion

of Section 11.2.2 generalize to the fermionic case. Specifically, det(−iG−1)
N→∞−→ 1 + κ =

1 + e−β(ω−μ) = Z0 which proves normalization of the functional integral. Taking the limit
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N → ∞, and switching to a continuum representation, we obtain the fermionic Green

functions

G++
tt′ = −ie−iω(t−t′)(Θ(t− t′)− n(ω)),

G−−
tt′ = −ie−iω(t−t′)(Θ(t′ − t)− n(ω)),

G+−
tt′ = +ie−iω(t−t′)n(ω),

G−+
tt′ = −ie−iω(t−t′)(1− n(ω)), (11.52)

where

n(ω) =
1

1 + eβ(ω−μ)
,

is the Fermion distribution. (The global plus sign appearing in G+− reflects the sign factor

picked up upon passage of the terminal point of the contour.) We may now pass to a

continuum representation of the functional integral whose unregularized form (no account

for infinitesimal damping and boundary conditions) is given by the Grassmann version

of Eq. (11.17). A glance at Eq. (11.52) shows that the redundancy in the theory which

motivated the “Keldysh rotation” now assumes the form G++ + G−− = G+− + G−+. In

the case of Grassmann variables, it is customary14 to account for this redundancy by way

of a field transformation slightly different from the bosonic Keldysh rotation above: using

the independence of the Grassmann variables ψ and ψ̄, we introduce new fields by

ψ1 ≡ 1√
2
(ψ+ + ψ−), ψ2 ≡ 1√

2
(ψ+ − ψ−),

ψ̄1 ≡ 1√
2
(ψ̄+ − ψ̄−), ψ̄2 ≡ 1√

2
(ψ̄+ + ψ̄−). (11.53)

Introducing the notation ψ ≡
( ψ+

ψ−

)
, ψ′ ≡

( ψ1

ψ2

)
, ψ̄ = (ψ̄+, ψ̄−), ψ̄′ = (ψ̄1, ψ̄2), this assumes

the form of a non-unitary transformation

ψ′ ≡ Uψ, ψ̄′ ≡ ψ̄σ3U
T ,

where U has been defined in Eq. (11.18). (Due to the non-unitarity of the transformation,

and the fact that Grassmann fields are never “classical,” we do not speak of classical or

quantum components.) The form of the above transformation is motivated by the trans-

formed contraction rule

−i〈ψ′ψ̄′〉 = U〈ψψ̄〉σ3U
T = UĜUTσ3 ≡ Ĝ′,

where Ĝ =
(
Ĝ++ Ĝ+−

Ĝ−+ Ĝ−−
)
, and the transformed Green function assumes the form

Ĝ′ =

(
Ĝ+ ĜK

Ĝ−

)
, (11.54)

14 A. I. Larkin and Yu. N. Ovchinnikov, Vortex motion in superconductors, in Nonequilibrium Superconductivity,
eds. D. N. Langenberg and A. I. Larkin, (Elsevier, 1986).
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and the retarded, advanced, and Keldysh Green function are defined in analogy to

Eq. (11.20),

G+
tt′ ≡ −iΘ(t− t′)e−iω(t−t′),

G−
tt′ ≡ +iΘ(t′ − t)e−iω(t−t′),

GK
tt′ ≡ −i(1− 2n(ω))e−iω(t−t′). (11.55)

As we will mostly work with the transformed Green function Ĝ′, we omit the prime through-

out, Ĝ′ → Ĝ.

11.4.2 Generalization

As with the bosonic theory, the form of the Green function Eq. (11.55) suggests the intro-

duction of a fermionic distribution operator F̂ = {F (ε)}, with

F (ε) ≡ 1− 2n(ε). (11.56)

Expressed as a Fourier transform, the Keldysh Green function then assumes the form

ĜK = Ĝ+F̂ − F̂ Ĝ−. (11.57)

The generalization of the toy model above to a fully interacting theory is described by

the Grassmann version of the functional Eq. (11.30). (The optional addition of spin-indices

should be straightforward.) In contrast to the bosonic case, where mean field approaches to

the native interacting theory lead to immediate results, most fermionic theories call for a

Hubbard-Stratonovich decoupling of the interaction term. Prior to passing to the Keldysh

rotated theory, we therefore introduce an auxiliary bosonic field to decouple the interaction

as

eiSint[ψ̄,ψ] =

∫
Dφe−

i
2

∫
dtddrddr′

∑
C sCφC(r,t)V −1(r−r′)φC(r′,t)

× e+i
∫
dtddr

∑
C sC ψ̄C(r,t)φC(r,t)ψC(r,t).

We may now implement the Keldysh rotation to arrive at the effective action S[ψ̄, ψ, φ] =

S[φ] + S[ψ̄, ψ] + Sint[ψ̄, ψ, φ], where

S[φ] = −i

∫
ddrdt φc(r, t)V

−1(r− r′)φq(r
′, t),

S[ψ̄, ψ] =

∫
ddrdt ψ̄Ĝ−1

0 ψ,

Sint[ψ̄, ψ, φ] =
1√
2

∫
ddrdt ψ̄(φcσ0 + φqσ1)ψ. (11.58)

Here

Ĝ−1
0 =

(
(G+

0 )
−1 (Ĝ−1

0 )K

(Ĝ−
0 )

−1

)
, (11.59)
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is the inverse of the free Green function15 and (Ĝ±
0 )

−1 = (i∂t ± i0 − Ĥ). We finally note

that elements of the Green function are generated by the fermion variant of Eq. (11.35)

−i〈ψα(r, t)ψ̄α′(r′, t′)〉 =
(
G+ GK

0 G−

)
αα′
(r, t; r′, t′). (11.60)

11.5 Kinetic equation

The action Eq. (11.58) may serve as the starting point of numerous applications. Here, we

restrict ourselves to the discussion of one interaction phenomenon that is particularly rele-

vant to the central theme of the chapter: the interaction mediated formation of effective

particle distributions. As a byproduct, we also introduce elements of Keldysh pertur-

bation theory, and compare to the “equilibrium perturbation theory” discussed in earlier

chapters. The concepts and techniques introduced in this section are very important and

are routinely applied in the analysis of out of equilibrium quantum systems.

In carrying out the perturbative analysis, we are guided by two principles: first, we assume

that the system (e.g. by way of high electron density) admits an effective RPA approach.

Second, we think of the Hubbard–Stratonovich field, φ, as an independent, bosonic degree

of freedom. That analogy becomes more substantial as we proceed and φ acquires its own

dynamics. Specifically, the boson–fermion analogy suggests not to integrate over the fermion

degrees of freedom just yet (which would be an option as a result of the quadratic nature

of the action Eq. (11.58)), but to study boson and fermion propagators separately.

In Eq. (11.58), quasiparticles interact by the two-fermion one-

boson interaction vertices contained in Sint. Our intermediate goal

will be to obtain the emerging boson and fermion self energies Σ̂f

and Σ̂b, respectively, in the RPA approximation, i.e. an approxi-

mation void of intersecting propagator lines. The topology of Σ̂f is

given by the first diagram shown in the figure, with external legs

removed, and all propagators representing full propagators, with

self–consistent account of the self energies. In a similar manner, Σ̂b is obtained from the

lower diagram. According to the general rules discussed above, the fermion self energies are

obtained by contraction of interaction operators at fixed external field indices. Specifically,

the fermion self-energy is defined as16∫
dxdx′ ψ̄′(x)Σf (x, x

′)ψ′(x′) = − i

2

∫
dxdx′ψ̄′(x)

>
φ̂(x)ψ(x)ψ̄(x′)φ̂(x′)

?
ψ′(x′),

where φ̂ ≡ φcσ0 + φqσ1 and we have switched to the space-time abbreviation x ≡ (r, t).

The self–consistency inherent to the RPA scheme requires that the contractions must be

15 The off-diagonal block (Ĝ−1)K is given by (Ĝ−1)K = −(Ĝ+)−1ĜK(Ĝ−)−1 = (Ĝ+)−1F̂ − F̂ (Ĝ−)−1 = 2iδF̂ ,

where the last identity holds if F̂ commutes with (Ĝ±)−1.
16 Should you feel uncertain about this result, it is worthwhile investing some time to recapitulate the perturbative

construction of self energies.
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interpreted to produce the full Green functions of the theory. Comparison of the two sides

of the equation and usage of Eq. (11.60) leads to the identification,

Σf (x, x
′) = − i

2

>
φ̂(x)ψ(x)ψ̄(x′)φ̂(x′)

?
= −1

2

>
φ̂(x)Ĝ(x, x′)φ̂(x′)

?
= − i

2

(
Ĝ(x, x′)DK(x, x′) + Ĝ(x, x′)σ1D

+(x, x′) + σ1Ĝ(x, x′)D−(x, x′)
)
,

where we have adopted the common convention to designate bosonic Green functions by

D+,−,K . Using this expression, the components of the self-energy operator

Σ̂f =

(
Σ̂+

f Σ̂K
f

0 Σ̂−
f

)
,

are identified as

Σ±
f (x, x

′) = − i

2

(
G±(x, x′)DK(x, x′) +GK(x, x′)D±(x, x′)

)
(11.61)

ΣK
f (x, x′) = − i

2

(
GK(x, x′)DK(x, x′) +G+(x, x′)D+(x, x′) +G−(x, x′)D−(x, x′)

)
= − i

2

(
GK(x, x′)DK(x, x′) + (G+(x, x′)−G−(x, x′))(D+(x, x′)−D−(x, x′))

)
,

where we have made use of the fact that causality implies G+(x, x′)D−(x, x′) = 0, etc. Also

notice that the causality of retarded and advanced Green functions, D±(x, x′)G∓(x, x′) = 0,

causes the vanishing of the lower right–hand block of the self-energy operator.

EXERCISE Show that the bosonic self-energy

Σ̂b =

(
0 Σ̂−

b

Σ̂+
b Σ̂K

b

)
,

is given by

Σ±
b (x, x

′) = − i

2

&
G∓(x′, x)GK(x, x′) +G±(x, x′)GK(x′, x)

'
, (11.62)

ΣK
b (x, x′) = − i

2

&
GK(x′, x)GK(x, x′) +G+(x′, x)G−(x, x′) +G−(x′, x)G+(x, x′)

'
= − i

2

&
GK(x′, x)GK(x, x′)− (G+ −G−)(x′, x)(G+ −G−)(x, x′)

'
.

In the present context, where the boson field actually represents fluctuations in a scalar poten-

tial, we may think of the self-energy as an effective polarization operator screening field

fluctuations.

11.5.1 Quasiclassical theory

We now have everything in place to address our main task, the computation of the fermion

(or boson) distributions which develop in the interacting environment. The picture we should

have in mind is that a system of fermions prepared in some initial distribution gets exposed

to interactions. We wish to find out how the latter drive the system to a new state of

equilibrium. The understanding of this mechanism is the basis for the description of out-of-

equilibrium distributions forming, e.g. if the system is exposed to strong external fields.
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Wigner transform

In a time-independent situation, all constituents of the theory depend only on time differ-

ences, Δt, and vary at time scales Δt ∼ ε−1 comparable to their characteristic energies. In

cases where systematic time-dependent changes occur (e.g. in response to the formation of

a nonequilibrium initial state) on time scales t � Δt, it is convenient to pass to a Wigner

transformed representation, Ĝ(t1, t2) → G(ε, t), where t = (t1 + t2)/2 and ε is conjugate to

Δt = t1 − t2. Technically, the Wigner representation of an arbitrary operator ĝ ≡ {g(t, t′)}
is defined by the transform

g(ε, t) ≡
∫

dΔt eiΔtεg(t+Δt/2, t−Δt/2),

g(t1, t2) =

∫
dε

2π
e−i(t1−t2)εg(ε, t). (11.63)

In applications, we often need to know the Wigner representation of the product of two

operators, f̂ ĝ. Using the definition above, it is straightforward to derive theMoyal product

identity

(f̂ ĝ)(ε, t) = e−
i
2 (∂t1∂�2−∂�1∂t2 )

∣∣∣
�1=�2=�
t1=t2=t

f(ε1, t1)g(ε2, t2)

= f(ε, t)g(ε, t)− i

2
(∂tf(ε, t)∂εg(ε, t)− ∂εf(ε, t)∂tg(ε, t)) + . . .

=

(
fg − i

2
{f, g}+ . . .

)
(ε, t), (11.64)

where in the third line we have introduced the Poisson bracket

{f, g} = ∂tf∂εg − ∂εf∂tg. (11.65)

The scope of the Wigner transformation actually extends beyond the temporal variables:

in general, the distribution functions may exhibit explicit space dependence F̂ → F̂ (r).

(This will occur, say, if a system is connected to two reservoirs kept at different temper-

atures, voltages, etc. In this case, gradients in the particle distributions may form.) We

expect the characteristic scale of these variations to be much larger than the microscopic

particle wavelengths. In this case, it is convenient to pass to the spatial Wigner transform,

Ĝ(r1, r2) → Ĝ(r,p), where r = (r1 + r2)/2 and p is conjugate to Δr = r1 − r2, i.e.

g(r,p) ≡
∫

dΔr e−iΔr·pg(r+Δr/2, r−Δr/2),

g(r1, r2) =

∫
ddp

(2π)d
ei(r1−r2)·pg(r,p), (11.66)

where the different sign reflects the conventions standard in spatial and temporal Fourier

transforms, respectively.

For later reference, a number of Wigner transform identities are summarized in table

11.1, where the spatial analogue of Eq. (11.65) is defined as {f, g} = ∂rf∂pg − ∂pf∂rg.
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Table 11.1Wigner transform identities

Temporal Spatial
Operator Wigner representation Operator Wigner representation

ĝ(t̂) g(t) ĝ(r̂) g(r)
ĝ(ε̂) = ĝ(i∂t) g(ε) ĝ(p̂) = ĝ(−i∂r) g(p)

[f̂ , ĝ] −i{f, g}+ . . . [f̂ , ĝ] i{f, g}+ . . .

tr(ĝ)
∫

d�dt
2π

g(ε, t) tr(ĝ)
∫

ddrddp
(2π)d

g(r,p)

In the following, it is convenient to bundle temporal and spatial transforms into a spatio-

temporal Wigner transform,

g(x, p) ≡
∫

dΔx eiΔxT ηpg(x+Δx/2, x−Δx/2),

g(x1, x2) =

∫
dp e−i(x1−x2)

T gpg(x, p), (11.67)

where x = (t,x)T = (x1 + x2)/2, p = (ε,p)T , the Minkovski metric η = diag(1,−1d), and

dx ≡ dtddx, dp ≡ dεddp/(2π)d+1.

Derivation of the kinetic equation

We now set out to derive a differential equation describing the evolution of the distribution

function. In view of the time scale separations alluded to above, it is convenient to formulate

that equation in its Wigner representation. To this end, we consider the formal operator

equation (
ε̂+ − Ĥ − Σ+

f −ΣK
f

0 ε̂− − Ĥ − Σ−
f

)(
Ĝ+ ĜK

0 Ĝ−

)
=

(
1 0

0 1

)
.

Writing ĜK = Ĝ+F̂ − F̂ Ĝ−, this matrix equation is equivalent to the set

(ε̂− Ĥ − Σ̂±)Ĝ± = 1

(ε̂− Ĥ − Σ̂+)(Ĝ+F̂ − F̂ Ĝ−)− ΣKĜ− = 0.

Multiplying the second equation by (Ĝ−)−1 and using the first equation, we obtain

F̂ (ε̂− Ĥ − Σ̂−)− (ε̂− Ĥ − Σ̂+)F̂ − Σ̂K = 0.

At this stage, it is convenient to pass to the Wigner transform. Making use of the identities

summarized in table 11.1, we obtain the kinetic equation

(∂t + {H, })F = i(ΣK
f − (Σ+

f F − FΣ−
f )) ≡ Icol[F ], (11.68)

where the equality is approximate in that higher order contributions to the Moyal product

expansion have been neglected. In Eq. (11.68), F = F (ε, t, r,p) is a function of spatial and

temporal variables. The left–hand side of the kinetic equation describes the evolution of the

distribution function F under the single particle dynamics.
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The effect of particle interactions is encapsulated in the right–hand side, which defines

the collision term. To lowest order in the Moyal expansion, the operator products appear-

ing in the collision term may be understood as products of Wigner functions, Σ+
f F ≡

Σ+
f (ε, t, r,p)F (ε, t, r,p), etc. As we will see in a moment, the term ΣK (Σ+F −FΣ−) repre-

sents an in-term (out-term), i.e. an interaction-mediated gain (loss) of particle occupancy.

EXERCISE Compare the structure of the quantum kinetic equation to that of the classical

Boltzmann equation discussed in Section 10.3. Try to anticipate the explicit structure of the

collision term in our system of interacting electrons.

Collision term

So far, our discussion of the kinetic equation has been absolutely general; no reference to

the specific mechanisms of self-energy generation has been made. To better understand the

physics of the collision term, we now return to our example of interacting electrons.

EXERCISE Show that the Wigner transform of composite operators with space–time dependence

g(x, x′)f(x, x′) is obtained as

g(x, x′)f(x, x′) →
∫

dp′g(x, p′)f(x, p− p′). (11.69)

Also show that

g(x, x′)f(x′, x) →
∫

dp′g(x, p′)f(x, p′ − p). (11.70)

(1− nε+ω)

nε′+ω

(1− nε′)

nε+ω

nε′

(1− nε′+ω)

The collision term governs the

rates of occupation number

changes due to the collisions into

and out of other states. This

being so, we expect it to be

determined by (a) the occupation

numbers of the collision partners,

and (b) the density of states

participating in the interactions.

We thus aim for a description in terms of occupation functions F or nf , and spectral

functions A ≡ −2 ImG+. Finally, to expose the fermion propagators contained in the

self-energy of the boson propagator D̂, we will aim to express the latter in terms of Σ̂b. To

this end, we note that the relation D̂−1 = V̂ −1σ1 − Σ̂b =
(

0 V̂ −1−Σ̂−
b

V̂ −1−Σ̂+
b −Σ̂K

b

)
implies that

D̂± = (V̂ −1 − Σ̂±
b )

−1 = D̂+(V̂ −1 − Σ∓
b )D̂

−,

D̂K = D̂+Σ̂K
b D̂−.
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We now have everything we need to compute the quasiclassical representation of the collision

term in Eq. (11.68):

Icol[F ](p)
(11.61),(11.69)

=
1

2

∫
dq

[
GK(p+ q)DK(q) + (G+ −G−)(p+ q)(D+ −D−)(q)

−
(
(G+ −G−)(p+ q)DK(q) +GK(p+ q)(D+ −D−)(q)

)
F (p)

]
(11.57)
= − i

2

∫
dq D+(q)D−(q)A(p+ q)

×
[
(F (p+ q)− F (p))ΣK

b (q) + (Σ+
b − Σ−

b )(q)(1− F (p+ q)F (p))
]

(11.62),(11.70)
=

1

4

∫
dqdp′ D+(q)D−(q)A(p+ q)A(p′ + q)A(p′)

×
[
(F (p+ q)− F (p))(1− F (p′ + q)F (p′))− (F (p′ + q)− F (p′))(1− F (p+ q)F (p)

]
.

We now assume that F (p) = 1−2nε depends only on energy, define the transition probability

T (ε, ε′, ω) ≡
∫

ddp′

(2π)d
ddq

(2π)d
D+(q)D−(q)A(p+ q)A(p′ + q)A(p′),

and add and subtract a term nεnε+ωnε′nε′+ω to arrive at the result

Icol[F ](p) =

∫
dωdε′ T (ε, ε′;ω)(nε(1− nε+ω)nε′+ω(1− nε′)− (1− nε)nε+ω(1− nε′+ω)nε′).

(11.71)

Let us discuss the meaning of this expression:

� The structure of the collision term resembles that of the classical Boltzmann collision

term discussed in Section 10.3. Quantum mechanics enters through the Pauli blocking

factors 1− nε, etc.

� Much as the collision term of Boltzmann theory was annihilated by the Maxwell–

Boltzmann distribution, the collision term Eq. (11.71) vanishes on the Fermi–Dirac

equation: interactions serve to install local equilibrium configurations, at a temper-

ature T and chemical potential μ which remain apriori unspecified. Departures from

equilibrium result from the competition between the left–hand side and the right–hand

side of the kinetic equation. In many instances the system may end up in a compromise

situation governed by a Fermi-Dirac distribution with spatially varying T (q) and μ(q).

� Notice that the collision term vanishes in an approximation where the effects of screening

in D̂ � σ1V̂ are ignored (technically, by ignoring the RPA self-energy of the boson line).

Diagrammatically, the building blocks D̂+−D̂− = D̂+(Σ̂+−Σ̂−)D̂− and D̂K = D̂+Σ̂KD̂−

are described by the boson insertion to the self-energy diagram shown in the bottom part

of the figure above. (Identify the two wavy lines with the self–consistent RPA D̂R and D̂A,

respectively, and the center bubble with the self-energy Σ̂.) Heuristically, we may interpret

this structure as the modulus square of the fundamental RPA decay amplitudes shown

in the upper part of the figure: the out–term is due to the decay of a particle at energy

ε into a particle hole excitation (energies ε′ and ε′ + ω, respectively) and a particle at

energy ε+ ω. This decay is mediated by the (now self–consistently screened) interaction
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line at frequency ω. In an analogous manner, the collapse of a particle–hole excitation

governs the “in” rate. These processes conserve energy and momentum, up to the smearing

introduced by higher order decay processes. (Technically, the spectral functions A contain

δ-distributions δΣ(ε− ε(p)), where the subscript Σ indicates their broadening by retarded

self energies. As an exercise, consider how these self energies encapsulate the generation

of higher order particle-hole decay processes, as described by the RPA approximation.)

11.6 A mesoscopic application

In the previous sections we have set up the essential machinery to study quantum systems

beyond thermal equilibrium. We have understood how interaction effects aim to drive a

system back to a (local) equilibrium configuration and how departures from that configura-

tion can, in principle, be described. However, we have not yet explored the actual physical

effects a nonequilibrium environment has on the quantum phenomenology of a system. Of

course, this latter question has many facets to it and cannot be addressed in general terms.

Rather, we focus on one specific aspect, and we study it within the framework of a concrete

application: quantum mechanics is largely about the coherent propagation of matter waves,

and the resulting interference phenomena. We know that coherence is averse to any kind

of noisy fluctuations in environmental degrees of freedom. At the same time, noise is an

inevitable companion of any coupling to a dissipative medium, and it is likely to increase if

that coupling generates a nonequilibrium state.

In this section, we explore the formation of noise–levels in a quantum system coupled to

a nonequilibrium environment, and its destructive influence on quantum coherence. Ques-

tions of this type are attracting a lot of current attention: advances in experimentation

make it possible to explore the physics of nanoscopic systems that are strongly influenced

by quantum interference phenomena – from ultracold atom physics, quantum information

devices, and spintronics, to single molecule electronics, and beyond. At the same time, the

very smallness of these systems implies that they are easily driven out of equilibrium, or

are in an out of equilibrium state per se. Studying the influence of nonequilibrium noise on

quantum coherence has, therefore, emerged as a mainstream topic.
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11.6.1 Out-of-equilibrium quantum dot

In this section,17 we investigate the

interplay between noise and coherence on

a specific setup, the out-of-equilibrium

metallic quantum dot. Consider a metal-

lic or semiconducting island of mesoscopic

size.18 The island is connected by tunnel

electrodes to two leads, which are kept at

a voltage difference V . This voltage gradi-

ent will be the primary instance by which

the system is driven out of equilibrium.

Finally, we assume capacitive coupling to a

gate electrode (indicated by the horizontal

plate in the figure) which determines the

electrostatically-preferred number of electrons on the dot.

We describe this system by the Hamiltonian Ĥ =
∑

x=L,R(Ĥx + Ĥt,x) + Ĥd + Ĥc, where

Ĥx =
∑
ab

c†x,aHx,abcx,b,

Ĥt,x =
∑
aμ

c†x,aTx,aμdμ + h.c.,

Ĥd =
∑
μν

d†μHd,μνdν ,

Ĥc =
EC

2

(∑
μ

d†μdμ −N0

)2

. (11.72)

Here cx=L/R,a create fermions in state |a〉 of the left/right lead, respectively, dμ creates

fermions in state |μ〉 of the dot, and Ĥx and Ĥd are the corresponding single-particle Hamil-

tonians. The operators T̂x=L/R describe tunneling between the leads and the dot. Finally,

EC is the electrostatic charging energy on the dot, and N0 defines its electrostatically-

preferred charge. (Notice that N0 need not be integer.) The voltage bias between the leads

will be introduced momentarily through a chemical potential difference.

EXERCISE Recapitulate the discussion of the equilibrium physics of this system in Problems 6.7

and 6.7.

17 This section is technical in nature. A few unanswered problems aimed at developing computational fluency
in Keldysh field theory have been included in the text. (It is not necessary to tackle these problems at first
reading.)

18 By “mesoscopic,” we mean that the temperature-dependent dephasing times over which quantum phase coher-
ence is lost due to the interaction with environmental degrees of freedom exceed all time scales relevant to
transport in the system. In practice, this means that we are studying systems of O(1μm) or less at tempera-

tures of O(10(1−2)mK). System sizes/temperature ranges of this order are easily accessible to modern device
technology.
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Generalizing the theoretical formulation introduced in Problems 6.7 and 6.7, we next aim

to derive a Keldysh theory of the nonequilibrium system. Our starting point is the fermion

action S[ψ̄, ψ, V ] ≡
∑

x=L,R(Sx[ψ̄x, ψx]+St,x[ψ̄x, ψx, ψ̄d, ψd])+Sd[ψ̄d, ψd, V ]+Sc[V ], where

Sx[ψ̄x, ψx] =

∫
dt ψ̄x

(
i∂t + iδ + EF − Ĥx 2iδFx

0 i∂t − iδ + EF − Ĥx

)
ψx,

St,x[ψ̄x, ψx, ψ̄d, ψd] =

∫
dt

[
ψ̄x

(
T̂x 0

0 T̂x

)
ψd + ψ̄d

(
T̂ †
x 0

0 T̂ †
x

)
ψx

]
,

Sd[ψ̄d, ψd, V ] =

∫
dt ψ̄d

(
i∂t + iδ + EF − Ĥ0,d − Vc −Vq/2 + 2iδFd

−Vq/2 i∂t − iδ + EF − Ĥ0,d − Vc

)
ψd,

Sc[V ] =

∫
dt

(
1

2EC
VcVq +N0Vq

)
. (11.73)

Here, the distribution functions

FL
R
= coth

(
ε± V/2

2T

)
, (11.74)

contain the information on the biasing of the system and Vc,d are the classical and quantum

components of a Hubbard-Stratonovich field decoupling the interaction.

EXERCISE Adapt the Hubbard–Stratonovich transformation introduced in Section 11.4.2

to the charging interaction in Eq. (11.72) to reproduce the action above. In Eq. (11.73), the

Hubbard–Stratonovich classical and quantum fields Vc and Vd are defined as Vc ≡ 1
2
(V+ +

V−), Vq ≡ V+ − V−, in terms of the fields V± decoupling the interaction on the contours. This

differs by a factor of
√
2 from earlier conventions and facilitates the interpretation of Vc as a

classical degree of freedom.

As with the equilibrium situation studied in Problem 6.7, it will be convenient to remove

the fluctuating “voltage” V by a gauge transformation on the dot: introducing the change

of variables, ψd → e−iφ̂ψd, ψ̄d → ψ̄de
iφ̂, where φ̂ = φc + φqσ1/2 and the phases are defined

by ∂tφc,q = Vc,d, V disappears from the bulk action while the tunneling matrix becomes

dynamical,19

T̂x → T̂x e
−iφ̂ ≡ T̃x.

At this point, the fermions can be integrated out to generate the familiar “tr ln.” The rest

of the derivation then proceeds as in problem 6.7:

EXERCISE Adapt the derivation of Problem 6.7 to the present context: Expand the “tr ln” to

second order in the tunneling matrix elements (recall what sort of assumptions may justify the

second order truncation) to generate the tunneling action

Stun[φ] = i
∑
x

tr(ĜxT̃xĜdT̃
†
x),

19 The gauge transformation also alters the distribution function Fd (exercise: how?).
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Evaluate this expression under the following simplifying assumptions: (i) the Hamiltonian oper-

ators Ĥx and Ĥd are diagonal in the bases |a〉 and |μ〉, respectively, (ii) in the range of relevant

energies, the modulus |Tx,aμ|2 ≡ |Tx|2 does not significantly depend on Hilbert space indices,

and (iii) the spectral functions Âx,d(ε) = −2Im Ĝ+
x,d(ε) = 2πνx,d(ε) are approximately energy

independent. (Here νx,d are the single particle density of states of leads and dot, respectively.)

Show that under these conditions, the tunneling action assumes the form Eq. (11.75). Hint: you

may find it convenient to represent the Green functions as Ĝ±(ε) =
∫

d�′
2π

Â(�′)
�±−�′ .

The derivation sketched in the formulation of the exercise above then leads to the tunneling

action

Stun[φ] = −
4
i
∑
x

gxtr(Λxe
−iφ̂Λde

iφ̂), (11.75)

where Λx,d is a matrix with energy dependence,

Λx,d ≡ 2i

(
g+ gKx,d
0 g−

)
ε

, gKx,d ≡ (g+ − g−)Fx,d, (11.76)

the unit spectral density auxiliary “Green function” is defined by g± ≡
∫

dε′
2π

1
ε±−ε′ , and

gx ≡ 4π2νdνx|Tx|2, (11.77)

defines the tunneling conductance between dot and lead x = L/R. Adding to this the

phase representation of the charging action in Eq. (11.73),

Sc[φ] =

∫
dt

[
1

2EC
∂tφc∂tφq +N0∂tφq

]
, (11.78)

we obtain a prototypical variant of the effective action in the phase representation, S[φ] =

Sc[φ] + Stun[φ].

In the case of strong interactions, phase fluctuations are largely controlled by the tunneling

action. Specifically, in nearly insulated dots, gx � 1, the phases fluctuate wildly, and no

longer represent suitable degrees of freedom. (Exercise: interpret this phenomenon in terms

of the voltages Vc,q = ∂tφc,q; why do voltage fluctuations in the nearly decoupled dot become

unimpeded?) As is usual in cases where a variable goes havoc, this limit is better described

in terms of the canonically conjugate partner variable, which in the present context carries

the significance of a charge degree of freedom, n. (Indeed, the dot charge will fluctuate

only moderately in the limit of small gx.)

Technically, the charge variable is introduced by a Hubbard–Stratonovich decoupling of

the charging term. This leads to the action in the phase-charge representation,

S[n, φ] ≡
∫

dt (nc∂tφq + nq∂tφc − 2Ec(nc +N0)nq) + Stun[φ]. (11.79)

One may think of the above transformation as passing from a Lagrangian variant of the

theory – one variable, φ, governed by an action with “velocity square” term φ̇2 – to a

Hamiltonian action
∫
(nφ̇ −H(n, φ)) defined in the phase space of variables (n, φ). Notice

that the classical component nc is conjugate to the quantum φq, and vice versa.
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But what about charge quantization? We should expect charge in the isolated dot

gx → 0 to be quantized to integer values, but our action above does not appear to know

of this constraint. As in many other instances before, information on the quantization of n

resides in the boundary conditions of its conjugate variable φ. So far, we have ignored

these boundary conditions. But as we are dealing with phases, we should be alert and expect

windings by multiples of 2π as φc and/or φq propagate along the Keldysh contour.

EXERCISE To explore the topology of the phase field, it is best to go back to the framework

of the closed Keldysh contour s ∈ [0, S]. It is on this contour, where the Hubbard–Stratonovich

field φ(s) is defined in the first place. Being a phase field, it is defined only up to multiples of 2π,

i.e. we have the boundary conditions φ(S) = φ(0)+2πW , where the integer W has to be summed

over (cf. our discussion of functional integrals over S1-valued fields in Chapter 3). Implement the

condition above by the ansatz, φ(s) = φ̃(s) + 2πW
2T

(s− T ), where φ̃ is periodic on the s-contour,

and we assume the real time contour to be parameterized by t ∈ [0, T ]. Show that this condition

translates to an unconstrained field φc = φ̃c, and to

φq(t) = φ̃q(t) +
2πW

T
(t− T ), (11.80)

with Dirichlet conditions φ̃q(0) = φ̃q(T ) = 0.

In the exercise above, it is shown that the information on phase windings resides in the

quantum field, φq. Heuristically, quantization conditions for the field n may then be deduced

as follows. Assuming that the winding number dependence of the tunneling action is negli-

gible (the rationale being that in the limit T → ∞ the W -contribution to Eq. (11.80) is a

nearly constant phase shift which is likely to cancel out in a term probing the local tunneling

dynamics), we observe that W enters the action through the contribution 2πW 1
T

∫ T

0
dt nc.

Summation over W then generates the condition 1
T

∫ T

0
dt nc ∈ Z: the temporal average of

classical charge on the dot is integer. But since the operators ∼ exp(iφ̂) in the action that

change the charge do so in discrete steps, nc → nc ± 1/2, and the numbers of positive

(exp(iφ̂)) and negative (exp(−iφ̂)) jumps are equal, this condition calls for an initial charge

value nc(0) ∈ Z. In the course of time, this initial value may change, but it does so in integer

steps, i.e. the classical charge nc(t) is quantized.

EXERCISE If you find the argument above too vague, you may derive charge quantization

in rigorous terms. Do not ignore the W -dependence of the tunneling term. Rather, expand

exp(iS) schematically to nth order in Stun. The winding numbers then enter as a pure phase

exp(2πiFW ), where F is an expression involving nc, and the discrete set of times at which

the phases of the tunneling terms are evaluated. Summation over W generates the quantization

condition F ∈ Z. Analyse F to show that this condition is equivalent to the initial value quan-

tization nc(0) ∈ Z. In combination with the integer steps taken by the tunneling dynamics, this

rigorously proves charge quantization.

In effect, we may account for the windings of the phase fields by limiting the integration

path nc(t) to integer configurations, and thence forget about the winding numbers.



734 Nonequilibrium (quantum)

11.6.2 Dot distribution function

Hidden in the action (11.79) sits the distribution function of the dot (cf. Eq. (11.75) and

(11.76)). In principle, we should think about the distribution function as an observable of

the theory, a quantity that determines the distribution of the particles on the dot after

all degrees of freedom (including the interaction) have been integrated out. However, the

results of that integration actually depend on the dot distribution function, i.e. the rigorous

determination of the latter poses a recursive problem whose solution is likely out of reach. In

practice, one will rather work with a trial distribution, which should of course be reasonably

close to the actual distribution.

In the present context, we will approximate Fd by the distribution function of the non-

interacting dot. The rationale behind this ansatz is the assumption that the coupling to

the leads will adjust an effective distribution on the dot, at time scales ∼ ν|T |2, faster than
the relaxation times due to interactions. The quality of such assumptions must of course be

checked in retrospect.

Trial dot distribution function

V

n

E

E

But what will the distribution function

on the dot, in the absence of interactions,

look like? There are various ways to answer

this question. Heuristically, one may argue

that all single particle states on the dot

will be occupied up to energy −V/2, i.e.

up to the threshold energy above which the

band of the right lead begins to dry up (cf.

the figure.) At larger energies, states on the

dot are hybridized with isoenergetic filled

states in the left lead, and empty states in

the right lead. These coupling mechanisms

are mutually independent, and occur at a

strength gL,R, respectively. This suggests,

that the distribution on the dot

Fd =
gLFL + gRFR

gL + gR
, (11.81)

will be an additive superposition of the lead

distributions. The corresponding distribution function nd = (−Fd + 1)/2 assumes the form

of a double step distribution (cf. the figure.)

EXERCISE Substantiate the argument above: To this end, consider the tunneling operators T̂x

as a “perturbation”, and compute the corresponding self energies. Then consider the kinetic

equation (11.68). For a stationary solution F , the left–hand side of the equation vanishes. Show

that the vanishing of the right–hand side enforces the double step distribution.
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Readers who feel comfortable enough with these ways of fixing the distribution function

may advance to the next section. For the benefit of all others, we devote the rest of this

section to showing how the (non-interacting) distribution function may be obtained directly

from the effective action. To this end, we vary the tunneling action (11.75) in φ̂ and adjust

Λd such that the non-interacting configuration φ̂ = 0 is a stationary point. In the exercise

below, we show the equivalence of this procedure to the kinetic equation approach above.

We need to determine Λd such that the linear expansion of the action in φ̂ = φc +

φqσ1 vanishes. It is straightforward to verify that variations in φc vanish regardless of

the distribution function. As for the quantum component, we generalize φqσ1 → φ̂q ≡
Reφqσ1− Imφqσ2, which may be interpreted as a shift of the generator φq into the complex

plane. It is then a straightforward exercise to verify that the variation of the action δφ̄S = 0

generates equation (11.81). But what might be the logic behind this variational approach?

The answer is given in the following exercise:

EXERCISE The distribution function on the dot can be found by solution of an appropriate

kinetic equation, (Ĝ−1
0 − Σ)Ĝ = 1. In this exercise, we want to show that the component of

this matrix equation relevant to the determination of Fd can be found by introduction of a

suitable source. To this end, let us go back to the microscopic variant of the theory, Eq. (11.73),

and generalize iδσ3 → iδ eiφ̂qσ3e
−iφ̂q in the dot action, Sd. Verify that the expansion of the

action to first order in φ̄q generates the Keldysh component of the kinetic equation. Under the

assumption of constant spectral density (also underlying the derivation of the tunneling action),

the vanishing of the linear variation becomes equivalent to the fulfilment of the kinetic equation.

The stationary solution is given by Eq. (11.81).

For notational simplicity, we assume contacts of equal transparency,

gL = gR ≡ g,

throughout the rest of the section.

Tunneling action

We may use the result Eq. (11.81) to bring the tunneling action into a form more manageable

than the abstract representation Eq. (11.75). To this end, let us introduce the notation

c ≡ eiφc cos(φq/2), s ≡ eiφc sin(φq/2).

We substitute eiφ̂ = c+ isσ1 and e−iφ̂ = c̄− is̄σ1 into Eq. (11.75) and obtain

Stun[φ] = 2g

∫
dtdt′ (c̄,−is̄)t

(
0 Σ−

Σ+ ΣK

)
t,t′

(
c

is

)
t′

= 2g

∫
dω

2π
(c̄,−is̄)ω

(
0 Σ−

Σ+ ΣK

)
ω

(
c

is

)
ω

, (11.82)
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where (notice the similarity to the self-energy of a boson coupled to fermions Eq. (11.62)),

Σ±
t−t′ =

i

2

∑
x

(
g±t−t′g

K
x,t′−t + gKd,t−t′g

∓
t′−t

)
,

ΣK
t−t′ =

i

2

∑
x

(
gKx,t′−tg

K
d,t−t′ − (g+ − g−)t−t′(g

+ − g−)t′−t

)
.

Like so often, we focus on the damping contribution to the self energy, Σ+ − Σ−. Using
(g+ − g−)ε = −i, we obtain

(Σ+ − Σ−)ω =
i

2

∑
x

∫
dε

2π
(Fd,ε − Fx,ε−ω) = i

ω

π
, (11.83)

ΣK
ω =

i

2

∑
x

∫
dε

2π
(1− Fd,εFx,ε−ω) =

i

4π

∑
s=±1

(ωFb(ω) + (ω + sV )Fb(ω + sV )) ,

where we used Eq. (11.74) and the relations,
∫

dε
2π (F (ε+ ω)− F (ε)) = ω

π ,
∫

dε
2π (1− F (ε−

ω)F (ε)) = ω
πFb(ω), with F (ε) = tanh(ε/2T ), and Fb(ω) = coth(ω/2T ). Combining every-

thing, we obtain

Stun[φ] =
g

π

∫
dω

2π
(c̄,−is̄)ω

(
0 −iω

iω 2iK(ω)

)(
c

is

)
ω

, (11.84)

where K(ω) ≡ ω
2Fb(ω) +

1
4

∑
s=±1(ω + sV )Fb(ω + sV ). The action Eq. (11.79) with the

tunneling contribution Eq. (11.84) is the basis of all our further discussion.

11.6.3 Observables

Before proceeding, we should choose an observable in terms of which the system’s behav-

ior will be described. While the system’s total conductance (as opposed to the tunneling

conductances of its individual dot-lead interfaces) might be the first option coming to one’s

mind, we here focus on the dot tunneling density of states, (TDoS). The latter is

defined as20

ν(ε) ≡ − 1

π
Im tr (Ĝ+(ε)) = − 1

π
Im

∫
dt eitεtr (Ĝ+(t)). (11.85)

What makes the TDoS an interesting observable to consider?

� The TDoS can be measured by tunneling spectroscopy. See Fig. 11.4 for an example of

local probes of the TDoS in a mesoscopic superconductor–normal–superconductor (SNS)

wire. (Barely discernible in the figure is the straight normal wire, adjacent to a horseshoe

shaped superconductor.) In this system, the TDoS is suppressed due to the superconduc-

tor proximity effect, the effect that a superconductor tends to induce pair correlations

leading to a spectral gap in the adjacent normal metallic regions. The size of the gap as

a function of voltage (energy) diminishes with the distance from the superconductor.

20 The notation assumes a steady state configuration. In principle, ν(ε, t) may be explicitly time dependent, via
temporal changes in distribution functions.
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Figure 11.4 Tunneling density of states as a function of voltage (energy) in a mesoscopic SNS
structure. The arrows mark the position where, in the normal wire, the TDoS was recorded. Fig-
ure taken from H. le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phase controlled
superconducting proximity effect probed by tunneling spectroscopy, Phys. Rev. Lett. 100, 197002-6
(2008).

� At the same time, the TDoS is an observable of considerable conceptual interest. As

is obvious from its definition, the function ν(ε) probes the amplitude of quasiparticle

propagation in the system at time scales t ∼ ε−1. This propagation amplitude comes with

a quantum dynamical phase. Out of thermal equilibrium, we expect this quantum phase

to be susceptible to all kinds of nonequilibrium fluctuations. In this sense, the TDoS

is an observable very close to the central theme of this chapter.

More generally, the TDoS probes the general mechanism of the “orthogonality catas-

trophe”: the quantum state “bare quasiparticle plus unperturbed system” forming right

after the tunneling event will typically be very different (“orthogonal”) from the asymp-

totic stationary state in which the incoming particle has been accommodated into the

system. The formation of that final state generally involves the re-adjustment of a large

number of particles and may take much more time than, say, the tunneling process as

such. This means that in strongly interacting systems, the TDoS is expected to show

significant structure at small energy scales – the zero bias anomaly.

In fact, the Coulomb blockade discussed in Problem 6.7 can be viewed as an extreme

manifestation of the zero bias anomaly: tunneling onto an isolated quantum dot creates a

state that is energetically forbidden, or “sub-barrier,” by an amount Ec. This means that

the TDoS vanishes over an interval from ε = 0 to ε = EC . (Recall that energy is measured

from the Fermi energy.) Equivalently, we may say that tunneling processes onto the dot

are limited to short duration t ∼ E−1
c . Tunneling into a metallic system leads to more

intricate behavior. The tunneling process generates an initial charge distribution which

is energetically unfavourable (sub-barrier). In the course of time, that initial distribution

will relax in what typically will be a diffusive spreading process. The action associated
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to that process weights the quasiparticle propagator and hence the TDoS. For example

in a two-dimensional setting, the long time relaxation action diverges,21 which implies

singular behavior of the TDoS at low energies.

The open quantum dot discussed in this section forms a compromise between a closed dot

and a bulk metallic system. Below we try to understand the TDoS of this system, and

the ramifications of nonequilibrium fluctuations. However, before doing so, we first need to

express ν(ε) in terms of our effective degrees of freedom. Fortunately, this is a straightforward

task. It turns out to be best to work in the representation of the theory prior to the Keldysh

rotation. Comparison with the formulae in Section 11.4.1 shows that

ν(ε) = − 1

2πi

∫
dt eiεt

(
G−+(t)−G+−(t)

)
.

To give the Green functions G±∓ some meaning, we just need to note two things: in the pres-

ence of interactions G−+
tt′ = −i〈ψ−

t ψ̄
+
t′ 〉 → −iei(φ−(t)−φ+(t′))〈ψ−

t ψ̄
+
t′ 〉 = ei(φ−(t)−φ+(t′))G−+

0,tt′ ,

where G0 is the non-interacting Green function. For a single level, its form is shown in

Eq. (11.52). For our many level dot this generalizes to

G−+
0,tt′ = −i

∑
μ

e−iεμ(t−t′)(1− nd(εμ)) = −i

∫
dε ν(ε)e−iε(t−t′)(1− nd(ε))

� −2πiνd(1− nd)(t− t′),

where nd(t) is the Fourier transform of the function n(ε) and we assumed constant non-

interacting density of states νd as before.22 Combining this with the analogous construction

for the Green function G±, we obtain ν(ε) = νe(ε) + νh(ε), where

νe(ε) = νd Re

∫
dt eiεtei(φ−(t+t̄)−φ+(t̄))(1− nd)(t),

νh(ε) = νd Re

∫
dt eiεtei(φ+(t+t̄)−φ−(t̄))nd(t). (11.86)

Here νe,h are to be interpreted as the contributions of electrons (holes) tunneling onto the

dot, and t̄ is an arbitrary reference time marking the beginning of the tunneling process.

The hole contribution, νh, differs from νe in the replacement (1 − nd) → nd, and a sign

change in the phase of the oscillatory exponential.

11.6.4 Open quantum dot

In this section, we study the TDoS at large values of the tunneling conductance, g � 1.

In this limit, fluctuations of the phase φ are largely quenched. Conversely, the conjugate

degree of freedom, the charge n, fluctuates strongly – the open quantum dot admits large

variations of charges and currents. The discussion of the open system is rewarding in that

21 L.S. Levitov and A. V. Shytov, Semiclassical theory of the Coulomb anomaly, Pisma Zh. Eksp. Teor. Fiz. 66,
200-205 (1997) [JETP Lett. 66, 214-221 (1997)].

22 Notice that (1 − nd)(t) = δ(t) − nd(t) is to be understood as the Fourier transform of 1 − nd(ε).
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it enables us to bridge between classical and quantum phenomena. On the one hand, the

smallness of (quantum) fluctuations of the phase means that we stay close to the classical

limit; in many respects, our system behaves like a classical RC-resistor unit, kept at voltage

∼ φ̇. On the other hand, Eq. (11.86) demonstrates that the same phase determines the

quantum mechanics of the observable ν. Indeed, we discover that the physics of the orthog-

onality catastrophe in the system can largely be understood in terms of classical voltage

fluctuations.

At large g, the tunneling action may be expanded to second order in φ around its sta-

tionary configuration φ = 0.23 As a result of this expansion we obtain

S(2)[φ] =
1

2EC

∫
dt ∂tφc∂tφq +

g

2π

∫
dε

2π
(φc, φq)ω

(
0 −iω

iω iK(ω)

)(
φc

φq

)
ω

, (11.87)

where the kernel K is defined in Eq. (11.84) and we used the phase representation of the

charging action Eq. (11.78). We have also neglected the N0-contribution to the charging

action, the formal reason being that for large g, topologically excited (finite winding numbers

W ) configurations of the phase field do not play a role. However, for W = 0, N0

∫
dt ∂tφq =

0. (Exercise: what is the physical reason for the irrelevancy of the N0-term in the widely

open quantum dot?)

Except for the structure of the kernel K, this action is reminiscent of the standard

MSRJD–actions describing dissipative classical systems. To understand the ramifications of

this connection, we go one step backwards in the direction of classical physics and decouple

the φqφq-term to obtain a Langevin-type system:

S[φ, ξ] =

∫
dt φq

[(
− 1

2EC
∂2
t − 2g

2π
∂t

)
φc + ξ

]
+ i

∫
dω

2π
ξω

π

2gK(ω)
ξ−ω. (11.88)

Classical resistor network

Integration over φq in Eq. (11.88) freezes the clas-

sical field to the configuration solving the equation(
1

2EC
∂2
t +

2g

2π
∂t

)
φc = ξ,

where the noise field ξ is correlated according to

〈ξ(t)ξ(t′)〉 = g

π
K(t− t′),

and K(t) =
∫

dω
2π e

−iωtK(ω) is the Fourier transform of the kernel K. This is the Langevin

equation for voltage fluctuations on the classical resistor network equivalent to our quantum

dot. The network is depicted in the figure where the central node represents the quantum

dot, coupled by two resistors of resistance R = g−1 to a bias voltage source. The dot is also

23 Anharmonic fluctuations are suppressed in g−1, but weakly singular in the infrared time scales of the theory.
This indicates scaling of the coupling constants (g, Ec) of the theory, which, however, we do not discuss in this
text.
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coupled to a capacitor of capacitance C = 1/2EC . That capacitor is kept at a gate voltage

VG = N0/C (which, however, we saw is irrelevant to the physics of the open dot).

To make the connection to classical circuit dynamics more explicit, we change notation

in the Langevin equation above according to24

g =
2π

R
, EC =

1

2C
, U = ∂tφc, ξ = Cη.

The Langevin equation describing voltage fluctuations off the static value V/2 then

assumes the form

∂tU + γU = η, (11.89)

where 〈η(t)η(t′)〉 = γ
CK(t− t′) and we have introduced the parameter γ ≡ 2

RC . The mean-

ing of this equation is not difficult to understand: in the absence of fluctuations, η = 0,

the voltage on the dot relaxes to its stationary value, V/2, at the RC-time scale charac-

teristic for a capacitive shunt. (The relaxation time scale is actually 2/RC, because what

matters is the resistance R/2 of a dot shunted by two parallel resistors.) In contrast to our

previous studies of dissipative systems, the coupling to two distinct leads (“baths”) implies

that the voltage distribution on the dot cannot relax to an equilibrium configuration.

To explore this point, let us take a close look at the fluctuation correlator, K:

� In the absence of biasing, V = 0, and in the classical limit (�)ω → 0, we have

K(ω) = ω coth(ω/2T )
ω→0−→ 2T , and 〈η(t)η(t′)〉 = 2Tγ

C δ(t − t′). Comparison with our

discussion of Langevin equations in the previous chapter then shows that the steady state

distribution controlling the voltage on the dot takes the form

P (V ) = N e−
U2C
2T .

This is the Maxwell–Boltzmann distribution for a system with capacitive energy

U2C/2.

� Still assuming zero bias, V = 0, let us now explore the zero temperature limit. In

this case, K(ω) = ω coth(ω/2T )
T→0−→ |ω|. To understand the meaning of this limit, we

may interpret the voltage fluctuations as due to the fluctuations of a large assembly

of oscillators of arbitrary frequency ω. (In “reality” the fluctuations represent particle–

hole excitations in the Fermi liquids constituting the system. However, for the sake of

the argument, that concrete realization is not important.) In the classical limit T � ω,

each spectral component stores fluctuation energy T (the equipartition theorem), which

explains the above classical correlator. However, in quantum mechanics, the energy reads

ω(n(ω)+1/2) = ω
2 coth(ω/2T ). This means that at small temperatures T , it gets replaced

by |ω|/2. Also notice that for ω > 0 the zero temperature energy is due to the factor

1/2 in the energy balance: the observable fluctuations are due to vacuum oscillations

of the quantum baths. As discussed in the previous chapter, the equilibrium oscillator

fluctuations leading to the statistics above are called Nyquist–Johnson noise.

24 The factor of 2π in the definition of R is explained as follows: g is the dimensionless conductance of the tunnel
barriers. The physical conductance G ≡ R−1 = ge2/h = (g/2π)/�. In our units e2 = � = 1 and this reduces to
g = 2π/R.
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� We next consider the consequences of finite biasing, V > 0. For simplicity we keep the

temperature at zero, T = 0. Inspection of Eq. (11.84) then reveals a crossover,

K(ω) =

)
|ω|, |ω| � |V |,
1
2 |V |, |ω| � |V |.

The interpretation of this crossover is as follows: At large frequencies, |ω| � |V |, noise is

dominated by the equilibrium fluctuations of high frequency oscillator modes. However,

at lower frequencies, we start sensing the distortion out of equilibrium, due to the biasing

of the dot. The latter causes a finite mean current flow through the system. This in turn

generates noise, which will be predominantly shot noise.

In the previous chapter we argued that if we define the current passing through an

elementary resistor in a time window [t̄, t̄+Δt] as IΔt = n/Δt in terms of the number of

charges, n, passing through in a time Δt, the statistical variance of the current – incident

charges assumed Poisson distributed – will be given by var(IΔt) = Ī/Δt, where Ī = 〈IΔt〉
is the statistical average of the current. We may write the instantaneous current through

the resistor as I = Ī+δI, where 〈δI(t)δI(t′)〉 = fδ(t− t′) describes short range correlated
current fluctuations. Computing the variance,

var(IΔt) =
1

(Δt)2

∫ t̄+Δt

t̄

dtdt′ 〈δI(t)δI(t′)〉 = f

Δt
,

we find that f ≡ Ī establishes compatibility to Poissonian shot noise.

We now relate these findings to the Langevin equation describing our more complex

two-resistor system. To this end we rewrite the latter as

CdtU = − 2

R
U + Cη, (11.90)

i.e. an equation that relates the rate of changes in the charge of the dot (left–hand side)

to current flow (right–hand side). Specifically, Cη ≡ δIL + δIR is to be interpreted as

the sum of current fluctuations through the left and right tunnel resistor. Each of the

two contributions Ix, x = L,R is expected to express Poissonian shot noise statistics,

〈Ix(t)Ix(t′)〉 = Īδ(t− t′) = V/(2R)δ(t− t′). Compatibility with our considerations above

then requires

〈η(t)η(t′)〉 = 1

C2
(〈δIL(t)δIL(t′)〉+ 〈δIR(t)δIR(t′)〉) =

V

RC2
δ(t− t′),

in agreement with Eq. (11.89) and K(t− t′) = (V/2)δ(t− t′): the noise in our system is

obtained by superposition of the shot noise generated by the two resistive tunnel barriers.

INFO The analysis of noise levels in compounds comprising several elementary Poissonian

noise sources plays an important role in nonequilibrium mesoscopic physics. It is custom-

ary to quantify the noise in a composite system by a parameter known as the Fano factor.

The Fano factor relates the DC-noise power in the system,

S ≡ 2

∫
dt 〈δI(0)δI(t)〉, (11.91)
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to the noise power, S0, of an elementary resistor unit with Poissonian statistics,

F ≡ S

S0
. (11.92)

Here δI is the fluctuation contribution to the current in the system. To make these definitions

more concrete, consider the elementary RC-unit shown in Fig. 10.2, first at the absence of

external biasing V = 0, and at temperature T . The Langevin equation controlling current

flow in the system reads CdtU = −R−1U + δI. The FDT requires that 〈δI(t)δI(t′)〉 = 2
RT

which means that, in equilibrium, Seq = 4T/R. Now consider the complementary case of zero

temperature, T = 0, but finite bias V across the resistor. In this case, the Poissonian statistics

of charge transmission requires (cf. the discussion above) 〈δI(t)δI(t′)〉 = Ī = V/R. This means

that

S0 = 2Ī =
2V

R
.

What is the Fano factor of the double barrier quantum dot discussed above?We define I = U/R

as the current whose statistics we wish to characterize. Comparison with Eq. (11.90) shows

that δI = Cη/2. From this identification and Eq. (11.89) we find that, in equilibrium, the noise

power S = 2T/R. This is the noise of a unit with total (series) resistance Rtot = 2R. Out of

equilibrium, the correlator 〈δI(t)δI(0)〉 = V
4R

δ(t− t′) implies S = V/2R = V/Rtot = Ī = S0/2,

or F = 1/2. The system exhibits fluctuations lower than those of a single Poissonian resistor.

The reason for this reduction is that the current fluctuations δI = (δIL + δIR)/2 are obtained

by superposition of two statistically independent noise sources.

Zero bias anomaly

We next wish to explore the ramifications of the resistor voltage fluctuations in the quantum

mechanics of the TDoS. To this end, consider the electron contribution νe to the density of

states in Eq. (11.86). Using the fact that φc(t + t̄) − φc(t̄) =
∫ t+t̄

t̄
dt′ U(t′), we can rewrite

this expression as

νe(ε) = νd Re

∫
dt eiεt

>
e

i
2

∫ t+t̄
t̄

dt′ U(t′)ei(φq(t+t̄)+φq(t̄))
?
(1− nd)(t)

= νd Re

∫
dt eiεt

>
e

i
2

∫ t+t̄
t̄

dt′ Uη(t
′)
?
η
(1− nd)(t)

where U [η] is the solution to the differential equation

(∂t′ + γ)Uη(t
′) = η +

1

C
(δ(t′ − (t̄+ t)) + δ(t′ − t)).

Once more, this equation is easy to interpret. What is new in comparison to the Langevin

equation (11.89) describing the source-free action is the presence of the two δ-functions on

the right–hand side. These δ-functions reflect a unit-jump in the classical charge upon the

entry of a particle (amplitude) in the dot. The voltage on the dot is thus driven by the

superposition of the noise η, and the entry peaks. In response it relaxes, as described by the

left–hand side of the Langevin equation. There is no reason to be puzzled by the appearance

of two δ-functions; depending on the sign of t, only one of them contributes to the profile

of Uη in the time window [t̄, t̄ + t] (or [t̄ + t, t̄] for negative t). The reason is that the time

evolution of U is retarded, i.e. the equation describes the forward evolution of U in causal
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response to driving sources. For example, for t > 0, only δ(t′ − t̄) affects the evolution in

the time window [t̄, t̄+ t].

We may interpret the phase e
i
2

∫ t+t̄
t̄

dt′ Uη(t
′) as the “Feynman propagator” of the tunneling

amplitude. Our dot is largely structureless, i.e. the only contribution to the action of the

particle is the fluctuating voltage Uη. To understand its effect, we need to average the phase

over noise fluctuations. This is most efficiently done by substitution of the Fourier transform

of Uη,

Uη(ω) =
η(ω) + 1

C

(
eiω(t̄+t) + eiωt

)
−iω + γ

,

and performing the Gaussian integral over η(ω) using

〈η(ω)η(ω′)〉 = 2πδ(ω + ω′)
γ

C
K(ω).

As a result of a straightforward but not particularly illuminating calculation, we then obtain

νe(ε) = νd Re

∫
dt eiεte−

i
2γC sgn (t)(e−γ|t|−1)e−S(t)(1− nd)(t),

where the noise action

S(t) =
γ

C

∫
dω

2π

1− cos(ωt)

ω2 (ω2 + γ2)
K(ω), (11.93)

and the oscillatory exponential describes the decay of the entry voltage peak on the RC-

time scale. The integral form of S(t) reflects the finite time interval over which the voltage

fluctuations are monitored (the factor ω−2(1−cos(ωt)), the RC-retarded nature of the volt-

age response to fluctuations (the factor ((ω2 + γ2)−1), and the statistics of the fluctuations

themselves, K(ω). The hole contribution, νh, differs from νe by a sign change in the oscil-

latory phase, and in the replacement 1− nd → nd. Adding the two contributions and using

the fact that, in the open limit, the largeness of the dimensionless parameter γC = 2/R � 1

permits a linearization in the exponential phase, we obtain

ν(ε) = νd

(
1− 1

2πγC

∑
σ=±

∫ ∞

0

dt
cos((ε+ σV/2)t)

t

(
1− e−γt

)
e−S(t)

)
, (11.94)

where
∑

σ e
iσV/2t/(4πit) is the Fourier transform of the dot distribution function Eq. (11.81)

at zero temperature and equal barrier heights.

In the unbiased limit, V = 0, the noise action can be estimated as

S(t)
V=0� 1

2πγC
ln

(
1 + (γt)2

)
.

This result states that at large time scales, a conspiracy of RC-relaxation and noise fluc-

tuations leads to a logarithmically diverging action for particle tunneling processes. The

consequences become evident once we substitute S(t) into Eq. (11.94) for the tunneling
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DoS. Noting that the factors (1− e−γ|t|) and cos(εt) act as infrared and ultraviolet cutoffs,

respectively, we obtain

νε � νd

(
1− 1

πγC

∫ |ε|−1

γ−1

dt

t
e−S(t)

)
� νd

(
1− 1

πγC

∫ |ε|−1

γ−1

dt

t
(γt)

1
πγC �

)
= νd(|ε|/γ)

1
πγC ,

or, using the definition of γ and R,

ν(ε)
V=0,ε�1/RC

� νd

(
πC|ε|
g

)1/g

. (11.95)
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This is the celebrated zero bias anomaly. The accumulation

of tunneling action at large time scales leads to a complete

suppression of the tunneling DoS at small energies. Notice

that the vanishing of the DoS at zero energy is a result of the

weak accumulation of tunneling action, a phenomenon we may

interpret as the long term maintenance of quantum coherence

in the system.

How will this picture change as we turn on a finite bias

voltage to drive the system out of equilibrium? A glance at

Eq. (11.94) shows that the voltage intervenes in two different ways: it splits the centre

energy of the zero bias anomaly into two, 0 → ±V/2. This reflects the shift in energy of

the step distribution on the dot, relative to the Fermi distributions in the leads. Second,

the voltage enhances the tunneling action. For example, at low energies, ε � V , the action

acquires a contribution ∝ (γ/C)
∫ V

t−1 dωV/(ω
2(ω2+γ2)) ∝ RV |t|. This increases much more

strongly, varying linearly in time, than the logarithmic increase we had in the equilibrium

case. As a consequence, the coherent suppression of the DoS gets reduced and the zero bias

anomaly peaks become less pronounced. In the figure above, the resulting profile for the

DoS is shown for a few values of the bias voltage.

The discussion of this suppressive mechanism can be carried quite a bit further. For

instance, the rounding of the zero bias anomaly peaks can be used as a means to define

a nonequilibrium dephasing rate, or one may study the role of the voltage biasing in

the complementary regime of low tunneling conductances g � 1 (where it turns out to

be considerably less pronounced, cf. Problem 11.9.3). Here, however, we will not enter this

more detailed discussion. Instead, and in view of the relatively technical character of this

section, let us take a step back and summarize what we have found:

� The TDoS is a very “quantum mechanical observable.” Its low energy profile is determined

by long time matter wave coherence, as described by the appropriate Feynman path

integral.

� Nonetheless, the TDoS is susceptible to classical fluctuations in the environment. The

latter affect the classical action of the tunneling particle and, thus, the phase of the

quantum mechanical propagator.

� In equilibrium and at zero temperature, these fluctuations (then, zero point fluctuations)

do not prevent the build–up of long range coherence, a phenomenon that reflects, e.g., in
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the build–up of the zero bias anomaly and a complete suppression of the TDoS. However,

the installment of nonequilibrium conditions, even steady state nonequilibrium, goes along

with increased noise levels, and this tends to suppress quantum coherence.

� Technically, the noise (Langevin noise η, in our above discussion) couples through a vari-

able (voltage Uη) in a manner that encapsulates dynamical aspects of the system, and may

involve system specific retardation effects. In the case study above, we did not introduce

this coupling mechanism by postulation of an external bath. Rather, both the collective

variable of interest (voltage), and the noise sources emerged out of one microscopically

defined system. Such noise generation mechanisms are typical for interacting many par-

ticle systems that are projected onto the dynamics of a few collective variables.

11.7 Full counting statistics

Previously, we have seen that the statistics of currents may strongly affect the behavior

of physical observables. It may also tell us about the internal structure of a system. For

example, in the case study above, the noise level of currents (the Fano factor) signaled the

presence of two tunneling barriers instead of just one. Statistical analysis of current fluctu-

ations – both experimental and theoretical – has become a prominent tool of diagnostics to

explore the microscopic nature of condensed matter systems through observable transport

coefficients. The cumulative keyword for these types of analysis is full counting statistics

(FCS). In this section we introduce the notion of full counting statistics and apply it to

elementary examples. A brief survey of more advanced applications is given in the end of

the section.25

INFO The concept of full (photon) counting statistics was introduced in quantum optics (for

a review, see e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge

University Press, 1995).) Only much later have these ideas been transferred to the problem

of transport in condensed matter (cf. L. S. Levitov and G. B. Lesovik, Charge distribution

in quantum shot noise, Pis’ma Zh. Eksp. Teor. Fiz. 58, 225-30 (1993) [JETP Lett. 58, 230-5

(1993)]). The ramifications of this concept are included in the brief review at the end of the

section.

11.7.1 Generalities

Suppose we wish to characterize transport through a quantum system in terms of the charge

transmitted in a time interval [t̄, t̄+Δt],

N̂ ≡
∫ t̄+Δt

t̄

dt Î(t), (11.96)

25 For more comprehensive reviews, see W. Belzig, Full counting statistics in quantum contacts, Proceedings of the
Summer School/Conference on Functional Nanostructures, Karlsruhe, 2003; L.S. Levitov The statistical theory
of mesoscopic noise, Quantum Noise in Mesoscopic Physics: Proceedings of the NATO Advanced Research
Workshop, Delft, the Netherlands, 2002, and M. Kindermann and Yu. V. Nazarov, Full counting statistics in
electric circuits, in: Quantum Noise in Mesoscopic Physics, ed. by Yu. V. Nazarov, Kluwer (Dordrecht), p.403
(2002).
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where Î is the operator measuring current flow through a section of the system. We may

generate the expectation value of this operator by differentiation with respect to a suitably

constructed source field. To this end, recall that the current density j(x), is obtained by

differentiation of the action of the system with respect to its vector potential, A(x) (as

usual x ≡ (t,x) comprises space and time coordinates). Specifically, in the context of the

Keldysh field theory

j(x) = −i
δ

δA(x)

∣∣∣
A=0

Z [A⊗ σ3/2] ,

where the notation Z[A⊗ σ3/2] indicates that the action is minimally coupled to a purely

quantum vector potential (opposite signs on the two Keldysh contours). According to our

general discussion of the Keldysh contour in Section 11.2.1, the coupling of A to σ3 makes

it a suitable source variable.26 Building on this definition, we may introduce a source

variable for currents by defining the vector potential,

A(x, t) = χ(t)e⊥
∫
S

dd−1x′ δ(x− x′), (11.97)

where the surface integral confines the support of A to a planar section S of the system, e⊥
is normal to S (the generalization to curved sections is straightforward), and the definition

of the counting field,

χ(t) ≡ χΘ(t− t̄)Θ(t̄+Δt− t),

implies a projection onto the counting time interval. Differentiation of Z[A⊗σ3/2] ≡ Z(χ)

with respect to the source parameter χ then generates the relation

−i
∂

∂χ

∣∣∣
χ=0

Z(χ) =

∫ t̄+Δt

t̄

∫
S

dS · 〈j(x, t)〉 = 〈N̂〉.

Further differentiation with respect to the source variable – and that is the prime advantage

of the above construction – readily generates moments of the current:

〈N̂n〉 = (−i)n
δn

δχn

∣∣∣
χ=0

Z(χ). (11.98)

This formula identifies Z(χ) as the moment generating function and its logarithm

ln g(χ) ≡ lnZ(χ),

as the cumulant generating function.

INFO Why would one want to know moments higher than the second of a current distri-

bution? Suppose an experimentalist recorded the outcome of many runs of a charge transmission

measurement. They might decide to communicate their results in a histogram “count number

vs. events,” i.e. data whose continuous idealization we interpret as a probability distribution. To

a first approximation, the shape of this distribution is characterized by the first four cumulative

moments, μ1,...,4 (see Fig. 11.5):

26 To be more accurate, in Section 11.2.1 we introduce a source on the upper Keldysh contour. The sign inverted
source on the lower contour generates the same observable. Coupling to σ3 adds the two contributions which
are compensated for by the factor of 1/2 in the formula above.
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Figure 11.5 Hypothetical current distribution interpolating through an (equally hypothetical) dis-
crete data set and its characterization in terms of mean, width, skewness, and kurtosis.

� 1. moment, μ1: the average,

� 2. moment, μ2: the width,

� 3. moment, μ3: the skewness of the distribution,

� 4. moment, μ4: the kurtosis. High kurtosis implies a sharply peaked distribution with fat

tails. Low kurtosis indicates a mollified distribution, with broader shoulders.

The central limit theorem ensures that moments higher than the fourth are typically very small.

11.7.2 Realizations of current noise

In this section we introduce two frequently encountered realizations of noisy current distri-

butions in a schematic manner. We then explore how these prototypical forms relate to the

“real-life” example of our resistively shunted quantum dot.

Quantum point contact: consider a “quantum point con-

tact,” i.e. an isolated scatterer embedded into a single-channel

quantum conductor. This setup is not quite as academic as it

may seem. By standard techniques of current device technol-

ogy it is possible to manufacture few-channel quantum wires,

and to introduce artificial imperfections or tunneling bridges

(see the picture [courtesy of Nanocenter Basel] on the right for

an example). Charge carriers which encounter the point contact get transmitted with prob-

ability T and reflected with probability 1− T . This means that the probability to transmit

n charges in N events is given by the Bernoulli distribution

p(n) =

(
N

n

)
Tn(1− T )N−n.
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The cumulant generating function of this distribution reads

g(χ) ≡ ln
∑
n

eiχnp(n) = N ln(1 + T (eiχ − 1)).

A perfect single channel conductor has dimensionless conductance g = e2/h = 1/2π (in

our usual units e = � = 1). If the system is biased, N = IΔt = VΔt/2π charges will

be incoming, i.e. the statistics of current in the quantum point contact (at zero

temperature27) is described by

ln g(χ) =
VΔt

2π
ln(1 + T (eiχ − 1)). (11.99)

Ohmic resistor: in an Ohmic resistor the situation is different. Incidents of charge trans-

mission are still uncorrelated, but we may not think of them as the result of a single scatter-

ing event. This suggests a description of charge transfer in terms of a Poisson distribution

(cf. discussion on p.n 605),

p(n) = e−ν ν
n

n!
−→ ln g(χ) = ν

(
eiχ − 1

)
. (11.100)

Bidirectional distribution: The current through a con-

ductor connected to two terminals (for the generalization to

multi–terminal geometries, see25) is generally obtained by

additive superposition of two counter–propagating current

flows (see figure). For simplicity, let us assume the two distributions pi(ni), i = 1, 2 of

counter-propagating charges to be statistically independent. The distribution p(n) of the

total number of transmitted charges, n = n1 − n2 can then be computed as follows:

p(n) =
∑
n1n2

δn,n1−n2p1(n1)p2(n2)

=
∑
n1n2

∫
dχ

2π
e−iχ(n−n1+n2)

∫
dχ1

2π
e−iχ1n1g(χ1)

∫
dχ2

2π
e−iχ2n2g2(χ2)

=

∫
dχ

2π
e−iχng1(χ)g2(−χ).

This means that the generating function of the transmitted charge is the product g(χ) ≡
g1(χ)g2(−χ) of the partial distributions.

For example, in the case where the two constituent distributions are Poissonian, we find

ln g(χ) = ν1
(
eiχ − 1

)
+ ν2

(
e−iχ − 1

)
, (11.101)

where ν1 and ν2 determine the average rates. These rates will typically be set by the applied

voltage bias, barrier transparencies, temperature, and the like. In the following, we return

to the biased quantum dot studied in previous sections and explore the relevance of the

general structures discussed above to this physical example.

27 For the generalization to finite temperatures, cf. Refs.25.
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11.7.3 Full counting statistics of the double barrier quantum dot

Let us now return to consider the quantum dot system introduced in Section 11.6.1. Our

goal is to better understand the statistics of current flow. To this end, we will monitor the

current through, say, the tunnel barriers connecting the dot to the left lead. The first thing

we need is an appropriate counting field. Phenomenologically, we may argue that, in the

presence of a vector potential Ae⊥ normal to the lead axis, the tunneling matrix elements

TL,aμ utilized in Section 11.6.1 will generalize to TL,aμ → TL,aμexp(i
∫
dxA), where the

integral runs over the transverse extension of the barrier. The definition Eq. (11.97) then

means that the counting field couples to the tunneling matrix element on the Keldysh

contour as

TL,aμ → TL,aμexp(iχ(t)σ1/2).

Notice that, as with the quantum component of the interaction field, the counting field cou-

ples to the tunneling matrix element. This observation is sufficient to determine the coupling

of the counting field to the effective action without much further calculation. For the sake of

a more symmetric notation, let us define generalized matrix elements Tx,aμexp(iχx(t)σ1/2),

x = L,R. (Later we will set χL ≡ χ, χR ≡ 0.) The tunneling action Eq. (11.75) then

assumes the form

Stun[χ] = − i

4

∑
x=L,R

gxtr
(
Λx(χx)e

−iφ̂Λde
iφ̂
)
, Λx(χx) ≡ ei

χx
2 σ1Λxe

−iχx
2 σ1 ,

where we have generalized to barriers of different tunnel conductance, gx. Following the

logic of Section 11.6.2, our next step will be to determine the matrix Λd. As before, we do

this by requiring stationarity under variations of φ. (Exercise: think why this condition is

equivalent to the condition of zero stationary current flow onto/off the dot.) Variation of

the action in the limit of vanishingly weak interaction, φ � 0, generates the condition[
Λd,

∑
x

gxΛx(χx)
]

!
= 0. (11.102)

Now, the transformations Λ → exp(iχσ1/2)Λ exp(−iχσ1/2) render the matrices Λx(χx)

non-triangular. This means that stationary configurations Λd will in general no longer be

of the form Eq. (11.76). However, the transformation by the counting field does not alter

the “normalization condition,” Λ2 = σ0 remains valid. It is straightforward to verify that

the solution of Eq. (11.102) obeying this normalization is given by28

Λd =
gLΛL(χL) + gRΛR(χR)

(g2L + g2R + gLgR[ΛL(χL),ΛR(χR)]+)
1/2

.

(Notice that the matrix in the denominator commutes with the numerator, i.e. the relative

ordering of numerator and denominator is not an issue. Also notice that in the limit χ = 0,

28 In computing this result, we approximate the diagonal elements of the matrices Λ in Eq. (11.76) by their
imaginary parts, ±1. Diligent readers may wish to trace the fate of the real parts and check that they regularize
the superficially divergent constant C in Eq. (11.103) below.
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the solution reduces to that discussed in Section 11.6.2.) Substitution of this configuration

into the action leads to

Stun[χ] = − i

4
tr

(
g2L + g2R + gLgR[ΛL(χL),ΛR(χR)]+

)1/2
.

Assuming that the inverse of the counting time window (Δt)−1 is large in comparison to

the energy scales relevant to the distribution functions, we will evaluate the trace over

energy/time indices within the leading order Wigner approximation (cf. Section 11.5.1),

tr(. . . ) →
∫

dεdt
2π (. . . ), F (ε̂) → F (ε), χ(t̂) → χ(t), where F (ε) and χ(t) are ordinary functions

of energy and time, respectively. As a result of a straightforward (if somewhat tedious)

calculation, one finds that the matrix [ΛL(χL),ΛR(χR)] is proportional to the unit matrix,

and that the trace evaluates to

Stun[χ] = − i

2

∫
dtdε

2π
(11.103)

×
(
(gL + gR)

2 + 4gLgR

(
(ei(χL−χR) − 1)nL(1− nR) + (ei(χR−χL) − 1)nR(1− nL)

)) 1
2

= − iΔt

2

∫
dε

2π

(
(gL + gR)

2 + 4gLgR
(
(eiχ − 1)nL(1− nR) + (e−iχ − 1)nR(1− nL)

)) 1
2 + C,

where in the last equality we used χL(t) = χ(t) = χΘ(t − t̄)Θ(t̄ + Δt − t), and C is a

constant. From this result we find the cumulant generating function ln g(χ) � ln exp(iS[χ])

ln g(χ) =
Δt

2

∫
dε

2π

(
(gL + gR)

2 + 4gLgR
(
(eiχ − 1)nL(1− nR) + (e−iχ − 1)nR(1− nL)

)) 1
2 .

(11.104)

Now, let us try to make sense of this expression. Comparison with Eq. (11.101) shows that

ln g contains the generating functions of two Poisson distributions as building blocks. To

explore the meaning of this result, let us first consider the limit of zero temperature and

voltage bias V , nL/R(ε) = Θ((+/−)V2 − ε). The generating function then reduces to

ln g(χ) =
ΔtV

4π

(
(gL + gR)

2 + 4gLgR
(
(eiχ − 1)

)) 1
2 +C.

According to Eq. (11.98), the first moment of the transmitted charge through the system

is given by

〈N̂〉 = −i∂χ
∣∣
χ=0

ln g(χ) =
ΔtV

2π

gLgR
gL + gR

.

Comparison with the definition of the conductance, G = 〈Î〉/V = 〈N̂〉/VΔt gives G =
1
2π

gLgR
(gL+gR) , which we recognize as the mean conductance of two tunnel conductances shunted

in series (in units of the conductance quantum e2/h = 1/2π.) Turning to current statistics,

let us consider the limit gL � gR. We may then expand the square root to first order in

the ratio gL/gR to obtain a bi-directional Poisson distribution Eq. (11.101), with (time–

integrated) characteristic rates identified as

ν1 = ΔtgL

∫
dε

2π
nL(1− nR), ν2 = ΔtgL

∫
dε

2π
nR(1− nL).



11.7 Full counting statistics 751

These coefficients may be interpreted as the integrated rate at which filled states in the

right lead scatter into empty states in the right lead, and vice versa. As one may expect,

the statistics of the current is dominantly caused by the “bottleneck” in the system, i.e.

the conductance of the weaker tunnel barrier, gL. At finite temperature, ν1 � ΔtgLV/2π,

while ν2 � exp(−V/T )ΔtT/2π shows that thermal activation is necessary to push charges

against the voltage gradient.

The second (cumulative) moment defines the noise power (cf. Eq. (11.91)),

S0 =
2

Δt
var (N̂) = − 2

Δt
∂2
χ

∣∣
χ=0

ln g[χ] =
2

Δt
(ν1 + ν2) = 2

gL
2π

V coth(V/2T ).

This shows how the noise interpolates between equilibrium noise, 〈δI(t)δI(t′)〉 V→0∼ gLT

and the shot noise limit 〈δI(t)δI(t′)〉 V�T∼ gL|V |. In the more general case of barriers of

comparable transparency, gL � gR, the current statistics is more complicated and described

by the full expression Eq. (11.104).

In principle, we might now include phase fluctuations to explore the interesting question as

to how interaction effects will influence FCS. However, this topic29 lies beyond the scope of

the present text. Instead, let us conclude by briefly discussing a few more general aspects

of full counting statistics.

11.7.4 General ramifications of FCS

Previously, we have introduced the concept of a counting field as a purely technical means

to extract moments of observables from a Keldysh partition function. From a theoretical

point of view, this has been an efficient procedure, but it is also somewhat naive: when we

speak about moments of quantum observables, we inevitably enter the difficult territory

of quantum measurement. First, we have to realize that, when talking about moments,

what stands in the background is a repeated quantum measurement of observables. Second,

in experiment, it is not the (fermion) current that is measured directly. Typically, it is

fluctuations of secondary degrees of freedom, e.g. the bosonic modes of electromagnetic

degrees of freedom coupling to the current that are detected. One thus needs to explore

the connection between the original degrees of freedom (fermion current) and the detector

degrees of freedom. These (deep) issues have been explored in the literature25 and we

here restrict ourselves to a very superficial discussion of some main ideas.

An elegant (if not particularly realistic) way to model the coupling to a detector degree of

freedom is by coupling the fermion degrees of freedom to a spin. The precession of the spin

detector then encapsulates information on the transmitted fermion charge. Curiously, this

procedure exactly amounts to what we have been doing in introducing our Keldysh counting

field, and this connection is worked out in the following

EXERCISE We here wish to explore in what sense our counting field, χ, effectively models a

spin detector variable (cf. the review by Levitov25 for an extended discussion). Consider a spin

29 cf. D. A. Bagrets and Y. V. Nazarov, Full counting statistics of charge transfer in Coulomb blockade system,
Phys. Rev. B 67, 085316-32 (2003).
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1/2 placed near our current carrying device and coupled to the latter through the Hamiltonian

Ĥc =
∫
ddrA · jσz, where j denotes the fermion current density operator, A is a vector potential

mediating the coupling to the spin, and we assume that only the z-component of the latter is

coupled. Now, let us assume that the spin has been prepared in some initial state, so that the

measurement of the operator σ+ = (σx+ iσy)/2 would lead to the expectation value 〈σ+(0)〉spin.
The coupling to the fermion system makes the transverse spin components, probed by this

expectation value precess. This precession is described by taking the expectation value at a later

time, 〈σ+(t)〉spin. Show that the coupling to the fermion system above implies

〈σ+(t)〉spin =
〈
eiĤ(+A)te−iĤ(−A)t〉

fermion
〈σ+(0)〉spin,

where Ĥ(A) is the fermion Hamiltonian operator minimally coupled to the vector potential, A.

Express the fermion expectation value by a Keldysh partition function. The sign change in A

relative to the contours then means that we have coupled the fermion system to a purely quantum

vector potential, as we did in Section 11.7.1. Assuming that the spin-fermion coupling is local, i.e.

that the vector potential is non-vanishing only in the immediate vicinity of a transverse section

through the conductor, we arrive at a functional integral formally equivalent to the integral Z[χ]

employed above.

The assumption of a spin detector is artificial in two respects. First, currents are not nor-

mally measured by spins. Second the coupling of our system of interest to a detector will

in general imply a “back action” of the latter on the former, and this will affect the cur-

rent statistics. These aspects are discussed in the review by Kindermann and Nazarov cited

above.25 The authors argue that measurements on a (mesoscopic) device typically imply

the embedding of the latter into a detector electromagnetic environment.

With reasonable generality, the detector environ-

ment may be modelled as a linear electromagnetic

circuit (see figure), i.e. a system whose relevant

degrees of freedom (currents, voltages, etc.) are

controlled by some effective oscillator dynamics

(cf. an LRC-circuit). The variables of the detector

environment are linearly coupled to those of the

mesoscopic device. (For example, the charge density

on the latter may feel the potential fluctuations of

the detector, etc.) One may then formulate an FCS

functional for the composite system. Owing to their

linearity, the degrees of freedom of the detector environment may be integrated out, and

this leaves an effective functional in which the counting field and the primary variables of

the mesoscopic device are coupled in a manner that will typically involve retardation effects.

In this way, one has effectively described both a reasonably realistic readout procedure

and, relatedly, the back action of the measurement device onto the microscopic system of

interest. For further discussion of these issues we refer to the original literature.
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11.8 Summary and outlook

In this final chapter of the book, we have introduced the Keldysh field theory as a modern

– in spite of its formulation in the mid–60s – tool to describe quantum nonequilibrium

phenomena. It must be conceded that the Keldysh formalism comes with a relatively steep

learning curve. However, once one gets used to the concept of two counter propagating

time contours, one realizes that Keldysh field theory provides an enormously powerful and,

indeed, intuitive framework to approach quantum nonequilibrium phenomena. Practically

all other theoretical nonequilibrium tools (at least those familiar to the authors of this text)

can be recovered as restrictions of the Keldysh approach. Specifically, we have discussed the

derivation of quantum master and quantum kinetic equations, the connection to equilibrium

field theory, the classical limit (which neatly connects to the MSRJD formalism central to

the previous chapter), nonequilibrium variants of diagrammatic perturbation theory, and

various other aspects. However, notwithstanding its indisputable power, one should not

get carried away and declare the Keldysh formalism the new master tool, superior to the

equilibrium concepts discussed in earlier chapters of the book. The flexibility of Keldysh

theory may come as a burden when one is actually carrying more information about a

problem than that which is called for. In situations where one is at equilibrium, or close to it,

there is no need to explicitly keep track of the (then known) distribution function, and the

Matsubara formulation may be the more efficient option. However, at the time of writing of

this book, quantum nonequilibrium problems are becoming more and more important, and

this makes Keldysh theory an important concept in contemporary physics. At any rate, the

best way for readers to proceed from here is to pick a nonequilibrium problem and conduct

their own research!

11.9 Problems

11.9.1 Atom-field Hamiltonian

The “atom-field-Hamiltonian” is a simple model Hamiltonian of quantum optics. It reduces the inter-

action of atoms with electromagnetic field modes to a basic model of a two-level system (“the atom”)

coupled to an assembly of oscillator modes. The simplistic nature of this reduction notwithstanding, the

atom-field Hamiltonian describes ample phenomenology, and it is a prominent model system of quantum

optics. In this problem, we study the simplest variant of the system, the exactly solvable limit of the

interaction with a single mode. The single mode limit describes fully coherent quantum phenomenol-

ogy. We use it as a benchmark system to compare against the “incoherent” approximations underlying

the quantum master equation of Section 11.1. In the follow up Problem 11.9.2 we then explore what

happens upon generalization to multi-mode coupling.
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Consider an atom exposed to electromagnetic radiation. Assuming

that the field modes predominantly couple two atomic states |a〉
and |b〉 (see figure), and forgetting about the complications intro-

duced by the polarization of the electromagnetic field, this setup

may be described by the simple model Hamiltonian,

Ĥ =
ε

2
σ3 +

∑
k

ωka
†
kak +

∑
k

(
gkσ+ak + ḡkσ−a

†
k

)
, (11.105)

where ε is the energy difference between the excited state, |a〉, and the lower state, |b〉,
the Pauli matrices σi act in the two-dimensional Hilbert space defined by these states, and

σ± = (σ1 ± iσ2)/2, as usual. This atom-field Hamiltonian describes excitation processes

|b〉 → |a〉 by field quantum absorption (at coupling constants gk), and the corresponding

relaxation processes by quantum emission.

We may simplify the problem further by assuming that only a single mode of the elec-

tromagnetic field satisfies the resonance condition ω � ε, that needs to be met to obtain

significant conversion efficiency. This, then, leads to the single mode Hamiltonian

Ĥ =
ε

2
σ3 + ωa†a + g

(
σ+a+ σ−a†

)
, (11.106)

where we have omitted the mode index “k” and gauged the coupling constant g so as to

become real.

(a) Considering the atom as our “system,” and the mode as a “bath,” adapt the formalism

introduced in Section 11.1 to derive an effective equation of motion for the reduced

system density matrix, ρ̂s. In doing so, try to be critical concerning the approximate

elements of the construction, notably the Markovian approximation. (Hint: you will

be met with a singular effective coupling constant ∼ δ(ε − ω). For the moment, do

not worry about the regularization of this expression and treat it as a formal object.)

Derive a closed expression for the diagonal elements of the reduced density operator

ρx ≡ 〈x|ρ̂s|x〉, x = a, b and verify that the stationary limit ρx,∞ ≡ ρx(t → ∞) obeys a

detailed balance relation
ρa,∞
ρb,∞

=
〈n〉

〈n+ 1〉 , (11.107)

where n is the number of mode quanta and the expectation value is over the thermal

distribution of the bath. Accordingly, the population imbalance between the levels

approaches the limit

Δρ ≡ ρa,∞ − ρb,∞ = − 1

2〈n〉+ 1
. (11.108)

Discuss the meaning of this expression. Is it really appropriate for the situation at hand?

If not, where do you think the approximation involved in its derivation failed?

(b) Now, let us compare the predictions of the Markovian approximation to reality. To this

end, solve the Schrödinger equation for the Hamiltonian above. (Hint: use the fact that

the Hamiltonian couples only very few of the states |x, n〉 ≡ |x〉⊗|n〉, x = a, b, where |n〉
is an occupation eigenstate of the mode system. You will encounter a time dependent
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Figure 11.6 Imbalance between the population of the two atomic states as a function of dimen-
sionless time gt. Notice the aperiodic changes in the population of the states and the absence of
relaxation towards a ground state configuration Δρ = −1.

Schrödinger equation that may be solved either by Fourier transform, or by educated

guessing.) Interpreting ρx ≡
∑

n〈x, n|x, n〉 as the probability to find the system in state

|x〉, compute the population imbalance and compare to the predictions of the Markovian

approach Eq. (11.108). If you have access to a computer, you may find it instructive

to plot the result for the time dependent imbalance for different values of temperature

(presuming the mode distribution to be thermal), and frequency mismatch Δ = ε − ω

as a function of the dimensionless time parameter gt. You will obtain patterns such as

the one shown in Fig. 11.6.

(c) Discuss in qualitative terms the origin of the discrepancies between the two approaches.

Why is the Markovian approximation not appropriate under the present circumstances,

and why does the exact solution not predict relaxation of an initially occupied state |a〉
to the ground state, even at zero temperature.

Answer:

(a) In the interaction representation, a(t) = e−iωta, σ±(t) = e±iεtσ±, the interaction Hamil-

tonian Ĥi ≡ g
(
σ+a+ σ−a†

)
reads

Ĥi(t) = g
(
eiΔtσ+a+ e−iΔtσ−a†

)
,

where we defined the energy mismatch Δ ≡ ε − ω between level splitting and mode

frequency. Defining L̂i = −i[Ĥi, ], it is then straightforward to verify that Eq. (11.4)

assumes the form

∂tρ̂s = −g2
∫ t

dt′ e+iΔt′ (+〈n+ 1〉[σ+, σ−ρ̂s(t− t′)]− 〈n〉[σ+, ρ̂s(t− t′)σ−])

− g2
∫ t

dt′ e−iΔt′ (−〈n+ 1〉[σ−, ρ̂s(t− t′)σ+] + 〈n〉[σ−, σ+ρ̂s(t− t′)]) , (11.109)

where the expectation value is over the mode distribution. Assume that at some initial

time t = 0, the density operator had diagonal form,

ρ̂s = ρaP+ + ρbP−,
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where P± are projectors onto the upper (a) or lower (b) state, and ρa,b, ρa + ρb = 1 are

the probabilities of occupation of these states. It is straightforward to check that the

evolution equation preserves the diagonal form. Adopting a Markovian approximation

(but is it appropriate?) wherein the time dependence of ρ̂(s) under the integral above

is considered negligible, the evolution equation for the coefficients ρa,b takes the form

of a master equation

∂tρa = Γ (〈n〉ρb − 〈n+ 1〉ρa) ,
∂tρb = Γ (〈n+ 1〉ρa − 〈n〉ρb) , (11.110)

where the rate Γ = 2πgδ(Δ) is singular at resonance. This equation predicts an

(irreversible) approach to a stationary limit satisfying the detailed balance relation

Eq. (11.107).

(b) It is evident that for any fixed n ≥ 0 the Hamiltonian acts in the two-dimensional

space spanned by the states |a, n〉 and |b, n + 1〉. Specifically, Ĥi(t)|a, n〉 = ge−iΔt(n +

1)1/2|b, n + 1〉 and Ĥi(t)|b, n + 1〉 = ge+iΔt(n + 1)1/2|a, n〉. Introducing wavefunctions

by |ψ(t)〉 = ψa,n(t)|a, n〉+ ψb,n+1(t)|b, n+ 1〉, the time dependent Schrödinger equation

i∂tψ = Ĥi(t)ψ assumes the form

i∂tψa,n = ge+iΔt(n+ 1)1/2 ψb,n+1,

i∂tψb,n+1 = ge−iΔt(n+ 1)1/2 ψa,n. (11.111)

These equations are solved by (devise your own solution strategy, there are several)

ψa,n(t) = e+iΔ
2 t

(
ψa,n(0) cos(Ωnt)− i

g(n+ 1)1/2ψb,n+1(0) +
Δ
2 ψa,n(0)

Ωn
sin(Ωt)

)

ψb,n+1(t) = e−iΔ
2 t

(
ψb,n+1(0) cos(Ωnt)− i

g(n+ 1)1/2ψa,n(0)− Δ
2 ψb,n+1(0)

Ωn
sin(Ωt)

)
,

where we introduced the abbreviation

Ωn ≡
(
g2(n+ 1) +

(
Δ

2

)2
)1/2

.

Assuming for simplicity that the atom was initially in its excited state, we have ψb,n+1 =

0 and ψa,n =
√
ρn, where ρn is the nth eigenvalue of the mode density operator (e.g.,

ρn = Z−1exp(−βω(n+ 1/2)) if the mode distribution is thermal). The exact result for

the population imbalance then reads

Δρ =
∑
n

(
|ψa,n|2 − |ψb,n|2

)
=

∑
n

ρn

(
1− 2g2(n+ 1)

Ω2
n

sin2(Ωnt)

)
.

This result is very different from the one obtained within the Markovian approach,

Eq. (11.108): no stationary limit is approached. A short period of decay of the initial

value Δρ(0) = 1 merges into a pattern of irregular fluctuations – a result of a super-

position of contributions of incommensurate frequencies (see Fig. 11.6). In quantum

optics, the phenomenon of transient near-recoveries of the initial value is known as



11.9 Problems 757

collapse and revival while the fluctuations afford an interpretation as Rabi oscil-

lations. Clearly, the oscillatory pattern is a result of maintained quantum coherence

and reversibility of the dynamics, we do not observe a systematic decay of the upper

state into the lower. Notice in particular that even at zero temperature the atom does

not relax by emission of field quanta: at T = 0 only the n = 0 term (zero field quanta)

contributes to the sum above. This leads to oscillatory behavior of the density operator

in which the initial state is recovered at regular intervals t ∼ g, but no relaxation. For

further discussion of the fluctuation pattern we refer to Scully and Zubairy.30 Here, our

main conclusion is that the prediction of irreversible dynamics derived in (a) is evidently

incorrect.

(c) The Markovian approximation fails because a single quantum oscillator mode does not

behave as a bath. Indeed, the mode–atom coupling is strongest at resonance, Δ = 0,

when “system” and “bath” fluctuate at comparable time scales. Technically this means

that the (Markovian) assumption of constancy of the time evolution operator under the

integral Eq. (11.109) is not justified. The Markov approximation requires a short lived

bath “memory,” in the sense that bath correlation functions decay to zero at time scales

much shorter than those at which the system density operator varies. This happens, e.g.,

if we couple to many modes instead of one (see the follow–up problem.) In this case,

the analog of Eq. (11.108) contains many uncorrelated contributions, and the dynamics

becomes effectively irreversible.31

11.9.2 Atom-field Hamiltonian II: Weisskopf–Wigner theory of spontaneous

emission

(Attack this problem after 11.9.1.) In the previous problem, we saw that the coupling of an atom to a

single electromagnetic mode does not lead to radiative relaxation. The relaxation processes ubiquitous

in the physics of atomic radiation must, then, be a consequence of the presence of many field modes. In

this problem, we study how the large phase space of the multi–mode system justifies an approximation

that renders the dynamics of the atom-field system effectively irreversible and does describe relaxation

by radiation. The theory derived here plays an important role as a building block of, e.g., laser theory.

(a) Consider the Hamiltonian Eq. (11.105) of a two-level atom coupled to a multi-mode

field. Assuming zero temperature, derive the generalization of the Schrödinger equation

(11.111) for the initial configuration |a〉 ⊗ |0〉 to the multi-mode case (|0〉 is the zero

temperature photon vacuum). By formal integration of the second equation, convert the

system to a single integro-differential equation. Assuming that |gk|2 = g2(ωk) depends

only on the mode energy and that both the density of states of the bath modes and g2(ω)

change only negligibly over the inverse of the time scales at which the wave functions of

30 M.O. Scully and M.S. Zubairy, Quantum Optics, (Cambridge University Press, 1997).
31 Even then, it is not impossible that a rare accumulation of coherent contributions leads to an accidental

population “revival” – after all, we are still dealing with unitary (reversible) dynamics. However, for sufficiently
large numbers of contributing modes, such events are infinitely improbable, and an effectively irreversible
approximation is justified.
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the problem vary – the Weisskopf–Wigner approximation – derive an approximate

solution of this equation.

(b) For arbitrary temperature and initial population, attack the multi-mode problem by

generalization of the projector formalism applied in Problem 11.9.1 (a) to the single

mode case and compare to the results of the Weisskopf–Wigner theory. Convince yourself

that the approximation used there is equivalent to a Markovian approximation.

Answer:

(a) The initial state relevant to the description of an excited atom immersed into a zero

temperature bath reads |a〉 ⊗ |0〉, where |0〉 is the vacuum of the bath system. The

Hamiltonian couples this configuration to the states |b〉 ⊗ a†k|0〉. Introducing a wave

function by ψ ≡ ψ0|a〉 ⊗ |0〉 +
∑

k ψk|b〉 ⊗ a†k|0〉, the multi-mode generalization of the

Schrödinger equation (11.111) reads

i∂tψ0 =
∑
k

gke
iΔktψk,

i∂tψk = gke
−iΔktψ0,

where Δk = ε−ωk. We integrate the second equation and substitute the result into the

first equation to arrive at

∂tψ0(t) = −
∑
k

g2k

∫ t

0

dt′ eiΔk(t−t′)ψ0(t
′).

Introducing the density of bath modes ρ(ω) =
∑

k δ(ω − ωk), we obtain

∂tψ0(t) = −
∫

dω ρ(ω)g(ω)

∫ t

0

dt′ ei(ε−ω)(t−t′)ψ0(t
′) � −2πρg2ψ0(t),

where in the crucial second step we assumed approximate constancy of both ρ(ω) � ρ

and g(ω) � g to evaluate the frequency integral as
∫
dω e−iω(t−t′) = 2πδ(t − t′). The

(irreversible) effective equation for ψ0 is now trivially solved as32

ψ0(t) = e−πρg2t.

This means that the population imbalance between the two atomic levels

Δρ ≡ |ψ0|2 −
∑
k

|ψk|2 = −1 + 2e−Γt,

shows relaxation at the golden rule decay rate

Γ ≡ 2πρg2. (11.112)

32 We count
∫ t
0
dt′δ(t − t′) = 1/2 since the δ-function lies at the boundaries of the integration domain.
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(b) Comparing to the discussion in the previous problem, we verify that the multi-mode

generalization of Eq. (11.109) reads

∂tρ̂s = −
∫

dω ρ(ω)g2(ω)

∫ t

dt′

×
[
e+i(ε−ω)t′ (+〈n(ω) + 1〉[σ+, σ−ρ̂s(t− t′)]− 〈n(ω)〉[σ+, ρ̂s(t− t′)σ−])

− e−i(ε−ω)t′ (−〈n(ω) + 1〉[σ−, ρ̂s(t− t′)σ+] + 〈n(ω)〉[σ−, σ+ρ̂s(t− t′)])
]
,

where n(ω) is the boson distribution function. However, unlike in the previous problem,

we now have justification to assume near constancy of the density operator over the time

scales at which the addition of uncorrelated bath contributions decays to zero. (Think

why this is equivalent to the Weisskopf–Wigner assumption of frequency independent

ρg2.) Doing the integral, we obtain the master equation (11.110), where 〈n〉 = 〈n(ε)〉 is
the mean number of bath quanta at the resonance energy and the decay rate is given

by Eq. (11.112). Solution of this equation obtains the population imbalance

Δρ(t) =

(
Δρ(0) +

1

2〈n〉+ 1

)
e−Γ(2n+1)t − 1

2〈n〉+ 1
.

In the particular case of initial occupancy of |a〉, Δρ(0) = 1 and zero temperature,

〈n(ε)〉 = 0, this reduces to the results obtained in (a).

Summarizing our results, we have found that in the multi-mode case the dynamics

of the system becomes effectively irreversible. Technically, “multi-mode” means that we

must be able to assume near constancy of the spectral density of bath modes over scales

∼ Γ, i.e. the rate at which the density operator changes. Under this condition, the Marko-

vian approximation (equivalent to the Weisskopf–Wigner approximation) becomes jus-

tified and the quantum master equation provides a convenient alternative to the direct

solution of the Schrödinger equation.

11.9.3 Keldysh theory of the Coulomb blockade

(Recapitulate Section 11.6 before turning to this problem. If not stated otherwise, the notation of that

section will be used throughout.) In this problem, we consider the out of equilibrium quantum dot

discussed in Section 11.6 in a regime of near isolation from its environment (“leads”). Under these

conditions, charge on the dot is quenched – the Coulomb blockade. We here discuss the dynamics of

the formation of a Coulomb blockaded state, and its response to an external voltage bias.

In Problems 6.7 and 6.7 we considered an equilibrium quantum dot in a state of perfect or

near isolation from its environment. At low temperatures, the dot admits only the integer

quantum of charges that minimizes its capacitive energy. This Coulomb blockade manifests

itself in the partition function of the isolated quantum dot,

Z =
∑
n

e−
Ec
T (n−N0)

2

, (11.113)

where the optimal number of charges is determined by the parameter N0 ∈ R (which may

be set by changing external gate voltages) and Ec is the charging energy.
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At first sight, it may appear strange that the Keldysh-description of even this simplest sig-

nature of the Coulomb blockade is far from trivial! To understand why this is so, recall that

the dynamics on the Keldysh contour builds on the thermal distribution of a non-interacting

theory, while the partition sum above describes the thermal state of an interacting system.

We thus need to describe the passage between a non-interacting and an interacting equilib-

rium state. Naively, one might hope that the interpolation between the two states occurs

as interactions are gradually switched on in the dynamical evolution along the Keldysh

contour. But this is not so. The switching on of interactions results in an increase in energy

of the N -particle sector of Fock space, however, the distribution functions controlling the

occupation of single particle states are left un-altered (think about this point.) We need to

include a mechanism of relaxation-by-interaction to effect the formation of a thermal state

similar to that described by Eq. (11.113). Once the mechanism of thermalization has been

understood, we can describe structures way beyond the partition function Eq. (11.113). For

example, we may explore what happens to the Coulomb blockade when the system is biased

out of equilibrium by external voltage, or we may explore the dynamics of the approach to

equilibrium after a sudden change in the state of the system, etc.

But what, then, causes thermalization in the present context? It turns out that the most

direct channel of relaxation is the coupling to the leads. Indeed, we have seen in Sec-

tion 11.6.1 that the dot-lead coupling of the interacting systems reads (symbolic notation)

ψ̄dTe
iφψx, where ψd are the fermion fields of the dot, ψx=L,R, those of the leads, and φ̇ is the

Hubbard–Stratonovich field of the interaction. This means that a quasiparticle entering the

dot creates an excitation in the field φ (physically: a voltage fluctuation). That fluctuation

may in turn create a particle-hole excitation (via the vertex ψ̄xT
†e−iφψd) in the dot/lead

system. We conclude that the coupling vertices provide a mechanism for the excitation of

particle-hole pairs, and hence of relaxation in energy. Below we explore the formation of

the Coulomb blockade out of these processes, and the generalization to a nonequilibrium

state. To keep the discussion simple, we assume vanishing gate voltage N0 = 0, and zero

temperature T = 0 throughout. (Exercise: you may find it instructive to generalize to finite

gate voltage and temperatures.)

(a) Our first step is purely technical: observing that at weak coupling to the external world,

gT � 1, fluctuations in the field φ are strong, we will trade the integration over φ for

an integration over all charge states of the dot. (Recall that “charge” is the degree of

freedom conjugate to the phase φ.) To this end, expand the action Eq. (11.79) in the

tunneling action Eq. (11.82) and integrate over the phase degrees of freedom (hint: you

may find it convenient to switch back to the contour variables φ± before doing the inte-

gration, and mind the quantization condition nc(0) ∈ Z). to obtain the representation

of the Keldysh partition function

Z =
∞∑

m=0

1

m!

(
−g

2

)m ∑
{σ}

∫
Dt e−iEc

∫
dt (n2

+(t)−n2
−(t))

m∏
k=1

Lσ2k−1,σ2k
(t2k−1 − t2k),

(11.114)
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where
∑

{σ} is a sum over all sign configurations σ ∈ {−1, 1}2m, the integration measure

Dt =
∏2m

k=1 dtk and the charge profiles

nσ(t) = n+ σ
2m∑
k=1

(−)kΘ(t− tk)δσk,σ. (11.115)

Finally, the matrix elements of the kernel L are defined as

Lσσ′ =
1

4

(
σσ′ΣK + σΣ+ + σ′Σ−)

, (11.116)

where the self energies ΣK,± have been introduced in Eq. (11.82).

This representation expresses the partition function as a sum over quasiparticle in-

and out-tunneling events, connected by elements of the kernel L. We next need to make

physical sense of this expansion.
(b) The temporal entanglement of tunneling events

makes a closed computation of the partition

function impossible. However, for sufficiently

small values of the tunneling conductance,

tunneling processes containing intersecting or

nested “propagator lines” L(t, t′) are negligibly small. Estimate the temporal range of

the propagator L to derive a criterion for the applicability of the non-interacting

blip approximation (NIBA) wherein tunneling events occur in a strictly sequential

manner (cf. the figure.)

(c) The lack of entanglement of tunneling events in the NIBA makes the computation of

the Keldysh partition function a lot easier. The basic picture now is that occasional

charge tunneling events (so-called blips in the jargon of the field33) are interspersed

into long periods of time wherein the charge contour profile stays in a diagonal state,

n+ = n− = ncl ≡ n (“sojourns.”) During a blip, the quantum component n+ − n− =

nq ≡ ξ ∈ {−1, 0, 1} jumps to a value ±1, depending on the configuration (σ2k−1, σ2k)

of the tunneling event, and the sign of the time difference t2k−1 − t2k (see the figure

below).

Building on this structure, and assuming zero biasing, V = 0, derive a master equation

for the quantity P (n, t) ≡ P (n, t|n0, 0), i.e. the probability that the system evolves into

a charge state (n+, n−) = (n, n) at time t, provided it started in (n0, n0) at t = 0.

To this end, interpret P (n, t) as the Keldysh field integral Eq. (11.114), subject to the

constraint (cf. Eq. (11.115)) nσ(t) = n and nσ(0) = 0. Relate P (n, t) to P (n′, t − δt),

where δt � E−1
c is much bigger than the typical duration of blips, yet smaller than the

average spacing between blips, Δt � (gEc)
−1.

33 U. Weiss, Quantum Dissipative Systems, (World Scientific Publishing, 1993).
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Apply a continuum approximation (Δt)−1(P (n, t) −
P (n, t−Δt)) � ∂tP (n, t) to obtain the master equa-

tion

∂tP (n, t) =
[
(Ê1 − 1)Wn,n−1

+ (Ê−1 − 1)Wn,n+1

]
P (n, t), (11.117)

where Ê±1f(n) ≡ f(n ± 1) are charge raising and

lowering operators, the transition rates,

Wn,n±1 =
g

π
Ec(n, n± 1)Θ(Ec(n, n± 1)),

and

Ec(n, n
′) ≡ Ec(n

2 − n′2), (11.118)

is the relative energy of different charging states.

(d) Discuss the approach to a Coulomb blockaded state, as described by the master equation

(11.117).

(e) Generalize to the case of finite bias voltage V . Will the ground state occupancy change?

Answer:

(a) Expressed in terms of the contour representation φc = (φ+ + φ−)/2, φq = φ+ − φ−, the
charging contribution to the action Sc = S

∣∣
g=0

reads as

Sc[n, φ] =

∫
dt

(
n+∂tφ+ − n−∂tφ− − Ec(n

2
+ − n2

−)
)
,

where we have introduced

n± = nc ±
nq

2
.

The quantization condition on nc translates to n+(0) = n−(0) ∈ Z. The relative sign

change between the first two terms tells us that the operator eiφ+ raises the charge

on the upper contour by one, n+ → n+ + 1 while eiφ− lowers the charge on the lower

contour by one, n− → n− − 1. To make this action explicit, we first transform the

tunneling action Eq. (11.84) to contour fields,

Stun[φ] =
g

2

∫
dtdt′ (e−iφ+(t), e−iφ−(t))L(t− t′)

(
eiφ+(t′)

eiφ−(t′)

)
,

where the matrix kernel L = {Lσσ′}, σ, σ′ = ±1 is defined in Eq. (11.116). We may now

expand exp(iStun) in powers of the coupling constant to obtain the series

eiStun[φ] =

∞∑
m=0

1

m!

(
ig

2

)m ∑
{σ}

∫
Dt ei

∑2m
k=1(−)kφσk

(tk)
m∏

k=1

Lσ2k−1,σ2k
(t2k−1 − t2k),
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Figure 11.7 A configuration contributing to the expansion of the tunneling action: charge tunneling
events at times . . . , t2k−1, t2k, . . . are weighted by matrix elements of the dissipation kernel.

where σ ∈ {−1, 1}2m are sign configurations and Dt =
∏2m

k=1 dtk. The expansion weights

in- and out-tunneling events at times t2k−1 and t2k, respectively, with elements of the

kernel L (cf. Fig. 11.7.) An interpretation in terms of charge tunneling is readily estab-

lished by integration over the phase fields. Integrating the expansion above against the

charging action Sc we obtain the constraint ∂tnσ = σ
∑2m

k=1(−)kδ(t − tk)δσk,σ. Substi-

tution of the solutions of this constraint Eq. (11.115) into the charging action we obtain

the representation Eq. (11.114).

(b) Consider the kernel L(ω) at V = 0 (exercise: confirm that at finite V the temporal

range of L shrinks below its V = 0 value. This means that at V = 0 we obtain the

most conservative estimates for the validity of the NIBA). The scaling L(ω) ∼ ω (cf.

Eq. (11.83)) implies L(t) ∼ t−2. This means that a charge tunneling event carries the

statistical weight ∼
∫
dt e±iEctt−2 ∼ EC . Its duration can be estimated as

δt ≡
∫
dt e±iEctt−2t∫
dt e±iEctt−2

∼ E−1
c .

The total statistical weight of a tunneling event occurring somewhere in a time window of

duration t0 is then given by ∼ gECt0. This means that the average number of tunneling

events in t0 is

〈m〉 �
∑

m
m
m! (gECt0)

m∑
m

1
m! (gECt0)m

= gECt0.

The temporal spacing between events follows as t0/〈m〉 ∼ (gEc)
−1, and this relates

to the duration of the event as t0/δt ∼ g−1: at low tunneling g � 1, the spacing

between events exceeds their duration by far, and an approximation treating events in

an uncorrelated sequential order becomes justified.

(c) For E−1
c � Δt � (gEc)

−1, the increment of P in the time window [t − Δt, t] will be

determined by zero or one blip processes:

P (n, t) � P (n,−Δt) +

n+1∑
n′=n−1

Cnn′P (n′, t−Δt),

where the coefficients Cnn′ are one-blip transition probabilities. An individual blip is

characterized by its sign profile (σ, σ′) (where the figure on p762 shows that the con-

nection between the signs and the post-blip increment in classical charge is given by
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(+,+), (−,−) : n → n, (+,−) : n → n− 1, (−,+) : n → n+ 1.), the center time of the

blip t0 ∈ [t−Δt, t] and its duration, s. Comparison with Eq. (11.114) shows that, e.g.

Cn,n−1 =
igΔt

2

∫
ds eiEc(n−1,n)sL−+(s) =

igΔt

2
L−+(Ec(n− 1, n))

=
igΔt

2
(−ΣK − Σ+ +Σ−)(Ec(n− 1, n)) =

gΔt

π
Ec(n− 1, n)Θ(Ec(n− 1, n)),

where the prefactor Δt results from the integration over the center time, and we intro-

duced the relative charging energy Eq. (11.118). In an analogous manner, we obtain

Cn,n+1 =
gΔt

π
Ec(n+ 1, n)Θ(Ec(n+ 1, n)),

Cnn =
gΔt

π
(−Ec(n, n+ 1)Θ(Ec(n, n+ 1))− Ec(n, n− 1)Θ(Ec(n, n− 1))) ,

where in computing Cnn it is important to keep in mind that Σ±(t) ∝ Θ(±t) carry

retarded and advanced causality. Substituting this result into the evolution equation

above, dividing by Δt and taking the continuum limit, we obtain the master equation

(11.117).

(d) For our current parameter setting, N0 = 0, V = T = 0, the charge state n = 0 defines

the energetic ground state. The master equation describes relaxation to this state at

rates const. × Γ, where Γ ≡ gEc/π = 1/RC is inversely proportional to the RC-time

of the system (the proportionality of these rates to g underpins the role of the lead-

coupling as the source of relaxation) and the n-dependent constant prefactor increases

with the distance off the ground state, n = 0.

To show the relaxation in more explicit terms, let us assume that the relaxation has

progressed to a level where only the charge states P−1,0,1 remain significantly populated.

The restriction of the master equation to this sub-system reads

∂tP (0, t) = Γ(P (1, t) + P (−1, t)),

∂tP (±1, t) = −ΓP (±1, t),

which is solved by P (±1, t) = e−ΓtP (±1, 0) and

P (0, t) = 1− P (1, 0)− P (−1, 0) + Γ

∫ t

0

dt′ e−Γt′(P (1, 0) + P (−1, 0)).

This solution describes the relaxation towards the state P (n, t)
t→∞−→ δn,0.

(e) Finite voltages affect the theory through a redefined Keldysh self energy ΣK . Compar-

ison with Eq. (11.83) shows that

ΣK(V )− ΣK(0) =
i

2π
(V − |ω|)Θ(V − |ω|).

The transition rates thus change to

Wn,n±1 → Wn,n±1 +
g

4π
(V − |Ec(n± 1, n)|)Θ(V ± |Ec(n− 1, n)|).
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This change is easy to interpret: for voltages |V | < |Ec(n±1, n)| smaller than the charg-

ing energies, the transition rates of the unbiased problem remain unaltered. This means

that the excess energy of external charge carriers ∼ V needs to exceed the charging

energy to make charge transport through the dot possible; the Coulomb blockade is

inert against moderate biasing.34 At large voltages, |V | � |Ec(n± 1, n)|, the tunneling

rates cross over to values ∼ gV/4π. For these rates, different charging states become

equally populated, at a rate ∼ gV set by the average current through the dot interfaces.

34 Closer inspection shows that this statement is not entirely correct: the NIBA neglects tunneling processes of
higher order in a g-expansion. Among these, there are some (so-called elastic co-tunneling processes) for which
the extra power in g gets rewarded by a suppression in Ec that is only algebraic (as compared to the complete

∼ exp(−Ec/T )
T→0−→ 0 suppression of the direct tunneling processes considered here). Although the description

of elastic co-tunneling goes well beyond the scope of this text, we note that its contribution is proportional
to the mean single particle levels spacing, Δ, of the dot, i.e. the results above hold true in the double limit,
T,Δ → 0.



Index

1/f-noise, 616
H-theorem, 626
φ4–theory, 195
t − J Hamiltonian, 65
1-form, 540

activated friction, 622
active Brownian motion, 621
adiabatic continuity, 210
advanced response function, 373
aging, 329
algebra, 161
Ampère’s law, 549
Anderson Impurity Hamiltonian, 91
Anderson localization, 320
Anderson transition, 488
Anderson–Higgs mechanism, 294
angle resolved photoemission spectroscopy (ARPES),

366
annihilation operators, 45
anomalous dimension, 429, 439
anomaly, 175
antiferromagnetic exchange, 64
anyons, 42, 578
Arrhenius factor, 647
asymptotic expansion, 195
atom-field-Hamiltonian, 754
atomic limit, 54, 60
attractive fixed point, 420
Auger spectroscopy, 366
autonomous, 97

base manifold, 6
basin of attraction, 436
BCS gap equation, 279
BCS Hamiltonian, 267
BCS theory, 266
Berezinskii–Kosterlitz–Thouless transition, 463
Bernoulli distribution, 748
Berry phase action, 555
beta function, 426
Bethe–Salpeter equation, 230
bipartite lattice, 80
blip, 762
Bloch equations, 139
block spin, 418
Bogoliubov transformation, 74
Bogoliubov–de Gennes Hamiltonian, 271
Bogoluibov Hamiltonian, 271
Boltzmann equation, 625

Boltzmann kinetic theory, 623
Born approximation, 227
Bose-Einstein condensation, 252
bosonization, 72
bounces, 123
braid group, 42
Breit–Wigner distribution, 606
Brownian motion, 610

Caldeira–Leggett Model, 129
canonical momentum, 9
canonical scaling dimension, 429
carbon nanotube, 55
Casimir effect, 28
Cauchy distribution, 606
causality, 368
cellular automaton, 678
central limit theorem, 605
Chapman–Kolmogorov relation, 634
charge density wave, 59, 75
charging energy, 335
Chern–Simons action, 576
chiral anomaly, 356
chiral Luttinger liquid, 597
classical action, 4, 100
classical electrodynamics, 15
classical field, 6
classical harmonic chain, 3
classical Lagrangian, 4
classical Lagrangian density, 6
classical phonons, 3
classical spin wave, 85
closed form, 543
coherent states (bosons), 158
coherent states (fermions), 160
Cole–Hopf transformation, 653
collapse and revival, 757
collective excitation, 9
collision integral, 625, 727
commutator algebra, 70
composite fermions, 572
conditional probability, 606
conductance, 363
conformal field theory, 475
conformal mappings, 474
connected diagram, 204
conserved charge, 33
continuous mapping, 502
continuum limit, 5
Cooper channel, 246

766



Index 767

Cooper pairs, 267
Cooperon, 314
correlation function, 165, 198
correlation length, 200, 416
Coulomb gauge, 25, 576
Coulomb plasma, 469
counter terms, 432
counting field, 746
covariant tensor, 541
creation operators, 44
critical exponents, 438
critical phenomena, 436
critical slowing down, 655
critical surface, 436
critical temperature, 279
crystallography, 369
cumulant expansion, 166
cumulants of a distribution, 604
cyclotron frequency, 521

d–wave superconductor, 275
dark soliton, 715
density of states, 143
density–density response function, 185, 385
detailed balance, 635, 667
diamagnetic term, 287
dielectric function, 219
differential form, 540
differential geometry, 537
diffuson, 317
dimensional analysis, 199
dimensionless density parameter, 209
dimer phase, 568
Dirac identity, 143
Dirac monopole, 140
direct channel, 246
directed percolation, 677
dispersion relations, 384
dissipation–fluctuation theorem (quantum), 662
dissipative tunneling, 129
dissipative tunneling action, 339
divergence (infrared), 202
divergence (ultraviolet), 201
Doi–Peliti operator technique, 651
driven diffusive lattice gas, 665
duality transformation, 477
dynamic structure factor, 664
dynamic susceptibility, 656
dynamical correlation function, 656
dynamical exponent, 655
Dyson equation, 225

edge states, 524
Einstein relation, 612
elastic mean free path, 306
elastic scattering time, 306
electro–weak interactions, 295
electron spin resonance, 367
elementary excitations, 8
energy dissipation, 263
energy–momentum tensor, 34
engineering dimension, 429
Euclidean time path integral, 116
Euler angle representation, 135
Euler–Lagrange equation, 15
exchange channel, 246
exchange interaction, 59
exciton, 87
experimental methods, 362
exterior algebra, 161

exterior derivative, 542
exterior product, 542

false vacuum, 125
Fano factor, 742
FDT (quantum), 712
Fermi energy, 53
Fermi liquid theory, 210
Fermi momentum, 53
Fermi sphere, 53
fermionization, 72
ferromagnetic coupling, 60
Feynman path integral, 95
Fick’s law, 612, 657
field, 6
field renormalization, 432
field theory of directed percolation, 681
filling fraction, 519
finite size scaling, 442
fixed point, Gaussian, 448
fixed points, 420, 433
fluctuation–dissipation theorem, 371, 611, 661
fluctuation–dissipation theorem (classical), 656
Fock contribution, 213
Fock space, 43
Fokker–Planck equation, 619, 659
four momentum, 211
fractional charge, 583
free propagator, 199
frequency renormalization, 431
frequency summation, 170
friction, 610
Friedel oscillations, 189
frustration, 80, 329
full counting statistics, 745
functional, 6
functional analysis, 11
functional average, 198
functional differentiation, 11
functional integrals, 100

gauge fixing, 576, 580
Gauss’ law, 548
Gaussian process, 637
Gaussian distribution, 605
Gaussian functional integration, 104
Gaussian integration, 101
geckos, 29
Gell–Mann–Low equation, 426, 430
generalized Langevin equation, 657
generating function of a distribution, 605
geometric phase, 555
Gibbs distribution, 166
Ginzburg criterion, 451
Ginzburg–Landau action, 282
Ginzburg–Landau theory, 196
glasses, 115
golden rule, 388
Goldstone mode, 283
Goldstone modes, 259
Gor’kov Green function, 277
Gor’kov Hamiltonian, 271
gradient expansion, 286
graphene, 55
Grassmann algebra, 161, 542
Grassmann Gaussian integration, 164
Green function, 105, 198
Green function (non–interacting), 378
Gross–Pitaevskii equation, 714
Group integration, 458



768 Index

Gutzwiller trace formula, 145

Haar measure, 136, 457
Haldane conjecture, 516
Hall conductivity, 404
Hall current, 363
Hamilton’s extremal principle, 7
Hamiltonian density, 9
harmonic oscillator, 21
Hartree diagram, 212
heavy fermions, 478
Heisenberg ferromagnet, 258
Heisenberg Hamiltonian, 65
Heisenberg model, 76
Heisenberg representation, 372
Higgs boson, 296
Higgs mechanism, 294
Holstein–Primakoff transformation, 78
homogeneity, 437
homotopy, 503
homotopy group, 503
Hubbard interaction, 60
Hubbard model, 61
Hubbard–Stratonovich transformation, 197, 244
Hund’s rule, 60, 553
hyperscaling, 444

independent random variable, 605
infrared spectroscopy, 365
instanton, 117
instanton gas, 118, 511
insulator, 54
interacting bose gas, 256
irreducible, 41
Ising model, 128, 196
isothermal compressibility, 362
itinerant magnet, 352
Ito discretization, 645

Jellium model, 52
Johnson noise, 614
Jordan–Wigner transformation, 88
Josephson current, 343

Keldysh Green function, 707
Keldysh technique, 303
kinetic equation, 625, 726
kinetic theory, 623
Knight shift, 367
Kondo Effect, 237
Kondo Effect: Poor Man’s Scaling, 492
Kondo problem, 91
Kondo temperature, 240, 494
Kramers–Kronig relations, 384
Kramers–Moyal expansion, 639
Kramers-Moyal expansion, 617
Kubo–Anderson process, 636
kurtosis, 747

Lagrange’s equation of motion, 7
Landau diamagnetism, 290
Landau levels, 520, 521
Landau mean–field theory, 446
Landau–Wilson model, 196
Laughlin wave function, 587
Lehmann representation, 374
level (of Wess–Zumino action), 552
Lindhard function, 218, 354
linked cluster theorem, 206

local gauge invariance, 276
London equations, 298
longitudinal conductivity, 393
loop expansion, 431
loop order, 204
Lorentz gauge, 35
Lorentz invariance, 17
Lorentzian distribution, 606
lower critical dimension, 414

macroscopic quantum tunneling, 129
magnetic algebra, 522
magnetic length, 519
magnetic resonance, 367
magnetic susceptibility, 362
magnetic translation operator, 521
magnons, 79
manifolds, integration on, 544
many–body path integral, 158
many-body wavefunction, 40
Markov process, 633
Markov process, 617
Maslov index, 145
massless excitation, 24
massless modes, 259
master equation, 635
Matsubara frequencies, 168
Maxwell theory, 15
Maxwell–Boltzmann distribution, 609
mean value of a distribution, 604
mean-field, 248
Meissner effect, 298
Mermin–Wagner theorem, 415
mesoscopic physics, 302
mesoscopic systems, 302
metric tensor, 541
microreversibility, 625
minimal coupling, 276
minimal substitution, 329
Minkowski action, 107
mobility edge, 488
moments of a distribution, 604
monodromy matrix, 145
Mott–Hubbard gap, 61, 566
Mott–Hubbard transition, 62
Moyal product, 725
MSRJD–functional, 658
MSRJD-functional, 646
multiplicative noise, 681
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